ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1773
Committed: Tue Aug 7 18:26:40 2012 UTC (12 years, 8 months ago) by gezelter
File size: 53421 byte(s)
Log Message:
Adding new RNEMD options and output file format

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1731 #include "rnemd/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1773 #ifdef IS_MPI
53 gezelter 1723 #include <mpi.h>
54 gezelter 1329 #endif
55    
56 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
57 gezelter 1329
58 gezelter 1629 using namespace std;
59 gezelter 1390 namespace OpenMD {
60 gezelter 1329
61 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64 gezelter 1773 trialCount_ = 0;
65 skuang 1368 failTrialCount_ = 0;
66     failRootCount_ = 0;
67    
68 gezelter 1329 int seedValue;
69     Globals * simParams = info->getSimParams();
70 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71 skuang 1330
72 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
73     stringToMethod_["NIVS"] = rnemdNIVS;
74     stringToMethod_["VSS"] = rnemdVSS;
75 skuang 1330
76 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
77     stringToFluxType_["Px"] = rnemdPx;
78     stringToFluxType_["Py"] = rnemdPy;
79     stringToFluxType_["Pz"] = rnemdPz;
80     stringToFluxType_["KE+Px"] = rnemdKePx;
81     stringToFluxType_["KE+Py"] = rnemdKePy;
82     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
83    
84 jmarr 1728 runTime_ = simParams->getRunTime();
85     statusTime_ = simParams->getStatusTime();
86    
87 gezelter 1731 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
89     seleMan_.setSelectionSet(evaluator_.evaluate());
90 gezelter 1331
91 gezelter 1773 const string methStr = rnemdParams->getMethod();
92     bool hasFluxType = rnemdParams->haveFluxType();
93    
94     string fluxStr;
95     if (hasFluxType) {
96     fluxStr = rnemdParams->getFluxType();
97     } else {
98     sprintf(painCave.errMsg,
99     "RNEMD: No fluxType was set in the md file. This parameter,\n"
100     "\twhich must be one of the following values:\n"
101     "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
102     "\tuse RNEMD\n");
103     painCave.isFatal = 1;
104     painCave.severity = OPENMD_ERROR;
105     simError();
106     }
107    
108     bool hasKineticFlux = rnemdParams->haveKineticFlux();
109     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
110     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
111     bool hasSlabWidth = rnemdParams->haveSlabWidth();
112     bool hasSlabACenter = rnemdParams->haveSlabACenter();
113     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
114     bool hasOutputFileName = rnemdParams->haveOutputFileName();
115     bool hasOutputFields = rnemdParams->haveOutputFields();
116    
117     map<string, RNEMDMethod>::iterator i;
118     i = stringToMethod_.find(methStr);
119     if (i != stringToMethod_.end())
120     rnemdMethod_ = i->second;
121     else {
122     sprintf(painCave.errMsg,
123     "RNEMD: The current method,\n"
124     "\t\t%s is not one of the recognized\n"
125     "\texchange methods: Swap, NIVS, or VSS\n",
126     methStr.c_str());
127     painCave.isFatal = 1;
128     painCave.severity = OPENMD_ERROR;
129     simError();
130     }
131    
132     map<string, RNEMDFluxType>::iterator j;
133     j = stringToFluxType_.find(fluxStr);
134     if (j != stringToFluxType_.end())
135     rnemdFluxType_ = j->second;
136     else {
137     sprintf(painCave.errMsg,
138     "RNEMD: The current fluxType,\n"
139     "\t\t%s\n"
140     "\tis not one of the recognized flux types.\n",
141     fluxStr.c_str());
142     painCave.isFatal = 1;
143     painCave.severity = OPENMD_ERROR;
144     simError();
145     }
146    
147     bool methodFluxMismatch = false;
148     bool hasCorrectFlux = false;
149     switch(rnemdMethod_) {
150     case rnemdSwap:
151     switch (rnemdFluxType_) {
152     case rnemdKE:
153     hasCorrectFlux = hasKineticFlux;
154     break;
155     case rnemdPx:
156     case rnemdPy:
157     case rnemdPz:
158     hasCorrectFlux = hasMomentumFlux;
159     break;
160     default :
161     methodFluxMismatch = true;
162     break;
163     }
164     break;
165     case rnemdNIVS:
166     switch (rnemdFluxType_) {
167     case rnemdKE:
168     case rnemdRotKE:
169     case rnemdFullKE:
170     hasCorrectFlux = hasKineticFlux;
171     break;
172     case rnemdPx:
173     case rnemdPy:
174     case rnemdPz:
175     hasCorrectFlux = hasMomentumFlux;
176     break;
177     case rnemdKePx:
178     case rnemdKePy:
179     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
180     break;
181     default:
182     methodFluxMismatch = true;
183     break;
184     }
185     break;
186     case rnemdVSS:
187     switch (rnemdFluxType_) {
188     case rnemdKE:
189     case rnemdRotKE:
190     case rnemdFullKE:
191     hasCorrectFlux = hasKineticFlux;
192     break;
193     case rnemdPx:
194     case rnemdPy:
195     case rnemdPz:
196     hasCorrectFlux = hasMomentumFlux;
197     break;
198     case rnemdPvector:
199     hasCorrectFlux = hasMomentumFluxVector;
200     case rnemdKePx:
201     case rnemdKePy:
202     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
203     break;
204     case rnemdKePvector:
205     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
206     break;
207     default:
208     methodFluxMismatch = true;
209     break;
210     }
211     default:
212     break;
213     }
214    
215     if (methodFluxMismatch) {
216     sprintf(painCave.errMsg,
217     "RNEMD: The current method,\n"
218     "\t\t%s\n"
219     "\tcannot be used with the current flux type, %s\n",
220     methStr.c_str(), fluxStr.c_str());
221     painCave.isFatal = 1;
222     painCave.severity = OPENMD_ERROR;
223     simError();
224     }
225     if (!hasCorrectFlux) {
226     sprintf(painCave.errMsg,
227     "RNEMD: The current method,\n"
228     "\t%s, and flux type %s\n"
229     "\tdid not have the correct flux value specified. Options\n"
230     "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
231     methStr.c_str(), fluxStr.c_str());
232     painCave.isFatal = 1;
233     painCave.severity = OPENMD_ERROR;
234     simError();
235     }
236    
237     if (hasKineticFlux) {
238     kineticFlux_ = rnemdParams->getKineticFlux();
239     } else {
240     kineticFlux_ = 0.0;
241     }
242     if (hasMomentumFluxVector) {
243     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
244     } else {
245     momentumFluxVector_ = V3Zero;
246     if (hasMomentumFlux) {
247     RealType momentumFlux = rnemdParams->getMomentumFlux();
248     switch (rnemdFluxType_) {
249     case rnemdPx:
250     momentumFluxVector_.x() = momentumFlux;
251     break;
252     case rnemdPy:
253     momentumFluxVector_.y() = momentumFlux;
254     break;
255     case rnemdPz:
256     momentumFluxVector_.z() = momentumFlux;
257     break;
258     case rnemdKePx:
259     momentumFluxVector_.x() = momentumFlux;
260     break;
261     case rnemdKePy:
262     momentumFluxVector_.y() = momentumFlux;
263     break;
264     default:
265     break;
266     }
267     }
268     }
269    
270 skuang 1341 // do some sanity checking
271    
272     int selectionCount = seleMan_.getSelectionCount();
273     int nIntegrable = info->getNGlobalIntegrableObjects();
