ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1728
Committed: Wed May 30 16:07:03 2012 UTC (12 years, 11 months ago) by jmarr
Original Path: branches/development/src/integrators/RNEMD.cpp
File size: 53008 byte(s)
Log Message:
resolved

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1329
53     #ifndef IS_MPI
54     #include "math/SeqRandNumGen.hpp"
55     #else
56     #include "math/ParallelRandNumGen.hpp"
57 gezelter 1723 #include <mpi.h>
58 gezelter 1329 #endif
59    
60 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
61 gezelter 1329
62 gezelter 1629 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 1329
65 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 skuang 1368
68     failTrialCount_ = 0;
69     failRootCount_ = 0;
70    
71 gezelter 1329 int seedValue;
72     Globals * simParams = info->getSimParams();
73 skuang 1330
74 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
75     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 gezelter 1722 stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77     stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 skuang 1368 stringToEnumMap_["PxScale"] = rnemdPxScale;
79     stringToEnumMap_["PyScale"] = rnemdPyScale;
80     stringToEnumMap_["PzScale"] = rnemdPzScale;
81 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
82     stringToEnumMap_["Py"] = rnemdPy;
83     stringToEnumMap_["Pz"] = rnemdPz;
84 gezelter 1722 stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85     stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 skuang 1330 stringToEnumMap_["Unknown"] = rnemdUnknown;
87    
88 jmarr 1728 runTime_ = simParams->getRunTime();
89     statusTime_ = simParams->getStatusTime();
90    
91 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
92 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
93     seleMan_.setSelectionSet(evaluator_.evaluate());
94 gezelter 1331
95 skuang 1341 // do some sanity checking
96    
97     int selectionCount = seleMan_.getSelectionCount();
98     int nIntegrable = info->getNGlobalIntegrableObjects();
99    
100     if (selectionCount > nIntegrable) {
101     sprintf(painCave.errMsg,
102 gezelter 1629 "RNEMD: The current RNEMD_objectSelection,\n"
103 skuang 1341 "\t\t%s\n"
104     "\thas resulted in %d selected objects. However,\n"
105     "\tthe total number of integrable objects in the system\n"
106     "\tis only %d. This is almost certainly not what you want\n"
107     "\tto do. A likely cause of this is forgetting the _RB_0\n"
108     "\tselector in the selection script!\n",
109     rnemdObjectSelection_.c_str(),
110     selectionCount, nIntegrable);
111     painCave.isFatal = 0;
112 gezelter 1629 painCave.severity = OPENMD_WARNING;
113 skuang 1341 simError();
114     }
115 gezelter 1331
116 gezelter 1629 const string st = simParams->getRNEMD_exchangeType();
117 skuang 1330
118 gezelter 1629 map<string, RNEMDTypeEnum>::iterator i;
119 skuang 1330 i = stringToEnumMap_.find(st);
120 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
121     if (rnemdType_ == rnemdUnknown) {
122 gezelter 1629 sprintf(painCave.errMsg,
123     "RNEMD: The current RNEMD_exchangeType,\n"
124     "\t\t%s\n"
125     "\tis not one of the recognized exchange types.\n",
126     st.c_str());
127     painCave.isFatal = 1;
128     painCave.severity = OPENMD_ERROR;
129     simError();
130 skuang 1368 }
131 gezelter 1629
132 gezelter 1722 outputTemp_ = false;
133     if (simParams->haveRNEMD_outputTemperature()) {
134     outputTemp_ = simParams->getRNEMD_outputTemperature();
135     } else if ((rnemdType_ == rnemdKineticSwap) ||
136     (rnemdType_ == rnemdKineticScale) ||
137     (rnemdType_ == rnemdKineticScaleVAM) ||
138     (rnemdType_ == rnemdKineticScaleAM)) {
139     outputTemp_ = true;
140     }
141     outputVx_ = false;
142     if (simParams->haveRNEMD_outputVx()) {
143     outputVx_ = simParams->getRNEMD_outputVx();
144     } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
145     outputVx_ = true;
146     }
147     outputVy_ = false;
148     if (simParams->haveRNEMD_outputVy()) {
149     outputVy_ = simParams->getRNEMD_outputVy();
150     } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
151     outputVy_ = true;
152     }
153 gezelter 1629 output3DTemp_ = false;
154 gezelter 1722 if (simParams->haveRNEMD_outputXyzTemperature()) {
155     output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
156 gezelter 1629 }
157 gezelter 1722 outputRotTemp_ = false;
158     if (simParams->haveRNEMD_outputRotTemperature()) {
159     outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
160     }
161 jmarr 1728 // James put this in.
162     outputDen_ = false;
163     if (simParams->haveRNEMD_outputDen()) {
164     outputDen_ = simParams->getRNEMD_outputDen();
165     }
166     outputAh_ = false;
167     if (simParams->haveRNEMD_outputAh()) {
168     outputAh_ = simParams->getRNEMD_outputAh();
169     }
170     outputVz_ = false;
171     if (simParams->haveRNEMD_outputVz()) {
172     outputVz_ = simParams->getRNEMD_outputVz();
173     } else if ((rnemdType_ == rnemdPz) || (rnemdType_ == rnemdPzScale)) {
174     outputVz_ = true;
175     }
176    
177 skuang 1330
178 skuang 1368 #ifdef IS_MPI
179     if (worldRank == 0) {
180     #endif
181    
182 gezelter 1722 //may have rnemdWriter separately
183 gezelter 1629 string rnemdFileName;
184 gezelter 1722
185     if (outputTemp_) {
186 skuang 1368 rnemdFileName = "temperature.log";
187 gezelter 1722 tempLog_.open(rnemdFileName.c_str());
188 skuang 1368 }
189 gezelter 1722 if (outputVx_) {
190     rnemdFileName = "velocityX.log";
191     vxzLog_.open(rnemdFileName.c_str());
192     }
193     if (outputVy_) {
194     rnemdFileName = "velocityY.log";
195     vyzLog_.open(rnemdFileName.c_str());
196     }
197 skuang 1368
198 gezelter 1629 if (output3DTemp_) {
199 gezelter 1722 rnemdFileName = "temperatureX.log";
200     xTempLog_.open(rnemdFileName.c_str());
201     rnemdFileName = "temperatureY.log";
202     yTempLog_.open(rnemdFileName.c_str());
203     rnemdFileName = "temperatureZ.log";
204     zTempLog_.open(rnemdFileName.c_str());
205 gezelter 1629 }
206 gezelter 1722 if (outputRotTemp_) {
207     rnemdFileName = "temperatureR.log";
208     rotTempLog_.open(rnemdFileName.c_str());
209     }
210 jmarr 1728
211     //James put this in
212     if (outputDen_) {
213     rnemdFileName = "Density.log";
214     denLog_.open(rnemdFileName.c_str());
215     }
216     if (outputAh_) {
217     rnemdFileName = "Ah.log";
218     AhLog_.open(rnemdFileName.c_str());
219     }
220     if (outputVz_) {
221     rnemdFileName = "velocityZ.log";
222     vzzLog_.open(rnemdFileName.c_str());
223     }
224     logFrameCount_ = 0;
225 skuang 1368 #ifdef IS_MPI
226     }
227     #endif
228    
229     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
230 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
231 skuang 1368 midBin_ = nBins_ / 2;
232 gezelter 1629 if (simParams->haveRNEMD_binShift()) {
233     if (simParams->getRNEMD_binShift()) {
234     zShift_ = 0.5 / (RealType)(nBins_);
235     } else {
236     zShift_ = 0.0;
237     }
238     } else {
239     zShift_ = 0.0;
240     }
241 gezelter 1722 //cerr << "I shift slabs by " << zShift_ << " Lz\n";
242     //shift slabs by half slab width, maybe useful in heterogeneous systems
243     //set to 0.0 if not using it; N/A in status output yet
244 skuang 1368 if (simParams->haveRNEMD_logWidth()) {
245 gezelter 1629 set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
246 gezelter 1722 /*arbitary rnemdLogWidth_, no checking;
247     if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
248 gezelter 1629 cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
249     cerr << "Automaically set back to default.\n";
250 skuang 1368 rnemdLogWidth_ = nBins_;
251 gezelter 1722 }*/
252 skuang 1368 } else {
253 gezelter 1629 set_RNEMD_logWidth(nBins_);
254 skuang 1368 }
255 gezelter 1722 tempHist_.resize(rnemdLogWidth_, 0.0);
256     tempCount_.resize(rnemdLogWidth_, 0);
257     pxzHist_.resize(rnemdLogWidth_, 0.0);
258     //vxzCount_.resize(rnemdLogWidth_, 0);
259     pyzHist_.resize(rnemdLogWidth_, 0.0);
260     //vyzCount_.resize(rnemdLogWidth_, 0);
261    
262     mHist_.resize(rnemdLogWidth_, 0.0);
263 skuang 1368 xTempHist_.resize(rnemdLogWidth_, 0.0);
264     yTempHist_.resize(rnemdLogWidth_, 0.0);
265     zTempHist_.resize(rnemdLogWidth_, 0.0);
266 gezelter 1629 xyzTempCount_.resize(rnemdLogWidth_, 0);
267 gezelter 1722 rotTempHist_.resize(rnemdLogWidth_, 0.0);
268     rotTempCount_.resize(rnemdLogWidth_, 0);
269 jmarr 1728 // James put this in
270     DenHist_.resize(rnemdLogWidth_, 0.0);
271     pzzHist_.resize(rnemdLogWidth_, 0.0);
272 skuang 1338
273 skuang 1368 set_RNEMD_exchange_total(0.0);
274     if (simParams->haveRNEMD_targetFlux()) {
275     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
276     } else {
277     set_RNEMD_target_flux(0.0);
278     }
279 gezelter 1722 if (simParams->haveRNEMD_targetJzKE()) {
280     set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
281     } else {
282     set_RNEMD_target_JzKE(0.0);
283     }
284     if (simParams->haveRNEMD_targetJzpx()) {
285     set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
286     } else {
287     set_RNEMD_target_jzpx(0.0);
288     }
289     jzp_.x() = targetJzpx_;
290     njzp_.x() = -targetJzpx_;
291     if (simParams->haveRNEMD_targetJzpy()) {
292     set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
293     } else {
294     set_RNEMD_target_jzpy(0.0);
295     }
296     jzp_.y() = targetJzpy_;
297     njzp_.y() = -targetJzpy_;
298     if (simParams->haveRNEMD_targetJzpz()) {
299     set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
300     } else {
301     set_RNEMD_target_jzpz(0.0);
302     }
303     jzp_.z() = targetJzpz_;
304     njzp_.z() = -targetJzpz_;
305 skuang 1368
306 gezelter 1329 #ifndef IS_MPI
307     if (simParams->haveSeed()) {
308     seedValue = simParams->getSeed();
309     randNumGen_ = new SeqRandNumGen(seedValue);
310     }else {
311     randNumGen_ = new SeqRandNumGen();
312     }
313     #else
314     if (simParams->haveSeed()) {
315     seedValue = simParams->getSeed();
316     randNumGen_ = new ParallelRandNumGen(seedValue);
317     }else {
318     randNumGen_ = new ParallelRandNumGen();
319     }
320     #endif
321     }
322    
323     RNEMD::~RNEMD() {
324     delete randNumGen_;
325 gezelter 1396
326 skuang 1368 #ifdef IS_MPI
327     if (worldRank == 0) {
328     #endif
329 gezelter 1629
330     sprintf(painCave.errMsg,
331     "RNEMD: total failed trials: %d\n",
332     failTrialCount_);
333     painCave.isFatal = 0;
334     painCave.severity = OPENMD_INFO;
335     simError();
336 jmarr 1728
337 gezelter 1722 if (outputTemp_) tempLog_.close();
338     if (outputVx_) vxzLog_.close();
339     if (outputVy_) vyzLog_.close();
340    
341     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
342     rnemdType_ == rnemdPyScale) {
343 gezelter 1629 sprintf(painCave.errMsg,
344     "RNEMD: total root-checking warnings: %d\n",
345     failRootCount_);
346     painCave.isFatal = 0;
347     painCave.severity = OPENMD_INFO;
348     simError();
349     }
350     if (output3DTemp_) {
351 skuang 1368 xTempLog_.close();
352     yTempLog_.close();
353     zTempLog_.close();
354     }
355 gezelter 1722 if (outputRotTemp_) rotTempLog_.close();
356 jmarr 1728 // James put this in
357     if (outputDen_) denLog_.close();
358     if (outputAh_) AhLog_.close();
359     if (outputVz_) vzzLog_.close();
360    
361 skuang 1368 #ifdef IS_MPI
362     }
363     #endif
364 gezelter 1329 }
365 skuang 1330
366 gezelter 1329 void RNEMD::doSwap() {
367 gezelter 1331
368 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
369     Mat3x3d hmat = currentSnap_->getHmat();
370    
371 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
372    
373 gezelter 1333 int selei;
374 gezelter 1331 StuntDouble* sd;
375 gezelter 1333 int idx;
376 gezelter 1331
377 skuang 1338 RealType min_val;
378     bool min_found = false;
379     StuntDouble* min_sd;
380    
381     RealType max_val;
382     bool max_found = false;
383     StuntDouble* max_sd;
384    
385 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
386     sd = seleMan_.nextSelected(selei)) {
387 gezelter 1332
388 gezelter 1333 idx = sd->getLocalIndex();
389    
390 gezelter 1331 Vector3d pos = sd->getPos();
391 gezelter 1332
392     // wrap the stuntdouble's position back into the box:
393    
394 gezelter 1331 if (usePeriodicBoundaryConditions_)
395 gezelter 1332 currentSnap_->wrapVector(pos);
396    
397     // which bin is this stuntdouble in?