274    
275     if (selectionCount > nIntegrable) {
276     sprintf(painCave.errMsg,
277 gezelter 1773 "RNEMD: The current objectSelection,\n"
278 skuang 1341 "\t\t%s\n"
279     "\thas resulted in %d selected objects. However,\n"
280     "\tthe total number of integrable objects in the system\n"
281     "\tis only %d. This is almost certainly not what you want\n"
282     "\tto do. A likely cause of this is forgetting the _RB_0\n"
283     "\tselector in the selection script!\n",
284     rnemdObjectSelection_.c_str(),
285     selectionCount, nIntegrable);
286     painCave.isFatal = 0;
287 gezelter 1629 painCave.severity = OPENMD_WARNING;
288 skuang 1341 simError();
289     }
290 skuang 1330
291 gezelter 1773 nBins_ = rnemdParams->getOutputBins();
292 skuang 1330
293 gezelter 1773 data_.resize(RNEMD::ENDINDEX);
294     OutputData z;
295     z.units = "Angstroms";
296     z.title = "Z";
297     z.dataType = "RealType";
298     z.accumulator.reserve(nBins_);
299     for (unsigned int i = 0; i < nBins_; i++)
300     z.accumulator.push_back( new Accumulator() );
301     data_[Z] = z;
302     outputMap_["Z"] = Z;
303 skuang 1368
304 gezelter 1773 OutputData temperature;
305     temperature.units = "K";
306     temperature.title = "Temperature";
307     temperature.dataType = "RealType";
308     temperature.accumulator.reserve(nBins_);
309     for (unsigned int i = 0; i < nBins_; i++)
310     temperature.accumulator.push_back( new Accumulator() );
311     data_[TEMPERATURE] = temperature;
312     outputMap_["TEMPERATURE"] = TEMPERATURE;
313 gezelter 1722
314 gezelter 1773 OutputData velocity;
315     velocity.units = "amu/fs";
316     velocity.title = "Velocity";
317     velocity.dataType = "Vector3d";
318     velocity.accumulator.reserve(nBins_);
319     for (unsigned int i = 0; i < nBins_; i++)
320     velocity.accumulator.push_back( new VectorAccumulator() );
321     data_[VELOCITY] = velocity;
322     outputMap_["VELOCITY"] = VELOCITY;
323 skuang 1368
324 gezelter 1773 OutputData density;
325     density.units = "g cm^-3";
326     density.title = "Density";
327     density.dataType = "RealType";
328     density.accumulator.reserve(nBins_);
329     for (unsigned int i = 0; i < nBins_; i++)
330     density.accumulator.push_back( new Accumulator() );
331     data_[DENSITY] = density;
332     outputMap_["DENSITY"] = DENSITY;
333 skuang 1368
334 gezelter 1773 if (hasOutputFields) {
335     parseOutputFileFormat(rnemdParams->getOutputFields());
336     } else {
337     outputMask_.set(Z);
338     switch (rnemdFluxType_) {
339     case rnemdKE:
340     case rnemdRotKE:
341     case rnemdFullKE:
342     outputMask_.set(TEMPERATURE);
343     break;
344     case rnemdPx:
345     case rnemdPy:
346     outputMask_.set(VELOCITY);
347     break;
348     case rnemdPz:
349     case rnemdPvector:
350     outputMask_.set(VELOCITY);
351     outputMask_.set(DENSITY);
352     break;
353     case rnemdKePx:
354     case rnemdKePy:
355     outputMask_.set(TEMPERATURE);
356     outputMask_.set(VELOCITY);
357     break;
358     case rnemdKePvector:
359     outputMask_.set(TEMPERATURE);
360     outputMask_.set(VELOCITY);
361     outputMask_.set(DENSITY);
362     break;
363     default:
364     break;
365 gezelter 1629 }
366     }
367 gezelter 1773
368     if (hasOutputFileName) {
369     rnemdFileName_ = rnemdParams->getOutputFileName();
370 skuang 1368 } else {
371 gezelter 1773 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
372     }
373 gezelter 1722
374 gezelter 1773 exchangeTime_ = rnemdParams->getExchangeTime();
375 skuang 1338
376 gezelter 1773 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
377     Mat3x3d hmat = currentSnap_->getHmat();
378    
379     // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
380     // Lx, Ly = box dimensions in x & y
381     // dt = exchange time interval
382     // flux = target flux
383 skuang 1368
384 gezelter 1773 kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
385     momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
386    
387     // total exchange sums are zeroed out at the beginning:
388    
389     kineticExchange_ = 0.0;
390     momentumExchange_ = V3Zero;
391    
392     if (hasSlabWidth)
393     slabWidth_ = rnemdParams->getSlabWidth();
394     else
395     slabWidth_ = hmat(2,2) / 10.0;
396    
397     if (hasSlabACenter)
398     slabACenter_ = rnemdParams->getSlabACenter();
399     else
400     slabACenter_ = 0.0;
401    
402     if (hasSlabBCenter)
403     slabBCenter_ = rnemdParams->getSlabBCenter();
404     else
405     slabBCenter_ = hmat(2,2) / 2.0;
406    
407 gezelter 1329 }
408 gezelter 1773
409 gezelter 1329 RNEMD::~RNEMD() {
410 gezelter 1396
411 skuang 1368 #ifdef IS_MPI
412     if (worldRank == 0) {
413     #endif
414 gezelter 1722
415 gezelter 1773 writeOutputFile();
416    
417     rnemdFile_.close();
418 jmarr 1728
419 skuang 1368 #ifdef IS_MPI
420     }
421     #endif
422 gezelter 1329 }
423 gezelter 1773
424     bool RNEMD::inSlabA(Vector3d pos) {
425     return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
426     }
427     bool RNEMD::inSlabB(Vector3d pos) {
428     return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429     }
430 skuang 1330
431 gezelter 1329 void RNEMD::doSwap() {
432 gezelter 1331
433 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
434     Mat3x3d hmat = currentSnap_->getHmat();
435    
436 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
437    
438 gezelter 1333 int selei;
439 gezelter 1331 StuntDouble* sd;
440 gezelter 1333 int idx;
441 gezelter 1331
442 skuang 1338 RealType min_val;
443     bool min_found = false;
444     StuntDouble* min_sd;
445    
446     RealType max_val;
447     bool max_found = false;
448     StuntDouble* max_sd;
449    
450 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
451     sd = seleMan_.nextSelected(selei)) {
452 gezelter 1332
453 gezelter 1333 idx = sd->getLocalIndex();
454    
455 gezelter 1331 Vector3d pos = sd->getPos();
456 gezelter 1332
457     // wrap the stuntdouble's position back into the box:
458    
459 gezelter 1331 if (usePeriodicBoundaryConditions_)
460 gezelter 1332 currentSnap_->wrapVector(pos);
461 gezelter 1773 bool inA = inSlabA(pos);
462     bool inB = inSlabB(pos);
463 gezelter 1332
464 gezelter 1773 if (inA || inB) {
465 gezelter 1332
466     RealType mass = sd->getMass();
467     Vector3d vel = sd->getVel();
468     RealType value;
469 gezelter 1773
470     switch(rnemdFluxType_) {
471     case rnemdKE :
472 gezelter 1332
473 gezelter 1722 value = mass * vel.lengthSquare();
474    
475     if (sd->isDirectional()) {
476 gezelter 1332 Vector3d angMom = sd->getJ();
477     Mat3x3d I = sd->getI();
478    
479     if (sd->isLinear()) {
480 gezelter 1722 int i = sd->linearAxis();
481     int j = (i + 1) % 3;
482     int k = (i + 2) % 3;
483     value += angMom[j] * angMom[j] / I(j, j) +
484     angMom[k] * angMom[k] / I(k, k);
485 gezelter 1332 } else {
486 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
487     + angMom[1]*angMom[1]/I(1, 1)
488     + angMom[2]*angMom[2]/I(2, 2);
489 gezelter 1332 }
490 gezelter 1722 } //angular momenta exchange enabled
491     //energyConvert temporarily disabled
492 gezelter 1773 //make kineticExchange_ comparable between swap & scale