398 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
399 gezelter 1332
400 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
401 gezelter 1332
402 gezelter 1333
403 gezelter 1332 // if we're in bin 0 or the middleBin
404 skuang 1368 if (binNo == 0 || binNo == midBin_) {
405 gezelter 1332
406     RealType mass = sd->getMass();
407     Vector3d vel = sd->getVel();
408     RealType value;
409    
410     switch(rnemdType_) {
411 skuang 1368 case rnemdKineticSwap :
412 gezelter 1332
413 gezelter 1722 value = mass * vel.lengthSquare();
414    
415     if (sd->isDirectional()) {
416 gezelter 1332 Vector3d angMom = sd->getJ();
417     Mat3x3d I = sd->getI();
418    
419     if (sd->isLinear()) {
420 gezelter 1722 int i = sd->linearAxis();
421     int j = (i + 1) % 3;
422     int k = (i + 2) % 3;
423     value += angMom[j] * angMom[j] / I(j, j) +
424     angMom[k] * angMom[k] / I(k, k);
425 gezelter 1332 } else {
426 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
427     + angMom[1]*angMom[1]/I(1, 1)
428     + angMom[2]*angMom[2]/I(2, 2);
429 gezelter 1332 }
430 gezelter 1722 } //angular momenta exchange enabled
431     //energyConvert temporarily disabled
432 skuang 1368 //make exchangeSum_ comparable between swap & scale
433 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
434 skuang 1368 value *= 0.5;
435 gezelter 1332 break;
436     case rnemdPx :
437     value = mass * vel[0];
438     break;
439     case rnemdPy :
440     value = mass * vel[1];
441     break;
442     case rnemdPz :
443     value = mass * vel[2];
444     break;
445     default :
446     break;
447     }
448    
449 skuang 1338 if (binNo == 0) {
450     if (!min_found) {
451     min_val = value;
452     min_sd = sd;
453     min_found = true;
454     } else {
455     if (min_val > value) {
456     min_val = value;
457     min_sd = sd;
458     }
459     }
460 skuang 1368 } else { //midBin_
461 skuang 1338 if (!max_found) {
462     max_val = value;
463     max_sd = sd;
464     max_found = true;
465     } else {
466     if (max_val < value) {
467     max_val = value;
468     max_sd = sd;
469     }
470     }
471     }
472 gezelter 1332 }
473 gezelter 1331 }
474 skuang 1341
475 gezelter 1350 #ifdef IS_MPI
476     int nProc, worldRank;
477 skuang 1338
478 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
479     worldRank = MPI::COMM_WORLD.Get_rank();
480    
481     bool my_min_found = min_found;
482     bool my_max_found = max_found;
483    
484     // Even if we didn't find a minimum, did someone else?
485 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
486 gezelter 1350 // Even if we didn't find a maximum, did someone else?
487 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
488 gezelter 1722 #endif
489    
490     if (max_found && min_found) {
491    
492     #ifdef IS_MPI
493     struct {
494     RealType val;
495     int rank;
496     } max_vals, min_vals;
497 jmarr 1728
498 gezelter 1722 if (my_min_found) {
499 gezelter 1350 min_vals.val = min_val;
500 gezelter 1722 } else {
501 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
502 gezelter 1722 }
503 gezelter 1350 min_vals.rank = worldRank;
504    
505     // Who had the minimum?
506     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
507     1, MPI::REALTYPE_INT, MPI::MINLOC);
508     min_val = min_vals.val;
509    
510 gezelter 1722 if (my_max_found) {
511 gezelter 1350 max_vals.val = max_val;
512 gezelter 1722 } else {
513 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
514 gezelter 1722 }
515 gezelter 1350 max_vals.rank = worldRank;
516    
517     // Who had the maximum?
518     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
519     1, MPI::REALTYPE_INT, MPI::MAXLOC);
520     max_val = max_vals.val;
521     #endif
522 gezelter 1722
523 gezelter 1629 if (min_val < max_val) {
524 gezelter 1722
525 gezelter 1350 #ifdef IS_MPI
526     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
527     // I have both maximum and minimum, so proceed like a single
528     // processor version:
529     #endif
530 gezelter 1722
531 gezelter 1350 Vector3d min_vel = min_sd->getVel();
532     Vector3d max_vel = max_sd->getVel();
533     RealType temp_vel;
534    
535     switch(rnemdType_) {
536 skuang 1368 case rnemdKineticSwap :
537 gezelter 1350 min_sd->setVel(max_vel);
538     max_sd->setVel(min_vel);
539 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
540 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
541     Vector3d max_angMom = max_sd->getJ();
542     min_sd->setJ(max_angMom);
543     max_sd->setJ(min_angMom);
544 gezelter 1722 }//angular momenta exchange enabled
545     //assumes same rigid body identity
546 gezelter 1350 break;
547     case rnemdPx :
548     temp_vel = min_vel.x();
549     min_vel.x() = max_vel.x();
550     max_vel.x() = temp_vel;
551     min_sd->setVel(min_vel);
552     max_sd->setVel(max_vel);
553     break;
554     case rnemdPy :
555     temp_vel = min_vel.y();
556     min_vel.y() = max_vel.y();
557     max_vel.y() = temp_vel;
558     min_sd->setVel(min_vel);
559     max_sd->setVel(max_vel);
560     break;
561     case rnemdPz :
562     temp_vel = min_vel.z();
563     min_vel.z() = max_vel.z();
564     max_vel.z() = temp_vel;
565     min_sd->setVel(min_vel);
566     max_sd->setVel(max_vel);
567     break;
568     default :
569     break;
570     }
571 gezelter 1722
572 gezelter 1350 #ifdef IS_MPI
573     // the rest of the cases only apply in parallel simulations:
574     } else if (max_vals.rank == worldRank) {
575     // I had the max, but not the minimum
576    
577     Vector3d min_vel;
578     Vector3d max_vel = max_sd->getVel();
579     MPI::Status status;
580 skuang 1341
581 gezelter 1350 // point-to-point swap of the velocity vector
582     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
583     min_vals.rank, 0,
584     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
585     min_vals.rank, 0, status);
586    
587     switch(rnemdType_) {
588 skuang 1368 case rnemdKineticSwap :
589 gezelter 1350 max_sd->setVel(min_vel);
590 gezelter 1722 //angular momenta exchange enabled
591 gezelter 1350 if (max_sd->isDirectional()) {
592     Vector3d min_angMom;
593     Vector3d max_angMom = max_sd->getJ();
594 gezelter 1629
595 gezelter 1350 // point-to-point swap of the angular momentum vector
596     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
597     MPI::REALTYPE, min_vals.rank, 1,
598     min_angMom.getArrayPointer(), 3,
599     MPI::REALTYPE, min_vals.rank, 1,
600     status);
601 gezelter 1629
602 gezelter 1350 max_sd->setJ(min_angMom);
603 gezelter 1722 }
604 gezelter 1350 break;
605     case rnemdPx :
606     max_vel.x() = min_vel.x();
607     max_sd->setVel(max_vel);
608     break;
609     case rnemdPy :
610     max_vel.y() = min_vel.y();
611     max_sd->setVel(max_vel);
612     break;
613     case rnemdPz :
614     max_vel.z() = min_vel.z();
615     max_sd->setVel(max_vel);
616     break;
617     default :
618     break;
619 skuang 1341 }
620 gezelter 1350 } else if (min_vals.rank == worldRank) {
621     // I had the minimum but not the maximum:
622    
623     Vector3d max_vel;
624     Vector3d min_vel = min_sd->getVel();
625     MPI::Status status;
626    
627     // point-to-point swap of the velocity vector
628     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
629     max_vals.rank, 0,
630     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
631     max_vals.rank, 0, status);
632    
633     switch(rnemdType_) {
634 skuang 1368 case rnemdKineticSwap :
635 gezelter 1350 min_sd->setVel(max_vel);
636 gezelter 1722 //angular momenta exchange enabled
637 gezelter 1350 if (min_sd->isDirectional()) {
638     Vector3d min_angMom = min_sd->getJ();
639     Vector3d max_angMom;
640 gezelter 1629
641 gezelter 1350 // point-to-point swap of the angular momentum vector
642     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
643     MPI::REALTYPE, max_vals.rank, 1,
644     max_angMom.getArrayPointer(), 3,
645     MPI::REALTYPE, max_vals.rank, 1,
646     status);
647 gezelter 1629
648 gezelter 1350 min_sd->setJ(max_angMom);
649     }
650     break;
651     case rnemdPx :
652     min_vel.x() = max_vel.x();
653     min_sd->setVel(min_vel);
654     break;
655     case rnemdPy :
656     min_vel.y() = max_vel.y();
657     min_sd->setVel(min_vel);
658     break;
659     case rnemdPz :
660     min_vel.z() = max_vel.z();
661     min_sd->setVel(min_vel);
662     break;
663     default :
664     break;
665     }
666     }
667     #endif
668     exchangeSum_ += max_val - min_val;
669 gezelter 1629 } else {
670     sprintf(painCave.errMsg,
671     "RNEMD: exchange NOT performed because min_val > max_val\n");
672     painCave.isFatal = 0;
673     painCave.severity = OPENMD_INFO;
674     simError();
675 skuang 1368 failTrialCount_++;
676 skuang 1338 }
677     } else {
678 gezelter 1629 sprintf(painCave.errMsg,
679 gezelter 1722 "RNEMD: exchange NOT performed because selected object\n"
680     "\tnot present in at least one of the two slabs.\n");
681 gezelter 1629 painCave.isFatal = 0;
682     painCave.severity = OPENMD_INFO;
683     simError();
684 skuang 1368 failTrialCount_++;
685 skuang 1338 }
686 gezelter 1350
687 skuang 1338 }
688 gezelter 1350
689 skuang 1368 void RNEMD::doScale() {
690 skuang 1338
691     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
692     Mat3x3d hmat = currentSnap_->getHmat();
693    
694     seleMan_.setSelectionSet(evaluator_.evaluate());
695    
696     int selei;
697     StuntDouble* sd;
698     int idx;
699    
700 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
701 gezelter 1350
702 skuang 1368 RealType Phx = 0.0;
703     RealType Phy = 0.0;
704     RealType Phz = 0.0;
705     RealType Khx = 0.0;
706     RealType Khy = 0.0;
707     RealType Khz = 0.0;
708 gezelter 1722 RealType Khw = 0.0;
709 skuang 1368 RealType Pcx = 0.0;
710     RealType Pcy = 0.0;
711     RealType Pcz = 0.0;
712     RealType Kcx = 0.0;
713     RealType Kcy = 0.0;
714     RealType Kcz = 0.0;
715 gezelter 1722 RealType Kcw = 0.0;
716 skuang 1368
717 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
718     sd = seleMan_.nextSelected(selei)) {
719 skuang 1368
720     idx = sd->getLocalIndex();
721    
722     Vector3d pos = sd->getPos();
723    
724     // wrap the stuntdouble's position back into the box:
725    
726     if (usePeriodicBoundaryConditions_)
727     currentSnap_->wrapVector(pos);
728    
729     // which bin is this stuntdouble in?
730     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
731    
732 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
733 skuang 1368
734     // if we're in bin 0 or the middleBin
735     if (binNo == 0 || binNo == midBin_) {
736    
737     RealType mass = sd->getMass();
738     Vector3d vel = sd->getVel();
739    
740     if (binNo == 0) {
741     hotBin.push_back(sd);
742     Phx += mass * vel.x();
743     Phy += mass * vel.y();
744     Phz += mass * vel.z();
745     Khx += mass * vel.x() * vel.x();
746     Khy += mass * vel.y() * vel.y();
747     Khz += mass * vel.z() * vel.z();
748 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
749     if (sd->isDirectional()) {
750     Vector3d angMom = sd->getJ();
751     Mat3x3d I = sd->getI();
752     if (sd->isLinear()) {
753     int i = sd->linearAxis();
754     int j = (i + 1) % 3;
755     int k = (i + 2) % 3;
756     Khw += angMom[j] * angMom[j] / I(j, j) +
757     angMom[k] * angMom[k] / I(k, k);
758     } else {
759     Khw += angMom[0]*angMom[0]/I(0, 0)
760     + angMom[1]*angMom[1]/I(1, 1)
761     + angMom[2]*angMom[2]/I(2, 2);
762     }
763     }
764     //}
765 skuang 1368 } else { //midBin_
766     coldBin.push_back(sd);
767     Pcx += mass * vel.x();
768     Pcy += mass * vel.y();
769     Pcz += mass * vel.z();
770     Kcx += mass * vel.x() * vel.x();
771     Kcy += mass * vel.y() * vel.y();
772     Kcz += mass * vel.z() * vel.z();
773 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
774     if (sd->isDirectional()) {
775     Vector3d angMom = sd->getJ();
776     Mat3x3d I = sd->getI();
777     if (sd->isLinear()) {
778     int i = sd->linearAxis();
779     int j = (i + 1) % 3;
780     int k = (i + 2) % 3;
781     Kcw += angMom[j] * angMom[j] / I(j, j) +
782     angMom[k] * angMom[k] / I(k, k);
783     } else {
784     Kcw += angMom[0]*angMom[0]/I(0, 0)
785     + angMom[1]*angMom[1]/I(1, 1)
786     + angMom[2]*angMom[2]/I(2, 2);
787     }
788     }
789     //}
790 skuang 1368 }
791     }
792     }
793 gezelter 1722
794 skuang 1368 Khx *= 0.5;
795     Khy *= 0.5;
796     Khz *= 0.5;
797 gezelter 1722 Khw *= 0.5;
798 skuang 1368 Kcx *= 0.5;
799     Kcy *= 0.5;
800     Kcz *= 0.5;
801 gezelter 1722 Kcw *= 0.5;
802 skuang 1368
803 jmarr 1728 // std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
804     // << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
805     // << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
806     // std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
807     // << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
808 gezelter 1722
809 skuang 1368 #ifdef IS_MPI
810     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
811     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
812     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
813     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
814     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
815     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
816    
817     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
818     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
819     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
820 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
821    
822 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
823     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
824     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
825 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
826 skuang 1368 #endif
827    
828 gezelter 1722 //solve coldBin coeff's first
829 skuang 1368 RealType px = Pcx / Phx;
830     RealType py = Pcy / Phy;
831     RealType pz = Pcz / Phz;
832 gezelter 1722 RealType c, x, y, z;
833     bool successfulScale = false;
834     if ((rnemdType_ == rnemdKineticScaleVAM) ||
835     (rnemdType_ == rnemdKineticScaleAM)) {
836     //may need sanity check Khw & Kcw > 0
837 skuang 1368
838 gezelter 1722 if (rnemdType_ == rnemdKineticScaleVAM) {
839     c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
840     } else {
841     c = 1.0 - targetFlux_ / Kcw;
842     }
843 skuang 1368
844 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
845     c = sqrt(c);
846     std::cerr << "cold slab scaling coefficient: " << c << endl;
847     //now convert to hotBin coefficient
848     RealType w = 0.0;
849     if (rnemdType_ == rnemdKineticScaleVAM) {
850     x = 1.0 + px * (1.0 - c);
851     y = 1.0 + py * (1.0 - c);
852     z = 1.0 + pz * (1.0 - c);
853     /* more complicated way
854     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
855     + Khx * px * px + Khy * py * py + Khz * pz * pz)
856     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
857     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
858     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
859     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
860     */
861     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
862     (fabs(z - 1.0) < 0.1)) {
863     w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
864     + Khz * (1.0 - z * z)) / Khw;
865     }//no need to calculate w if x, y or z is out of range
866     } else {
867     w = 1.0 + targetFlux_ / Khw;
868     }
869     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
870     //if w is in the right range, so should be x, y, z.