493 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
494 skuang 1368 value *= 0.5;
495 gezelter 1332 break;
496     case rnemdPx :
497     value = mass * vel[0];
498     break;
499     case rnemdPy :
500     value = mass * vel[1];
501     break;
502     case rnemdPz :
503     value = mass * vel[2];
504     break;
505     default :
506     break;
507     }
508    
509 gezelter 1773 if (inA == 0) {
510 skuang 1338 if (!min_found) {
511     min_val = value;
512     min_sd = sd;
513     min_found = true;
514     } else {
515     if (min_val > value) {
516     min_val = value;
517     min_sd = sd;
518     }
519     }
520 gezelter 1773 } else {
521 skuang 1338 if (!max_found) {
522     max_val = value;
523     max_sd = sd;
524     max_found = true;
525     } else {
526     if (max_val < value) {
527     max_val = value;
528     max_sd = sd;
529     }
530     }
531     }
532 gezelter 1332 }
533 gezelter 1331 }
534 gezelter 1773
535 gezelter 1350 #ifdef IS_MPI
536     int nProc, worldRank;
537 gezelter 1773
538 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
539     worldRank = MPI::COMM_WORLD.Get_rank();
540    
541     bool my_min_found = min_found;
542     bool my_max_found = max_found;
543    
544     // Even if we didn't find a minimum, did someone else?
545 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
546 gezelter 1350 // Even if we didn't find a maximum, did someone else?
547 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
548 gezelter 1722 #endif
549    
550     if (max_found && min_found) {
551    
552     #ifdef IS_MPI
553     struct {
554     RealType val;
555     int rank;
556     } max_vals, min_vals;
557 jmarr 1728
558 gezelter 1722 if (my_min_found) {
559 gezelter 1350 min_vals.val = min_val;
560 gezelter 1722 } else {
561 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
562 gezelter 1722 }
563 gezelter 1350 min_vals.rank = worldRank;
564    
565     // Who had the minimum?
566     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
567     1, MPI::REALTYPE_INT, MPI::MINLOC);
568     min_val = min_vals.val;
569    
570 gezelter 1722 if (my_max_found) {
571 gezelter 1350 max_vals.val = max_val;
572 gezelter 1722 } else {
573 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
574 gezelter 1722 }
575 gezelter 1350 max_vals.rank = worldRank;
576    
577     // Who had the maximum?
578     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
579     1, MPI::REALTYPE_INT, MPI::MAXLOC);
580     max_val = max_vals.val;
581     #endif
582 gezelter 1722
583 gezelter 1629 if (min_val < max_val) {
584 gezelter 1722
585 gezelter 1350 #ifdef IS_MPI
586     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
587     // I have both maximum and minimum, so proceed like a single
588     // processor version:
589     #endif
590 gezelter 1722
591 gezelter 1350 Vector3d min_vel = min_sd->getVel();
592     Vector3d max_vel = max_sd->getVel();
593     RealType temp_vel;
594    
595 gezelter 1773 switch(rnemdFluxType_) {
596     case rnemdKE :
597 gezelter 1350 min_sd->setVel(max_vel);
598     max_sd->setVel(min_vel);
599 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
600 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
601     Vector3d max_angMom = max_sd->getJ();
602     min_sd->setJ(max_angMom);
603     max_sd->setJ(min_angMom);
604 gezelter 1722 }//angular momenta exchange enabled
605     //assumes same rigid body identity
606 gezelter 1350 break;
607     case rnemdPx :
608     temp_vel = min_vel.x();
609     min_vel.x() = max_vel.x();
610     max_vel.x() = temp_vel;
611     min_sd->setVel(min_vel);
612     max_sd->setVel(max_vel);
613     break;
614     case rnemdPy :
615     temp_vel = min_vel.y();
616     min_vel.y() = max_vel.y();
617     max_vel.y() = temp_vel;
618     min_sd->setVel(min_vel);
619     max_sd->setVel(max_vel);
620     break;
621     case rnemdPz :
622     temp_vel = min_vel.z();
623     min_vel.z() = max_vel.z();
624     max_vel.z() = temp_vel;
625     min_sd->setVel(min_vel);
626     max_sd->setVel(max_vel);
627     break;
628     default :
629     break;
630     }
631 gezelter 1722
632 gezelter 1350 #ifdef IS_MPI
633     // the rest of the cases only apply in parallel simulations:
634     } else if (max_vals.rank == worldRank) {
635     // I had the max, but not the minimum
636    
637     Vector3d min_vel;
638     Vector3d max_vel = max_sd->getVel();
639     MPI::Status status;
640 skuang 1341
641 gezelter 1350 // point-to-point swap of the velocity vector
642     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
643     min_vals.rank, 0,
644     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
645     min_vals.rank, 0, status);
646    
647 gezelter 1773 switch(rnemdFluxType_) {
648     case rnemdKE :
649 gezelter 1350 max_sd->setVel(min_vel);
650 gezelter 1722 //angular momenta exchange enabled
651 gezelter 1350 if (max_sd->isDirectional()) {
652     Vector3d min_angMom;
653     Vector3d max_angMom = max_sd->getJ();
654 gezelter 1629
655 gezelter 1350 // point-to-point swap of the angular momentum vector
656     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
657     MPI::REALTYPE, min_vals.rank, 1,
658     min_angMom.getArrayPointer(), 3,
659     MPI::REALTYPE, min_vals.rank, 1,
660     status);
661 gezelter 1629
662 gezelter 1350 max_sd->setJ(min_angMom);
663 gezelter 1722 }
664 gezelter 1350 break;
665     case rnemdPx :
666     max_vel.x() = min_vel.x();
667     max_sd->setVel(max_vel);
668     break;
669     case rnemdPy :
670     max_vel.y() = min_vel.y();
671     max_sd->setVel(max_vel);
672     break;
673     case rnemdPz :
674     max_vel.z() = min_vel.z();
675     max_sd->setVel(max_vel);
676     break;
677     default :
678     break;
679 skuang 1341 }
680 gezelter 1350 } else if (min_vals.rank == worldRank) {
681     // I had the minimum but not the maximum:
682    
683     Vector3d max_vel;
684     Vector3d min_vel = min_sd->getVel();
685     MPI::Status status;
686    
687     // point-to-point swap of the velocity vector
688     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
689     max_vals.rank, 0,
690     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
691     max_vals.rank, 0, status);
692    
693 gezelter 1773 switch(rnemdFluxType_) {
694     case rnemdKE :
695 gezelter 1350 min_sd->setVel(max_vel);
696 gezelter 1722 //angular momenta exchange enabled
697 gezelter 1350 if (min_sd->isDirectional()) {
698     Vector3d min_angMom = min_sd->getJ();
699     Vector3d max_angMom;
700 gezelter 1629
701 gezelter 1350 // point-to-point swap of the angular momentum vector
702     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
703     MPI::REALTYPE, max_vals.rank, 1,
704     max_angMom.getArrayPointer(), 3,
705     MPI::REALTYPE, max_vals.rank, 1,
706     status);
707 gezelter 1629
708 gezelter 1350 min_sd->setJ(max_angMom);
709     }
710     break;
711     case rnemdPx :
712     min_vel.x() = max_vel.x();
713     min_sd->setVel(min_vel);
714     break;
715     case rnemdPy :
716     min_vel.y() = max_vel.y();
717     min_sd->setVel(min_vel);
718     break;
719     case rnemdPz :
720     min_vel.z() = max_vel.z();
721     min_sd->setVel(min_vel);
722     break;
723     default :
724     break;
725     }
726     }