871     vector<StuntDouble*>::iterator sdi;
872     Vector3d vel;
873     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
874     if (rnemdType_ == rnemdKineticScaleVAM) {
875     vel = (*sdi)->getVel() * c;
876     //vel.x() *= c;
877     //vel.y() *= c;
878     //vel.z() *= c;
879     (*sdi)->setVel(vel);
880     }
881     if ((*sdi)->isDirectional()) {
882     Vector3d angMom = (*sdi)->getJ() * c;
883     //angMom[0] *= c;
884     //angMom[1] *= c;
885     //angMom[2] *= c;
886     (*sdi)->setJ(angMom);
887     }
888     }
889     w = sqrt(w);
890     std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
891     << "\twh= " << w << endl;
892     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
893     if (rnemdType_ == rnemdKineticScaleVAM) {
894     vel = (*sdi)->getVel();
895     vel.x() *= x;
896     vel.y() *= y;
897     vel.z() *= z;
898     (*sdi)->setVel(vel);
899     }
900     if ((*sdi)->isDirectional()) {
901     Vector3d angMom = (*sdi)->getJ() * w;
902     //angMom[0] *= w;
903     //angMom[1] *= w;
904     //angMom[2] *= w;
905     (*sdi)->setJ(angMom);
906     }
907     }
908     successfulScale = true;
909     exchangeSum_ += targetFlux_;
910     }
911 skuang 1368 }
912 gezelter 1722 } else {
913     RealType a000, a110, c0, a001, a111, b01, b11, c1;
914     switch(rnemdType_) {
915     case rnemdKineticScale :
916     /* used hotBin coeff's & only scale x & y dimensions
917     RealType px = Phx / Pcx;
918     RealType py = Phy / Pcy;
919     a110 = Khy;
920     c0 = - Khx - Khy - targetFlux_;
921     a000 = Khx;
922     a111 = Kcy * py * py;
923     b11 = -2.0 * Kcy * py * (1.0 + py);
924     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
925     b01 = -2.0 * Kcx * px * (1.0 + px);
926     a001 = Kcx * px * px;
927     */
928     //scale all three dimensions, let c_x = c_y
929     a000 = Kcx + Kcy;
930     a110 = Kcz;
931     c0 = targetFlux_ - Kcx - Kcy - Kcz;
932     a001 = Khx * px * px + Khy * py * py;
933     a111 = Khz * pz * pz;
934     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
935     b11 = -2.0 * Khz * pz * (1.0 + pz);
936     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
937     + Khz * pz * (2.0 + pz) - targetFlux_;
938     break;
939     case rnemdPxScale :
940     c = 1 - targetFlux_ / Pcx;
941     a000 = Kcy;
942     a110 = Kcz;
943     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
944     a001 = py * py * Khy;
945     a111 = pz * pz * Khz;
946     b01 = -2.0 * Khy * py * (1.0 + py);
947     b11 = -2.0 * Khz * pz * (1.0 + pz);
948     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
949     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
950     break;
951     case rnemdPyScale :
952     c = 1 - targetFlux_ / Pcy;
953     a000 = Kcx;
954     a110 = Kcz;
955     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
956     a001 = px * px * Khx;
957     a111 = pz * pz * Khz;
958     b01 = -2.0 * Khx * px * (1.0 + px);
959     b11 = -2.0 * Khz * pz * (1.0 + pz);
960     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
961     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
962     break;
963     case rnemdPzScale ://we don't really do this, do we?
964     c = 1 - targetFlux_ / Pcz;
965     a000 = Kcx;
966     a110 = Kcy;
967     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
968     a001 = px * px * Khx;
969     a111 = py * py * Khy;
970     b01 = -2.0 * Khx * px * (1.0 + px);
971     b11 = -2.0 * Khy * py * (1.0 + py);
972     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
973     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
974     break;
975     default :
976     break;
977 skuang 1368 }
978 gezelter 1722
979     RealType v1 = a000 * a111 - a001 * a110;
980     RealType v2 = a000 * b01;
981     RealType v3 = a000 * b11;
982     RealType v4 = a000 * c1 - a001 * c0;
983     RealType v8 = a110 * b01;
984     RealType v10 = - b01 * c0;
985    
986     RealType u0 = v2 * v10 - v4 * v4;
987     RealType u1 = -2.0 * v3 * v4;
988     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
989     RealType u3 = -2.0 * v1 * v3;
990     RealType u4 = - v1 * v1;
991     //rescale coefficients
992     RealType maxAbs = fabs(u0);
993     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
994     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
995     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
996     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
997     u0 /= maxAbs;
998     u1 /= maxAbs;
999     u2 /= maxAbs;
1000     u3 /= maxAbs;
1001     u4 /= maxAbs;
1002     //max_element(start, end) is also available.
1003     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1004     poly.setCoefficient(4, u4);
1005     poly.setCoefficient(3, u3);
1006     poly.setCoefficient(2, u2);
1007     poly.setCoefficient(1, u1);
1008     poly.setCoefficient(0, u0);
1009     vector<RealType> realRoots = poly.FindRealRoots();
1010    
1011     vector<RealType>::iterator ri;
1012     RealType r1, r2, alpha0;
1013     vector<pair<RealType,RealType> > rps;
1014     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1015     r2 = *ri;
1016     //check if FindRealRoots() give the right answer
1017     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1018     sprintf(painCave.errMsg,
1019     "RNEMD Warning: polynomial solve seems to have an error!");
1020     painCave.isFatal = 0;
1021     simError();
1022     failRootCount_++;
1023     }
1024     //might not be useful w/o rescaling coefficients
1025     alpha0 = -c0 - a110 * r2 * r2;
1026     if (alpha0 >= 0.0) {
1027     r1 = sqrt(alpha0 / a000);
1028     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1029     < 1e-6)
1030     { rps.push_back(make_pair(r1, r2)); }
1031     if (r1 > 1e-6) { //r1 non-negative
1032     r1 = -r1;
1033     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1034     < 1e-6)
1035     { rps.push_back(make_pair(r1, r2)); }
1036     }
1037     }
1038 skuang 1368 }
1039 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1040     // best solution part so that we don't need the pairs vector
1041     if (!rps.empty()) {
1042     RealType smallestDiff = HONKING_LARGE_VALUE;
1043     RealType diff;
1044     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1045     vector<pair<RealType,RealType> >::iterator rpi;
1046     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1047     r1 = (*rpi).first;
1048     r2 = (*rpi).second;
1049     switch(rnemdType_) {
1050     case rnemdKineticScale :
1051     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1052     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1053     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1054     break;
1055     case rnemdPxScale :
1056     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1057     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1058     break;
1059     case rnemdPyScale :
1060     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1061     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1062     break;
1063     case rnemdPzScale :
1064     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1065     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1066     default :
1067     break;
1068     }
1069     if (diff < smallestDiff) {
1070     smallestDiff = diff;
1071     bestPair = *rpi;
1072     }
1073     }
1074 skuang 1368 #ifdef IS_MPI
1075 gezelter 1722 if (worldRank == 0) {
1076 skuang 1368 #endif
1077 gezelter 1722 sprintf(painCave.errMsg,
1078     "RNEMD: roots r1= %lf\tr2 = %lf\n",
1079     bestPair.first, bestPair.second);