727     #endif
728 gezelter 1773
729     switch(rnemdFluxType_) {
730     case rnemdKE:
731     cerr << "KE\n";
732     kineticExchange_ += max_val - min_val;
733     break;
734     case rnemdPx:
735     momentumExchange_.x() += max_val - min_val;
736     break;
737     case rnemdPy:
738     momentumExchange_.y() += max_val - min_val;
739     break;
740     case rnemdPz:
741     momentumExchange_.z() += max_val - min_val;
742     break;
743     default:
744     cerr << "default\n";
745     break;
746     }
747 gezelter 1629 } else {
748     sprintf(painCave.errMsg,
749 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
750 gezelter 1629 painCave.isFatal = 0;
751     painCave.severity = OPENMD_INFO;
752     simError();
753 skuang 1368 failTrialCount_++;
754 skuang 1338 }
755     } else {
756 gezelter 1629 sprintf(painCave.errMsg,
757 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
758     "\twas not present in at least one of the two slabs.\n");
759 gezelter 1629 painCave.isFatal = 0;
760     painCave.severity = OPENMD_INFO;
761     simError();
762 skuang 1368 failTrialCount_++;
763 gezelter 1773 }
764 skuang 1338 }
765 gezelter 1350
766 gezelter 1773 void RNEMD::doNIVS() {
767 skuang 1338
768     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
769     Mat3x3d hmat = currentSnap_->getHmat();
770    
771     seleMan_.setSelectionSet(evaluator_.evaluate());
772    
773     int selei;
774     StuntDouble* sd;
775     int idx;
776    
777 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
778 gezelter 1350
779 skuang 1368 RealType Phx = 0.0;
780     RealType Phy = 0.0;
781     RealType Phz = 0.0;
782     RealType Khx = 0.0;
783     RealType Khy = 0.0;
784     RealType Khz = 0.0;
785 gezelter 1722 RealType Khw = 0.0;
786 skuang 1368 RealType Pcx = 0.0;
787     RealType Pcy = 0.0;
788     RealType Pcz = 0.0;
789     RealType Kcx = 0.0;
790     RealType Kcy = 0.0;
791     RealType Kcz = 0.0;
792 gezelter 1722 RealType Kcw = 0.0;
793 skuang 1368
794 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
795     sd = seleMan_.nextSelected(selei)) {
796 skuang 1368
797     idx = sd->getLocalIndex();
798    
799     Vector3d pos = sd->getPos();
800    
801     // wrap the stuntdouble's position back into the box:
802    
803     if (usePeriodicBoundaryConditions_)
804     currentSnap_->wrapVector(pos);
805    
806     // which bin is this stuntdouble in?
807 gezelter 1773 bool inA = inSlabA(pos);
808     bool inB = inSlabB(pos);
809 skuang 1368
810 gezelter 1773 if (inA || inB) {
811    
812 skuang 1368 RealType mass = sd->getMass();
813     Vector3d vel = sd->getVel();
814    
815 gezelter 1773 if (inA) {
816 skuang 1368 hotBin.push_back(sd);
817     Phx += mass * vel.x();
818     Phy += mass * vel.y();
819     Phz += mass * vel.z();
820     Khx += mass * vel.x() * vel.x();
821     Khy += mass * vel.y() * vel.y();
822     Khz += mass * vel.z() * vel.z();
823 gezelter 1722 if (sd->isDirectional()) {
824     Vector3d angMom = sd->getJ();
825     Mat3x3d I = sd->getI();
826     if (sd->isLinear()) {
827     int i = sd->linearAxis();
828     int j = (i + 1) % 3;
829     int k = (i + 2) % 3;
830     Khw += angMom[j] * angMom[j] / I(j, j) +
831     angMom[k] * angMom[k] / I(k, k);
832     } else {
833     Khw += angMom[0]*angMom[0]/I(0, 0)
834     + angMom[1]*angMom[1]/I(1, 1)
835     + angMom[2]*angMom[2]/I(2, 2);
836     }
837     }
838 gezelter 1773 } else {
839 skuang 1368 coldBin.push_back(sd);
840     Pcx += mass * vel.x();
841     Pcy += mass * vel.y();
842     Pcz += mass * vel.z();
843     Kcx += mass * vel.x() * vel.x();
844     Kcy += mass * vel.y() * vel.y();
845     Kcz += mass * vel.z() * vel.z();
846 gezelter 1722 if (sd->isDirectional()) {
847     Vector3d angMom = sd->getJ();
848     Mat3x3d I = sd->getI();
849     if (sd->isLinear()) {
850     int i = sd->linearAxis();
851     int j = (i + 1) % 3;
852     int k = (i + 2) % 3;
853     Kcw += angMom[j] * angMom[j] / I(j, j) +
854     angMom[k] * angMom[k] / I(k, k);
855     } else {
856     Kcw += angMom[0]*angMom[0]/I(0, 0)
857     + angMom[1]*angMom[1]/I(1, 1)
858     + angMom[2]*angMom[2]/I(2, 2);
859     }
860     }
861 skuang 1368 }
862     }
863     }
864 gezelter 1722
865 skuang 1368 Khx *= 0.5;
866     Khy *= 0.5;
867     Khz *= 0.5;
868 gezelter 1722 Khw *= 0.5;
869 skuang 1368 Kcx *= 0.5;
870     Kcy *= 0.5;
871     Kcz *= 0.5;
872 gezelter 1722 Kcw *= 0.5;
873 skuang 1368
874     #ifdef IS_MPI
875     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
876     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
877     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
878     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
879     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
880     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
881    
882     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
883     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
884     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
885 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
886    
887 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
888     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
889     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
890 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
891 skuang 1368 #endif
892    
893 gezelter 1722 //solve coldBin coeff's first
894 skuang 1368 RealType px = Pcx / Phx;
895     RealType py = Pcy / Phy;
896     RealType pz = Pcz / Phz;
897 gezelter 1722 RealType c, x, y, z;
898     bool successfulScale = false;
899 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
900     (rnemdFluxType_ == rnemdRotKE)) {
901 gezelter 1722 //may need sanity check Khw & Kcw > 0
902 skuang 1368
903 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
904     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
905 gezelter 1722 } else {
906 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
907 gezelter 1722 }
908 skuang 1368
909 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
910     c = sqrt(c);
911 gezelter 1773 //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 gezelter 1722 //now convert to hotBin coefficient
913     RealType w = 0.0;
914 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
915 gezelter 1722 x = 1.0 + px * (1.0 - c);
916     y = 1.0 + py * (1.0 - c);
917     z = 1.0 + pz * (1.0 - c);
918     /* more complicated way
919     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
920     + Khx * px * px + Khy * py * py + Khz * pz * pz)
921     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
922     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
923     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
924     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
925     */
926     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927     (fabs(z - 1.0) < 0.1)) {
928 gezelter 1773 w = 1.0 + (kineticTarget_
929     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
931     }//no need to calculate w if x, y or z is out of range
932     } else {
933 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
934 gezelter 1722 }
935     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936     //if w is in the right range, so should be x, y, z.
937     vector<StuntDouble*>::iterator sdi;
938     Vector3d vel;
939     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
941 gezelter 1722 vel = (*sdi)->getVel() * c;
942     (*sdi)->setVel(vel);
943     }
944     if ((*sdi)->isDirectional()) {
945     Vector3d angMom = (*sdi)->getJ() * c;
946     (*sdi)->setJ(angMom);
947     }
948     }
949     w = sqrt(w);
950 gezelter 1773 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951     // << "\twh= " << w << endl;
952 gezelter 1722 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
953 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
954 gezelter 1722 vel = (*sdi)->getVel();
955     vel.x() *= x;
956     vel.y() *= y;
957     vel.z() *= z;
958     (*sdi)->setVel(vel);
959     }
960     if ((*sdi)->isDirectional()) {
961     Vector3d angMom = (*sdi)->getJ() * w;
962     (*sdi)->setJ(angMom);
963     }
964     }
965     successfulScale = true;
966 gezelter 1773 kineticExchange_ += kineticTarget_;
967 gezelter 1722 }
968 skuang 1368 }
969 gezelter 1722 } else {
970     RealType a000, a110, c0, a001, a111, b01, b11, c1;
971 gezelter 1773 switch(rnemdFluxType_) {
972     case rnemdKE :
973 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
974     RealType px = Phx / Pcx;
975     RealType py = Phy / Pcy;
976     a110 = Khy;
977 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
978 gezelter 1722 a000 = Khx;
979     a111 = Kcy * py * py;
980     b11 = -2.0 * Kcy * py * (1.0 + py);
981 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
982 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
983     a001 = Kcx * px * px;
984     */
985     //scale all three dimensions, let c_x = c_y
986     a000 = Kcx + Kcy;
987     a110 = Kcz;
988 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
989 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
990     a111 = Khz * pz * pz;
991     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
992     b11 = -2.0 * Khz * pz * (1.0 + pz);
993     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
994 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
995 gezelter 1722 break;
996 gezelter 1773 case rnemdPx :
997     c = 1 - momentumTarget_.x() / Pcx;
998 gezelter 1722 a000 = Kcy;
999     a110 = Kcz;
1000     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1001     a001 = py * py * Khy;
1002     a111 = pz * pz * Khz;
1003     b01 = -2.0 * Khy * py * (1.0 + py);
1004     b11 = -2.0 * Khz * pz * (1.0 + pz);
1005     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1006     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1007     break;
1008 gezelter 1773 case rnemdPy :
1009     c = 1 - momentumTarget_.y() / Pcy;
1010 gezelter 1722 a000 = Kcx;
1011     a110 = Kcz;
1012     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1013     a001 = px * px * Khx;
1014     a111 = pz * pz * Khz;
1015     b01 = -2.0 * Khx * px * (1.0 + px);
1016     b11 = -2.0 * Khz * pz * (1.0 + pz);
1017     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1018     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1019     break;
1020 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1021     c = 1 - momentumTarget_.z() / Pcz;
1022 gezelter 1722 a000 = Kcx;
1023     a110 = Kcy;
1024     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1025     a001 = px * px * Khx;
1026     a111 = py * py * Khy;
1027     b01 = -2.0 * Khx * px * (1.0 + px);
1028     b11 = -2.0 * Khy * py * (1.0 + py);
1029     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1030     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1031     break;
1032     default :
1033     break;
1034 skuang 1368 }
1035 gezelter 1722
1036     RealType v1 = a000 * a111 - a001 * a110;
1037     RealType v2 = a000 * b01;
1038     RealType v3 = a000 * b11;
1039     RealType v4 = a000 * c1 - a001 * c0;
1040     RealType v8 = a110 * b01;
1041     RealType v10 = - b01 * c0;
1042    
1043     RealType u0 = v2 * v10 - v4 * v4;
1044     RealType u1 = -2.0 * v3 * v4;
1045     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1046     RealType u3 = -2.0 * v1 * v3;
1047     RealType u4 = - v1 * v1;
1048     //rescale coefficients
1049     RealType maxAbs = fabs(u0);
1050     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1051     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1052     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1053     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1054     u0 /= maxAbs;
1055     u1 /= maxAbs;
1056     u2 /= maxAbs;
1057     u3 /= maxAbs;
1058     u4 /= maxAbs;
1059     //max_element(start, end) is also available.