1080     painCave.isFatal = 0;
1081     painCave.severity = OPENMD_INFO;
1082     simError();
1083 skuang 1368 #ifdef IS_MPI
1084 gezelter 1722 }
1085 skuang 1368 #endif
1086 gezelter 1722
1087     switch(rnemdType_) {
1088     case rnemdKineticScale :
1089     x = bestPair.first;
1090     y = bestPair.first;
1091     z = bestPair.second;
1092     break;
1093     case rnemdPxScale :
1094     x = c;
1095     y = bestPair.first;
1096     z = bestPair.second;
1097     break;
1098     case rnemdPyScale :
1099     x = bestPair.first;
1100     y = c;
1101     z = bestPair.second;
1102     break;
1103     case rnemdPzScale :
1104     x = bestPair.first;
1105     y = bestPair.second;
1106     z = c;
1107     break;
1108     default :
1109     break;
1110     }
1111     vector<StuntDouble*>::iterator sdi;
1112     Vector3d vel;
1113     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1114     vel = (*sdi)->getVel();
1115     vel.x() *= x;
1116     vel.y() *= y;
1117     vel.z() *= z;
1118     (*sdi)->setVel(vel);
1119     }
1120     //convert to hotBin coefficient
1121     x = 1.0 + px * (1.0 - x);
1122     y = 1.0 + py * (1.0 - y);
1123     z = 1.0 + pz * (1.0 - z);
1124     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1125     vel = (*sdi)->getVel();
1126     vel.x() *= x;
1127     vel.y() *= y;
1128     vel.z() *= z;
1129     (*sdi)->setVel(vel);
1130     }
1131     successfulScale = true;
1132     exchangeSum_ += targetFlux_;
1133 gezelter 1629 }
1134 gezelter 1722 }
1135     if (successfulScale != true) {
1136     sprintf(painCave.errMsg,
1137     "RNEMD: exchange NOT performed!\n");
1138     painCave.isFatal = 0;
1139     painCave.severity = OPENMD_INFO;
1140     simError();
1141     failTrialCount_++;
1142     }
1143     }
1144    
1145     void RNEMD::doShiftScale() {
1146    
1147     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1148 jmarr 1728 RealType time = currentSnap_->getTime();
1149 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1150    
1151     seleMan_.setSelectionSet(evaluator_.evaluate());
1152    
1153     int selei;
1154     StuntDouble* sd;
1155     int idx;
1156    
1157     vector<StuntDouble*> hotBin, coldBin;
1158    
1159     Vector3d Ph(V3Zero);
1160     RealType Mh = 0.0;
1161     RealType Kh = 0.0;
1162     Vector3d Pc(V3Zero);
1163     RealType Mc = 0.0;
1164     RealType Kc = 0.0;
1165 jmarr 1728
1166 gezelter 1722
1167     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1168     sd = seleMan_.nextSelected(selei)) {
1169    
1170     idx = sd->getLocalIndex();
1171    
1172     Vector3d pos = sd->getPos();
1173    
1174     // wrap the stuntdouble's position back into the box:
1175    
1176     if (usePeriodicBoundaryConditions_)
1177     currentSnap_->wrapVector(pos);
1178    
1179     // which bin is this stuntdouble in?
1180     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1181    
1182     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1183    
1184     // if we're in bin 0 or the middleBin
1185     if (binNo == 0 || binNo == midBin_) {
1186    
1187     RealType mass = sd->getMass();
1188     Vector3d vel = sd->getVel();
1189    
1190     if (binNo == 0) {
1191     hotBin.push_back(sd);
1192     //std::cerr << "before, velocity = " << vel << endl;
1193     Ph += mass * vel;
1194     //std::cerr << "after, velocity = " << vel << endl;
1195     Mh += mass;
1196     Kh += mass * vel.lengthSquare();
1197     if (rnemdType_ == rnemdShiftScaleVAM) {
1198     if (sd->isDirectional()) {
1199     Vector3d angMom = sd->getJ();
1200     Mat3x3d I = sd->getI();
1201     if (sd->isLinear()) {
1202     int i = sd->linearAxis();
1203     int j = (i + 1) % 3;
1204     int k = (i + 2) % 3;
1205     Kh += angMom[j] * angMom[j] / I(j, j) +
1206     angMom[k] * angMom[k] / I(k, k);
1207     } else {
1208     Kh += angMom[0] * angMom[0] / I(0, 0) +
1209     angMom[1] * angMom[1] / I(1, 1) +
1210     angMom[2] * angMom[2] / I(2, 2);
1211     }
1212     }
1213     }
1214     } else { //midBin_
1215     coldBin.push_back(sd);
1216     Pc += mass * vel;
1217     Mc += mass;
1218     Kc += mass * vel.lengthSquare();
1219     if (rnemdType_ == rnemdShiftScaleVAM) {
1220     if (sd->isDirectional()) {
1221     Vector3d angMom = sd->getJ();
1222     Mat3x3d I = sd->getI();
1223     if (sd->isLinear()) {
1224     int i = sd->linearAxis();
1225     int j = (i + 1) % 3;
1226     int k = (i + 2) % 3;
1227     Kc += angMom[j] * angMom[j] / I(j, j) +
1228     angMom[k] * angMom[k] / I(k, k);
1229     } else {
1230     Kc += angMom[0] * angMom[0] / I(0, 0) +
1231     angMom[1] * angMom[1] / I(1, 1) +
1232     angMom[2] * angMom[2] / I(2, 2);
1233     }
1234     }
1235     }
1236     }
1237 skuang 1368 }
1238 gezelter 1722 }
1239    
1240     Kh *= 0.5;
1241     Kc *= 0.5;
1242    
1243 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1244     // << "\tKc= " << Kc << endl;
1245     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1246    
1247 gezelter 1722 #ifdef IS_MPI
1248     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1249     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1250     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1251     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1252     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1253     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1254     #endif
1255    
1256     bool successfulExchange = false;
1257     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1258     Vector3d vc = Pc / Mc;
1259     Vector3d ac = njzp_ / Mc + vc;
1260 jmarr 1728 Vector3d acrec = njzp_ / Mc;
1261 gezelter 1722 RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1262     if (cNumerator > 0.0) {
1263     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1264     if (cDenominator > 0.0) {
1265     RealType c = sqrt(cNumerator / cDenominator);
1266     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1267     Vector3d vh = Ph / Mh;
1268     Vector3d ah = jzp_ / Mh + vh;
1269 jmarr 1728 Vector3d ahrec = jzp_ / Mh;
1270 gezelter 1722 RealType hNumerator = Kh + targetJzKE_
1271     - 0.5 * Mh * ah.lengthSquare();
1272     if (hNumerator > 0.0) {
1273     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1274     if (hDenominator > 0.0) {
1275     RealType h = sqrt(hNumerator / hDenominator);
1276     if ((h > 0.9) && (h < 1.1)) {
1277 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1278     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1279 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1280     Vector3d vel;
1281     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1282     //vel = (*sdi)->getVel();
1283     vel = ((*sdi)->getVel() - vc) * c + ac;
1284     (*sdi)->setVel(vel);
1285     if (rnemdType_ == rnemdShiftScaleVAM) {
1286     if ((*sdi)->isDirectional()) {
1287     Vector3d angMom = (*sdi)->getJ() * c;
1288     (*sdi)->setJ(angMom);
1289     }
1290     }
1291     }
1292     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1293     //vel = (*sdi)->getVel();
1294     vel = ((*sdi)->getVel() - vh) * h + ah;
1295     (*sdi)->setVel(vel);
1296     if (rnemdType_ == rnemdShiftScaleVAM) {
1297     if ((*sdi)->isDirectional()) {
1298     Vector3d angMom = (*sdi)->getJ() * h;
1299     (*sdi)->setJ(angMom);
1300     }
1301     }
1302     }
1303     successfulExchange = true;
1304     exchangeSum_ += targetFlux_;
1305     // this is a redundant variable for doShiftScale() so that
1306     // RNEMD can output one exchange quantity needed in a job.
1307     // need a better way to do this.