1060     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1061     poly.setCoefficient(4, u4);
1062     poly.setCoefficient(3, u3);
1063     poly.setCoefficient(2, u2);
1064     poly.setCoefficient(1, u1);
1065     poly.setCoefficient(0, u0);
1066     vector<RealType> realRoots = poly.FindRealRoots();
1067    
1068     vector<RealType>::iterator ri;
1069     RealType r1, r2, alpha0;
1070     vector<pair<RealType,RealType> > rps;
1071     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1072     r2 = *ri;
1073     //check if FindRealRoots() give the right answer
1074     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1075     sprintf(painCave.errMsg,
1076     "RNEMD Warning: polynomial solve seems to have an error!");
1077     painCave.isFatal = 0;
1078     simError();
1079     failRootCount_++;
1080     }
1081     //might not be useful w/o rescaling coefficients
1082     alpha0 = -c0 - a110 * r2 * r2;
1083     if (alpha0 >= 0.0) {
1084     r1 = sqrt(alpha0 / a000);
1085     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1086     < 1e-6)
1087     { rps.push_back(make_pair(r1, r2)); }
1088     if (r1 > 1e-6) { //r1 non-negative
1089     r1 = -r1;
1090     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091     < 1e-6)
1092     { rps.push_back(make_pair(r1, r2)); }
1093     }
1094     }
1095 skuang 1368 }
1096 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1097     // best solution part so that we don't need the pairs vector
1098     if (!rps.empty()) {
1099     RealType smallestDiff = HONKING_LARGE_VALUE;
1100     RealType diff;
1101     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1102     vector<pair<RealType,RealType> >::iterator rpi;
1103     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1104     r1 = (*rpi).first;
1105     r2 = (*rpi).second;
1106 gezelter 1773 switch(rnemdFluxType_) {
1107     case rnemdKE :
1108 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1109     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1110     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1111     break;
1112 gezelter 1773 case rnemdPx :
1113 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1115     break;
1116 gezelter 1773 case rnemdPy :
1117 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1119     break;
1120 gezelter 1773 case rnemdPz :
1121 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1122     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1123     default :
1124     break;
1125     }
1126     if (diff < smallestDiff) {
1127     smallestDiff = diff;
1128     bestPair = *rpi;
1129     }
1130     }
1131 skuang 1368 #ifdef IS_MPI
1132 gezelter 1722 if (worldRank == 0) {
1133 skuang 1368 #endif
1134 gezelter 1773 // sprintf(painCave.errMsg,
1135     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136     // bestPair.first, bestPair.second);
1137     // painCave.isFatal = 0;
1138     // painCave.severity = OPENMD_INFO;
1139     // simError();
1140 skuang 1368 #ifdef IS_MPI
1141 gezelter 1722 }
1142 skuang 1368 #endif
1143 gezelter 1722
1144 gezelter 1773 switch(rnemdFluxType_) {
1145     case rnemdKE :
1146 gezelter 1722 x = bestPair.first;
1147     y = bestPair.first;
1148     z = bestPair.second;
1149     break;
1150 gezelter 1773 case rnemdPx :
1151 gezelter 1722 x = c;
1152     y = bestPair.first;
1153     z = bestPair.second;
1154     break;
1155 gezelter 1773 case rnemdPy :
1156 gezelter 1722 x = bestPair.first;
1157     y = c;
1158     z = bestPair.second;
1159     break;
1160 gezelter 1773 case rnemdPz :
1161 gezelter 1722 x = bestPair.first;
1162     y = bestPair.second;
1163     z = c;
1164     break;
1165     default :
1166     break;
1167     }
1168     vector<StuntDouble*>::iterator sdi;
1169     Vector3d vel;
1170     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1171     vel = (*sdi)->getVel();
1172     vel.x() *= x;
1173     vel.y() *= y;
1174     vel.z() *= z;
1175     (*sdi)->setVel(vel);
1176     }
1177     //convert to hotBin coefficient
1178     x = 1.0 + px * (1.0 - x);
1179     y = 1.0 + py * (1.0 - y);
1180     z = 1.0 + pz * (1.0 - z);
1181     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1182     vel = (*sdi)->getVel();
1183     vel.x() *= x;
1184     vel.y() *= y;
1185     vel.z() *= z;
1186     (*sdi)->setVel(vel);
1187     }
1188     successfulScale = true;
1189 gezelter 1773 switch(rnemdFluxType_) {
1190     case rnemdKE :
1191     kineticExchange_ += kineticTarget_;
1192     break;
1193     case rnemdPx :
1194     case rnemdPy :
1195     case rnemdPz :
1196     momentumExchange_ += momentumTarget_;
1197     break;
1198     default :
1199     break;
1200     }
1201 gezelter 1629 }
1202 gezelter 1722 }
1203     if (successfulScale != true) {
1204     sprintf(painCave.errMsg,
1205 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1206     "\tthe constraint equations may not exist or there may be\n"
1207     "\tno selected objects in one or both slabs.\n");
1208 gezelter 1722 painCave.isFatal = 0;
1209     painCave.severity = OPENMD_INFO;
1210     simError();
1211     failTrialCount_++;
1212     }
1213     }
1214    
1215 gezelter 1773 void RNEMD::doVSS() {
1216 gezelter 1722
1217     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218 jmarr 1728 RealType time = currentSnap_->getTime();
1219 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1220    
1221     seleMan_.setSelectionSet(evaluator_.evaluate());
1222    
1223     int selei;
1224     StuntDouble* sd;
1225     int idx;
1226    
1227     vector<StuntDouble*> hotBin, coldBin;
1228    
1229     Vector3d Ph(V3Zero);
1230     RealType Mh = 0.0;
1231     RealType Kh = 0.0;
1232     Vector3d Pc(V3Zero);
1233     RealType Mc = 0.0;
1234     RealType Kc = 0.0;
1235 jmarr 1728
1236 gezelter 1722
1237     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1238     sd = seleMan_.nextSelected(selei)) {
1239    
1240     idx = sd->getLocalIndex();
1241    
1242     Vector3d pos = sd->getPos();
1243    
1244     // wrap the stuntdouble's position back into the box:
1245    
1246     if (usePeriodicBoundaryConditions_)
1247     currentSnap_->wrapVector(pos);
1248    
1249     // which bin is this stuntdouble in?
1250 gezelter 1773 bool inA = inSlabA(pos);
1251     bool inB = inSlabB(pos);
1252    
1253     if (inA || inB) {
1254 gezelter 1722
1255     RealType mass = sd->getMass();
1256     Vector3d vel = sd->getVel();
1257    
1258 gezelter 1773 if (inA) {
1259 gezelter 1722 hotBin.push_back(sd);
1260     //std::cerr << "before, velocity = " << vel << endl;
1261     Ph += mass * vel;
1262     //std::cerr << "after, velocity = " << vel << endl;
1263     Mh += mass;
1264     Kh += mass * vel.lengthSquare();
1265 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1266 gezelter 1722 if (sd->isDirectional()) {
1267     Vector3d angMom = sd->getJ();
1268     Mat3x3d I = sd->getI();
1269     if (sd->isLinear()) {
1270     int i = sd->linearAxis();
1271     int j = (i + 1) % 3;
1272     int k = (i + 2) % 3;
1273     Kh += angMom[j] * angMom[j] / I(j, j) +
1274     angMom[k] * angMom[k] / I(k, k);
1275     } else {
1276     Kh += angMom[0] * angMom[0] / I(0, 0) +
1277     angMom[1] * angMom[1] / I(1, 1) +
1278     angMom[2] * angMom[2] / I(2, 2);
1279     }
1280     }
1281     }
1282     } else { //midBin_
1283     coldBin.push_back(sd);
1284     Pc += mass * vel;
1285     Mc += mass;
1286     Kc += mass * vel.lengthSquare();
1287 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1288 gezelter 1722 if (sd->isDirectional()) {
1289     Vector3d angMom = sd->getJ();
1290     Mat3x3d I = sd->getI();
1291     if (sd->isLinear()) {
1292     int i = sd->linearAxis();
1293     int j = (i + 1) % 3;
1294     int k = (i + 2) % 3;
1295     Kc += angMom[j] * angMom[j] / I(j, j) +
1296     angMom[k] * angMom[k] / I(k, k);
1297     } else {
1298     Kc += angMom[0] * angMom[0] / I(0, 0) +
1299     angMom[1] * angMom[1] / I(1, 1) +
1300     angMom[2] * angMom[2] / I(2, 2);
1301     }
1302     }
1303     }
1304     }
1305 skuang 1368 }
1306 gezelter 1722 }
1307    
1308     Kh *= 0.5;
1309     Kc *= 0.5;
1310    
1311 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312     // << "\tKc= " << Kc << endl;
1313     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1314    
1315 gezelter 1722 #ifdef IS_MPI
1316     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1317     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1318     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1319     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1320     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1321     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1322     #endif
1323    
1324     bool successfulExchange = false;
1325     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1326     Vector3d vc = Pc / Mc;
1327 gezelter 1773 Vector3d ac = -momentumTarget_ / Mc + vc;
1328     Vector3d acrec = -momentumTarget_ / Mc;
1329     RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1330 gezelter 1722 if (cNumerator > 0.0) {
1331     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1332     if (cDenominator > 0.0) {
1333     RealType c = sqrt(cNumerator / cDenominator);
1334     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1335     Vector3d vh = Ph / Mh;
1336 gezelter 1773 Vector3d ah = momentumTarget_ / Mh + vh;
1337     Vector3d ahrec = momentumTarget_ / Mh;
1338     RealType hNumerator = Kh + kineticTarget_
1339 gezelter 1722 - 0.5 * Mh * ah.lengthSquare();
1340     if (hNumerator > 0.0) {
1341     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1342     if (hDenominator > 0.0) {
1343     RealType h = sqrt(hNumerator / hDenominator);
1344     if ((h > 0.9) && (h < 1.1)) {
1345 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1347 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1348     Vector3d vel;
1349     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1350     //vel = (*sdi)->getVel();
1351     vel = ((*sdi)->getVel() - vc) * c + ac;
1352     (*sdi)->setVel(vel);
1353 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1354 gezelter 1722 if ((*sdi)->isDirectional()) {
1355     Vector3d angMom = (*sdi)->getJ() * c;
1356     (*sdi)->setJ(angMom);
1357     }
1358     }
1359     }
1360     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1361     //vel = (*sdi)->getVel();
1362     vel = ((*sdi)->getVel() - vh) * h + ah;
1363     (*sdi)->setVel(vel);
1364 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1365 gezelter 1722 if ((*sdi)->isDirectional()) {
1366     Vector3d angMom = (*sdi)->getJ() * h;
1367     (*sdi)->setJ(angMom);
1368     }
1369     }
1370     }
1371     successfulExchange = true;
1372 gezelter 1773 kineticExchange_ += kineticTarget_;
1373     momentumExchange_ += momentumTarget_;
1374 gezelter 1722 }
1375     }
1376     }
1377     }
1378     }
1379 skuang 1368 }
1380 gezelter 1722 }
1381     if (successfulExchange != true) {
1382 gezelter 1773 sprintf(painCave.errMsg,
1383     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1384     "\tthe constraint equations may not exist or there may be\n"
1385     "\tno selected objects in one or both slabs.\n");
1386     painCave.isFatal = 0;
1387     painCave.severity = OPENMD_INFO;
1388     simError();
1389 skuang 1368 failTrialCount_++;
1390     }
1391     }
1392    
1393     void RNEMD::doRNEMD() {
1394    
1395 gezelter 1773 trialCount_++;
1396     switch(rnemdMethod_) {
1397     case rnemdSwap:
1398 skuang 1368 doSwap();
1399     break;
1400 gezelter 1773 case rnemdNIVS:
1401     doNIVS();
1402 gezelter 1722 break;
1403 gezelter 1773 case rnemdVSS:
1404     doVSS();
1405     break;
1406     case rnemdUnkownMethod:
1407 skuang 1368 default :
1408     break;
1409     }
1410     }
1411    
1412     void RNEMD::collectData() {
1413    
1414     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1415     Mat3x3d hmat = currentSnap_->getHmat();
1416    
1417     seleMan_.setSelectionSet(evaluator_.evaluate());
1418    
1419     int selei;
1420     StuntDouble* sd;
1421     int idx;
1422    
1423 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1424     vector<RealType> binPx(nBins_, 0.0);
1425     vector<RealType> binPy(nBins_, 0.0);
1426     vector<RealType> binPz(nBins_, 0.0);
1427     vector<RealType> binKE(nBins_, 0.0);
1428     vector<int> binDOF(nBins_, 0);
1429     vector<int> binCount(nBins_, 0);
1430 jmarr 1728
1431 gezelter 1629 // alternative approach, track all molecules instead of only those
1432     // selected for scaling/swapping:
1433     /*
1434     SimInfo::MoleculeIterator miter;
1435     vector<StuntDouble*>::iterator iiter;
1436     Molecule* mol;
1437 gezelter 1769 StuntDouble* sd;
1438 gezelter 1629 for (mol = info_->beginMolecule(miter); mol != NULL;
1439 jmarr 1728 mol = info_->nextMolecule(miter))
1440 gezelter 1769 sd is essentially sd
1441     for (sd = mol->beginIntegrableObject(iiter);
1442     sd != NULL;
1443     sd = mol->nextIntegrableObject(iiter))
1444 gezelter 1629 */
1445 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1446     sd = seleMan_.nextSelected(selei)) {
1447 skuang 1338
1448     idx = sd->getLocalIndex();
1449    
1450     Vector3d pos = sd->getPos();
1451    
1452     // wrap the stuntdouble's position back into the box:
1453    
1454     if (usePeriodicBoundaryConditions_)
1455     currentSnap_->wrapVector(pos);
1456 gezelter 1773
1457 skuang 1338 // which bin is this stuntdouble in?
1458     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459 gezelter 1773 // Shift molecules by half a box to have bins start at 0
1460     // The modulo operator is used to wrap the case when we are
1461     // beyond the end of the bins back to the beginning.