1308 jmarr 1728 //cerr << "acx =" << ac.x() << "ahx =" << ah.x() << '\n';
1309     //cerr << "acy =" << ac.y() << "ahy =" << ah.y() << '\n';
1310     //cerr << "acz =" << ac.z() << "ahz =" << ah.z() << '\n';
1311     Asum_ += (ahrec.z() - acrec.z());
1312     Jsum_ += (jzp_.z()*((1/Mh)+(1/Mc)));
1313     AhCount_ = ahrec.z();
1314     if (outputAh_) {
1315     AhLog_ << time << " ";
1316     AhLog_ << AhCount_;
1317     AhLog_ << endl;
1318     }
1319 gezelter 1722 }
1320     }
1321     }
1322     }
1323     }
1324 skuang 1368 }
1325 gezelter 1722 }
1326     if (successfulExchange != true) {
1327 jmarr 1728 // sprintf(painCave.errMsg,
1328     // "RNEMD: exchange NOT performed!\n");
1329     // painCave.isFatal = 0;
1330     // painCave.severity = OPENMD_INFO;
1331     // simError();
1332 skuang 1368 failTrialCount_++;
1333     }
1334     }
1335    
1336     void RNEMD::doRNEMD() {
1337    
1338     switch(rnemdType_) {
1339     case rnemdKineticScale :
1340 gezelter 1722 case rnemdKineticScaleVAM :
1341     case rnemdKineticScaleAM :
1342 skuang 1368 case rnemdPxScale :
1343     case rnemdPyScale :
1344     case rnemdPzScale :
1345     doScale();
1346     break;
1347     case rnemdKineticSwap :
1348     case rnemdPx :
1349     case rnemdPy :
1350     case rnemdPz :
1351     doSwap();
1352     break;
1353 gezelter 1722 case rnemdShiftScaleV :
1354     case rnemdShiftScaleVAM :
1355     doShiftScale();
1356     break;
1357 skuang 1368 case rnemdUnknown :
1358     default :
1359     break;
1360     }
1361     }
1362    
1363     void RNEMD::collectData() {
1364    
1365     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1366     Mat3x3d hmat = currentSnap_->getHmat();
1367    
1368     seleMan_.setSelectionSet(evaluator_.evaluate());
1369    
1370     int selei;
1371     StuntDouble* sd;
1372     int idx;
1373    
1374 jmarr 1728 logFrameCount_++;
1375    
1376 gezelter 1629 // alternative approach, track all molecules instead of only those
1377     // selected for scaling/swapping:
1378     /*
1379     SimInfo::MoleculeIterator miter;
1380     vector<StuntDouble*>::iterator iiter;
1381     Molecule* mol;
1382     StuntDouble* integrableObject;
1383     for (mol = info_->beginMolecule(miter); mol != NULL;
1384 jmarr 1728 mol = info_->nextMolecule(miter))
1385 gezelter 1629 integrableObject is essentially sd
1386     for (integrableObject = mol->beginIntegrableObject(iiter);
1387     integrableObject != NULL;
1388     integrableObject = mol->nextIntegrableObject(iiter))
1389     */
1390 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1391     sd = seleMan_.nextSelected(selei)) {
1392 skuang 1338
1393     idx = sd->getLocalIndex();
1394    
1395     Vector3d pos = sd->getPos();
1396    
1397     // wrap the stuntdouble's position back into the box:
1398    
1399     if (usePeriodicBoundaryConditions_)
1400     currentSnap_->wrapVector(pos);
1401    
1402     // which bin is this stuntdouble in?
1403     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1404    
1405 gezelter 1629 int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1406     rnemdLogWidth_;
1407 gezelter 1722 // no symmetrization allowed due to arbitary rnemdLogWidth_
1408 gezelter 1629 /*
1409 skuang 1368 if (rnemdLogWidth_ == midBin_ + 1)
1410     if (binNo > midBin_)
1411     binNo = nBins_ - binNo;
1412 gezelter 1629 */
1413 skuang 1338 RealType mass = sd->getMass();
1414 gezelter 1722 mHist_[binNo] += mass;
1415 skuang 1338 Vector3d vel = sd->getVel();
1416     RealType value;
1417 gezelter 1722 //RealType xVal, yVal, zVal;
1418 skuang 1338
1419 gezelter 1722 if (outputTemp_) {
1420     value = mass * vel.lengthSquare();
1421     tempCount_[binNo] += 3;
1422 skuang 1338 if (sd->isDirectional()) {
1423     Vector3d angMom = sd->getJ();
1424     Mat3x3d I = sd->getI();
1425     if (sd->isLinear()) {
1426     int i = sd->linearAxis();
1427     int j = (i + 1) % 3;
1428     int k = (i + 2) % 3;
1429     value += angMom[j] * angMom[j] / I(j, j) +
1430     angMom[k] * angMom[k] / I(k, k);
1431 gezelter 1722 tempCount_[binNo] +=2;
1432 skuang 1341 } else {
1433 gezelter 1722 value += angMom[0] * angMom[0] / I(0, 0) +
1434     angMom[1]*angMom[1]/I(1, 1) +
1435     angMom[2]*angMom[2]/I(2, 2);
1436     tempCount_[binNo] +=3;
1437 skuang 1338 }
1438     }
1439 gezelter 1722 value = value / PhysicalConstants::energyConvert
1440     / PhysicalConstants::kb;//may move to getStatus()
1441     tempHist_[binNo] += value;
1442     }
1443     if (outputVx_) {
1444 skuang 1338 value = mass * vel[0];
1445 gezelter 1722 //vxzCount_[binNo]++;
1446     pxzHist_[binNo] += value;
1447     }
1448     if (outputVy_) {
1449 skuang 1338 value = mass * vel[1];
1450 gezelter 1722 //vyzCount_[binNo]++;
1451     pyzHist_[binNo] += value;
1452 skuang 1338 }
1453 gezelter 1629
1454     if (output3DTemp_) {
1455 gezelter 1722 value = mass * vel.x() * vel.x();
1456     xTempHist_[binNo] += value;
1457     value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1458 gezelter 1629 / PhysicalConstants::kb;
1459 gezelter 1722 yTempHist_[binNo] += value;
1460     value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1461 gezelter 1629 / PhysicalConstants::kb;
1462 gezelter 1722 zTempHist_[binNo] += value;
1463 gezelter 1629 xyzTempCount_[binNo]++;
1464     }
1465 gezelter 1722 if (outputRotTemp_) {
1466     if (sd->isDirectional()) {
1467     Vector3d angMom = sd->getJ();
1468     Mat3x3d I = sd->getI();
1469     if (sd->isLinear()) {
1470     int i = sd->linearAxis();
1471     int j = (i + 1) % 3;
1472     int k = (i + 2) % 3;
1473     value = angMom[j] * angMom[j] / I(j, j) +
1474     angMom[k] * angMom[k] / I(k, k);
1475     rotTempCount_[binNo] +=2;
1476     } else {
1477     value = angMom[0] * angMom[0] / I(0, 0) +
1478     angMom[1] * angMom[1] / I(1, 1) +
1479     angMom[2] * angMom[2] / I(2, 2);
1480     rotTempCount_[binNo] +=3;
1481     }
1482     }
1483     value = value / PhysicalConstants::energyConvert
1484     / PhysicalConstants::kb;//may move to getStatus()
1485     rotTempHist_[binNo] += value;
1486     }
1487 jmarr 1728 // James put this in.