1462     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463    
1464 skuang 1338 RealType mass = sd->getMass();
1465     Vector3d vel = sd->getVel();
1466    
1467 gezelter 1773 binCount[binNo]++;
1468     binMass[binNo] += mass;
1469     binPx[binNo] += mass*vel.x();
1470     binPy[binNo] += mass*vel.y();
1471     binPz[binNo] += mass*vel.z();
1472     binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1473     binDOF[binNo] += 3;
1474    
1475     if (sd->isDirectional()) {
1476     Vector3d angMom = sd->getJ();
1477     Mat3x3d I = sd->getI();
1478     if (sd->isLinear()) {
1479     int i = sd->linearAxis();
1480     int j = (i + 1) % 3;
1481     int k = (i + 2) % 3;
1482     binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1483     angMom[k] * angMom[k] / I(k, k));
1484     binDOF[binNo] += 2;
1485     } else {
1486     binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1487     angMom[1] * angMom[1] / I(1, 1) +
1488     angMom[2] * angMom[2] / I(2, 2));
1489     binDOF[binNo] += 3;
1490     }
1491 gezelter 1722 }
1492 gezelter 1773 }
1493    
1494 gezelter 1629
1495 gezelter 1773 #ifdef IS_MPI
1496     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1497     nBins_, MPI::INT, MPI::SUM);
1498     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1499     nBins_, MPI::REALTYPE, MPI::SUM);
1500     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1501     nBins_, MPI::REALTYPE, MPI::SUM);
1502     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1503     nBins_, MPI::REALTYPE, MPI::SUM);
1504     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1505     nBins_, MPI::REALTYPE, MPI::SUM);
1506     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1507     nBins_, MPI::REALTYPE, MPI::SUM);
1508     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1509     nBins_, MPI::INT, MPI::SUM);
1510     #endif
1511    
1512     Vector3d vel;
1513     RealType den;
1514     RealType temp;
1515     RealType z;
1516     for (int i = 0; i < nBins_; i++) {
1517     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1518     vel.x() = binPx[i] / binMass[i];
1519     vel.y() = binPy[i] / binMass[i];
1520     vel.z() = binPz[i] / binMass[i];
1521     den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
1522     temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1523     PhysicalConstants::energyConvert);
1524    
1525     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1526     if(outputMask_[j]) {
1527     switch(j) {
1528     case Z:
1529     (data_[j].accumulator[i])->add(z);
1530     break;
1531     case TEMPERATURE:
1532     data_[j].accumulator[i]->add(temp);
1533     break;
1534     case VELOCITY:
1535     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1536     break;
1537     case DENSITY:
1538     data_[j].accumulator[i]->add(den);
1539     break;
1540     }
1541     }
1542 gezelter 1629 }
1543 skuang 1338 }
1544 skuang 1368 }
1545    
1546     void RNEMD::getStarted() {
1547 gezelter 1629 collectData();
1548 gezelter 1773 writeOutputFile();
1549 skuang 1368 }
1550    
1551 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
1552     StringTokenizer tokenizer(format, " ,;|\t\n\r");
1553    
1554     while(tokenizer.hasMoreTokens()) {
1555     std::string token(tokenizer.nextToken());
1556     toUpper(token);
1557     OutputMapType::iterator i = outputMap_.find(token);
1558     if (i != outputMap_.end()) {
1559     outputMask_.set(i->second);
1560     } else {
1561     sprintf( painCave.errMsg,
1562     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1563     "\toutputFileFormat keyword.\n", token.c_str() );
1564     painCave.isFatal = 0;
1565     painCave.severity = OPENMD_ERROR;
1566     simError();
1567     }
1568     }
1569     }
1570    
1571     void RNEMD::writeOutputFile() {
1572    
1573 gezelter 1350 #ifdef IS_MPI
1574     // If we're the root node, should we print out the results
1575     int worldRank = MPI::COMM_WORLD.Get_rank();
1576     if (worldRank == 0) {
1577     #endif
1578 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1579    
1580     if( !rnemdFile_ ){
1581     sprintf( painCave.errMsg,
1582     "Could not open \"%s\" for RNEMD output.\n",
1583     rnemdFileName_.c_str());
1584     painCave.isFatal = 1;
1585     simError();
1586     }
1587 gezelter 1722
1588 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1589    
1590     RealType time = currentSnap_->getTime();
1591    
1592    
1593     rnemdFile_ << "#######################################################\n";
1594     rnemdFile_ << "# RNEMD {\n";
1595    
1596     map<string, RNEMDMethod>::iterator mi;
1597     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1598     if ( (*mi).second == rnemdMethod_)
1599     rnemdFile_ << "# exchangeMethod = " << (*mi).first << "\n";
1600 skuang 1368 }
1601 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
1602     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1603     if ( (*fi).second == rnemdFluxType_)
1604     rnemdFile_ << "# fluxType = " << (*fi).first << "\n";
1605 gezelter 1722 }
1606 gezelter 1773
1607     rnemdFile_ << "# exchangeTime = " << exchangeTime_ << " fs\n";
1608    
1609     rnemdFile_ << "# objectSelection = \""
1610     << rnemdObjectSelection_ << "\"\n";
1611     rnemdFile_ << "# slabWidth = " << slabWidth_ << " angstroms\n";
1612     rnemdFile_ << "# slabAcenter = " << slabACenter_ << " angstroms\n";
1613     rnemdFile_ << "# slabBcenter = " << slabBCenter_ << " angstroms\n";
1614     rnemdFile_ << "# }\n";
1615     rnemdFile_ << "#######################################################\n";
1616    
1617     rnemdFile_ << "# running time = " << time << " fs\n";
1618     rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
1619     rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
1620    
1621     rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
1622     << "\n";
1623     rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
1624     << "\n";
1625    
1626     rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
1627     rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
1628     << "\n";
1629    
1630     rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
1631     rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
1632    
1633    
1634     if (rnemdMethod_ == rnemdNIVS) {
1635     rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
1636 gezelter 1722 }
1637    
1638 gezelter 1773 rnemdFile_ << "#######################################################\n";
1639    
1640    
1641    
1642     //write title
1643     rnemdFile_ << "#";
1644     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1645     if (outputMask_[i]) {
1646     rnemdFile_ << "\t" << data_[i].title <<
1647     "(" << data_[i].units << ")";
1648 skuang 1368 }
1649 gezelter 1773 }
1650     rnemdFile_ << std::endl;
1651    
1652     rnemdFile_.precision(8);
1653    
1654     for (unsigned int j = 0; j < nBins_; j++) {
1655    
1656     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1657     if (outputMask_[i]) {
1658     if (data_[i].dataType == "RealType")
1659     writeReal(i,j);
1660     else if (data_[i].dataType == "Vector3d")
1661     writeVector(i,j);
1662     else {
1663     sprintf( painCave.errMsg,
1664     "RNEMD found an unknown data type for: %s ",
1665     data_[i].title.c_str());
1666     painCave.isFatal = 1;
1667     simError();
1668     }
1669     }
1670 skuang 1368 }
1671 gezelter 1773 rnemdFile_ << std::endl;
1672    
1673     }
1674    
1675     rnemdFile_.flush();
1676     rnemdFile_.close();
1677    
1678 gezelter 1350 #ifdef IS_MPI
1679 gezelter 1396 }
1680 gezelter 1350 #endif
1681 jmarr 1728
1682 gezelter 1334 }
1683 gezelter 1773
1684     void RNEMD::writeReal(int index, unsigned int bin) {
1685     assert(index >=0 && index < ENDINDEX);
1686     assert(bin >=0 && bin < nBins_);
1687     RealType s;
1688    
1689     data_[index].accumulator[bin]->getAverage(s);
1690    
1691     if (! isinf(s) && ! isnan(s)) {
1692     rnemdFile_ << "\t" << s;
1693     } else{
1694     sprintf( painCave.errMsg,
1695     "RNEMD detected a numerical error writing: %s for bin %d",
1696     data_[index].title.c_str(), bin);
1697     painCave.isFatal = 1;
1698     simError();
1699     }
1700     }
1701    
1702     void RNEMD::writeVector(int index, unsigned int bin) {
1703     assert(index >=0 && index < ENDINDEX);
1704     assert(bin >=0 && bin < nBins_);
1705     Vector3d s;
1706     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1707     if (isinf(s[0]) || isnan(s[0]) ||
1708     isinf(s[1]) || isnan(s[1]) ||
1709     isinf(s[2]) || isnan(s[2]) ) {
1710     sprintf( painCave.errMsg,
1711     "RNEMD detected a numerical error writing: %s for bin %d",
1712     data_[index].title.c_str(), bin);
1713     painCave.isFatal = 1;
1714     simError();
1715     } else {
1716     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1717     }
1718     }
1719 skuang 1338 }
1720 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date