1488     if (outputDen_) {
1489     //value = 1.0;
1490     DenHist_[binNo] += 1;
1491     }
1492     if (outputVz_) {
1493     value = mass * vel[2];
1494     //vyzCount_[binNo]++;
1495     pzzHist_[binNo] += value;
1496     }
1497 skuang 1338 }
1498 skuang 1368 }
1499    
1500     void RNEMD::getStarted() {
1501 gezelter 1629 collectData();
1502 gezelter 1722 /*now can output profile in step 0, but might not be useful;
1503     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1504     Stats& stat = currentSnap_->statData;
1505     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1506 gezelter 1629 */
1507 gezelter 1722 //may output a header for the log file here
1508 gezelter 1629 getStatus();
1509 skuang 1368 }
1510    
1511     void RNEMD::getStatus() {
1512    
1513     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1514     Stats& stat = currentSnap_->statData;
1515     RealType time = currentSnap_->getTime();
1516    
1517     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1518     //or to be more meaningful, define another item as exchangeSum_ / time
1519 gezelter 1396 int j;
1520 skuang 1368
1521 gezelter 1350 #ifdef IS_MPI
1522    
1523     // all processors have the same number of bins, and STL vectors pack their
1524     // arrays, so in theory, this should be safe:
1525    
1526 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1527     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1528     if (outputTemp_) {
1529     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1530     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1531     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1532     rnemdLogWidth_, MPI::INT, MPI::SUM);
1533     }
1534     if (outputVx_) {
1535     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1536     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1537     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1538     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1539     }
1540     if (outputVy_) {
1541     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1542     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1543     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1544     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1545     }
1546 gezelter 1629 if (output3DTemp_) {
1547 gezelter 1396 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1548     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1549     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1550     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1551     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1552     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1553 gezelter 1629 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1554     rnemdLogWidth_, MPI::INT, MPI::SUM);
1555 gezelter 1396 }
1556 gezelter 1722 if (outputRotTemp_) {
1557     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1558     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1559     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1560     rnemdLogWidth_, MPI::INT, MPI::SUM);
1561     }
1562 jmarr 1728 // James put this in
1563     if (outputDen_) {
1564     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &DenHist_[0],
1565     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1566     }
1567     if (outputAh_) {
1568     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &AhCount_,
1569     1, MPI::REALTYPE, MPI::SUM);
1570     }
1571     if (outputVz_) {
1572     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pzzHist_[0],
1573     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1574     }
1575    
1576 gezelter 1350 // If we're the root node, should we print out the results
1577     int worldRank = MPI::COMM_WORLD.Get_rank();
1578     if (worldRank == 0) {
1579     #endif
1580 gezelter 1722
1581     if (outputTemp_) {
1582     tempLog_ << time;
1583     for (j = 0; j < rnemdLogWidth_; j++) {
1584     tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1585     }
1586     tempLog_ << endl;
1587 skuang 1368 }
1588 gezelter 1722 if (outputVx_) {
1589     vxzLog_ << time;
1590     for (j = 0; j < rnemdLogWidth_; j++) {
1591     vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1592     }
1593     vxzLog_ << endl;
1594     }
1595     if (outputVy_) {
1596     vyzLog_ << time;
1597     for (j = 0; j < rnemdLogWidth_; j++) {
1598     vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1599     }
1600     vyzLog_ << endl;
1601     }
1602    
1603 gezelter 1629 if (output3DTemp_) {
1604 gezelter 1722 RealType temp;
1605     xTempLog_ << time;
1606 skuang 1368 for (j = 0; j < rnemdLogWidth_; j++) {
1607 gezelter 1722 if (outputVx_)
1608     xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1609     temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1610     / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1611     xTempLog_ << "\t" << temp;
1612 skuang 1368 }
1613 gezelter 1722 xTempLog_ << endl;
1614 skuang 1368 yTempLog_ << time;
1615     for (j = 0; j < rnemdLogWidth_; j++) {
1616 gezelter 1629 yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1617 skuang 1368 }
1618 gezelter 1722 yTempLog_ << endl;
1619 skuang 1368 zTempLog_ << time;
1620     for (j = 0; j < rnemdLogWidth_; j++) {
1621 gezelter 1629 zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1622 skuang 1368 }
1623 gezelter 1722 zTempLog_ << endl;
1624 skuang 1368 }
1625 gezelter 1722 if (outputRotTemp_) {
1626     rotTempLog_ << time;
1627     for (j = 0; j < rnemdLogWidth_; j++) {
1628     rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1629     }
1630     rotTempLog_ << endl;
1631     }
1632 jmarr 1728 // James put this in.
1633     Mat3x3d hmat = currentSnap_->getHmat();
1634     if (outputDen_) {
1635     denLog_ << time;
1636     for (j = 0; j < rnemdLogWidth_; j++) {
1637    
1638     RealType binVol = hmat(0,0) * hmat(1,1) * (hmat(2,2) / float(nBins_));
1639     denLog_ << "\t" << DenHist_[j] / (float(logFrameCount_) * binVol);
1640     }
1641     denLog_ << endl;
1642     }
1643     if (outputVz_) {
1644     vzzLog_ << time;
1645     for (j = 0; j < rnemdLogWidth_; j++) {
1646     vzzLog_ << "\t" << pzzHist_[j] / mHist_[j];
1647     }
1648     vzzLog_ << endl;
1649     }
1650 gezelter 1350 #ifdef IS_MPI
1651 gezelter 1396 }
1652 gezelter 1350 #endif
1653 gezelter 1722
1654 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1655 gezelter 1722 mHist_[j] = 0.0;
1656 gezelter 1396 }
1657 gezelter 1722 if (outputTemp_)
1658     for (j = 0; j < rnemdLogWidth_; j++) {
1659     tempCount_[j] = 0;
1660     tempHist_[j] = 0.0;
1661     }
1662     if (outputVx_)
1663     for (j = 0; j < rnemdLogWidth_; j++) {
1664     //pxzCount_[j] = 0;
1665     pxzHist_[j] = 0.0;
1666     }
1667     if (outputVy_)
1668     for (j = 0; j < rnemdLogWidth_; j++) {
1669     //pyzCount_[j] = 0;
1670     pyzHist_[j] = 0.0;
1671     }
1672    
1673 gezelter 1629 if (output3DTemp_)
1674 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1675     xTempHist_[j] = 0.0;
1676     yTempHist_[j] = 0.0;
1677     zTempHist_[j] = 0.0;
1678 gezelter 1629 xyzTempCount_[j] = 0;
1679 gezelter 1396 }
1680 gezelter 1722 if (outputRotTemp_)
1681     for (j = 0; j < rnemdLogWidth_; j++) {
1682     rotTempCount_[j] = 0;
1683     rotTempHist_[j] = 0.0;
1684     }
1685 jmarr 1728 // James put this in
1686     if (outputDen_)
1687     for (j = 0; j < rnemdLogWidth_; j++) {
1688     //pyzCount_[j] = 0;
1689     DenHist_[j] = 0.0;
1690     }
1691     if (outputVz_)
1692     for (j = 0; j < rnemdLogWidth_; j++) {
1693     //pyzCount_[j] = 0;
1694     pzzHist_[j] = 0.0;
1695     }
1696     // reset the counter
1697    
1698     Numcount_++;
1699     if (Numcount_ > int(runTime_/statusTime_))
1700     cerr << "time =" << time << " Asum =" << Asum_ << '\n';
1701     if (Numcount_ > int(runTime_/statusTime_))
1702     cerr << "time =" << time << " Jsum =" << Jsum_ << '\n';
1703    
1704     logFrameCount_ = 0;
1705 gezelter 1334 }
1706 skuang 1338 }
1707 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date