ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1722
Committed: Thu May 24 14:23:40 2012 UTC (12 years, 11 months ago) by gezelter
Original Path: branches/development/src/integrators/RNEMD.cpp
File size: 49483 byte(s)
Log Message:
Merging Shenyu's RNEMD changes from openmd-1 into the development branch.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1329
53     #ifndef IS_MPI
54     #include "math/SeqRandNumGen.hpp"
55     #else
56     #include "math/ParallelRandNumGen.hpp"
57     #endif
58    
59 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
60 gezelter 1329
61 gezelter 1629 using namespace std;
62 gezelter 1390 namespace OpenMD {
63 gezelter 1329
64 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
65     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
66 skuang 1368
67     failTrialCount_ = 0;
68     failRootCount_ = 0;
69    
70 gezelter 1329 int seedValue;
71     Globals * simParams = info->getSimParams();
72 skuang 1330
73 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
74     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
75 gezelter 1722 stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
76     stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
77 skuang 1368 stringToEnumMap_["PxScale"] = rnemdPxScale;
78     stringToEnumMap_["PyScale"] = rnemdPyScale;
79     stringToEnumMap_["PzScale"] = rnemdPzScale;
80 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
81     stringToEnumMap_["Py"] = rnemdPy;
82     stringToEnumMap_["Pz"] = rnemdPz;
83 gezelter 1722 stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
84     stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
85 skuang 1330 stringToEnumMap_["Unknown"] = rnemdUnknown;
86    
87 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
88 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
89     seleMan_.setSelectionSet(evaluator_.evaluate());
90 gezelter 1331
91 skuang 1341 // do some sanity checking
92    
93     int selectionCount = seleMan_.getSelectionCount();
94     int nIntegrable = info->getNGlobalIntegrableObjects();
95    
96     if (selectionCount > nIntegrable) {
97     sprintf(painCave.errMsg,
98 gezelter 1629 "RNEMD: The current RNEMD_objectSelection,\n"
99 skuang 1341 "\t\t%s\n"
100     "\thas resulted in %d selected objects. However,\n"
101     "\tthe total number of integrable objects in the system\n"
102     "\tis only %d. This is almost certainly not what you want\n"
103     "\tto do. A likely cause of this is forgetting the _RB_0\n"
104     "\tselector in the selection script!\n",
105     rnemdObjectSelection_.c_str(),
106     selectionCount, nIntegrable);
107     painCave.isFatal = 0;
108 gezelter 1629 painCave.severity = OPENMD_WARNING;
109 skuang 1341 simError();
110     }
111 gezelter 1331
112 gezelter 1629 const string st = simParams->getRNEMD_exchangeType();
113 skuang 1330
114 gezelter 1629 map<string, RNEMDTypeEnum>::iterator i;
115 skuang 1330 i = stringToEnumMap_.find(st);
116 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
117     if (rnemdType_ == rnemdUnknown) {
118 gezelter 1629 sprintf(painCave.errMsg,
119     "RNEMD: The current RNEMD_exchangeType,\n"
120     "\t\t%s\n"
121     "\tis not one of the recognized exchange types.\n",
122     st.c_str());
123     painCave.isFatal = 1;
124     painCave.severity = OPENMD_ERROR;
125     simError();
126 skuang 1368 }
127 gezelter 1629
128 gezelter 1722 outputTemp_ = false;
129     if (simParams->haveRNEMD_outputTemperature()) {
130     outputTemp_ = simParams->getRNEMD_outputTemperature();
131     } else if ((rnemdType_ == rnemdKineticSwap) ||
132     (rnemdType_ == rnemdKineticScale) ||
133     (rnemdType_ == rnemdKineticScaleVAM) ||
134     (rnemdType_ == rnemdKineticScaleAM)) {
135     outputTemp_ = true;
136     }
137     outputVx_ = false;
138     if (simParams->haveRNEMD_outputVx()) {
139     outputVx_ = simParams->getRNEMD_outputVx();
140     } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
141     outputVx_ = true;
142     }
143     outputVy_ = false;
144     if (simParams->haveRNEMD_outputVy()) {
145     outputVy_ = simParams->getRNEMD_outputVy();
146     } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
147     outputVy_ = true;
148     }
149 gezelter 1629 output3DTemp_ = false;
150 gezelter 1722 if (simParams->haveRNEMD_outputXyzTemperature()) {
151     output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
152 gezelter 1629 }
153 gezelter 1722 outputRotTemp_ = false;
154     if (simParams->haveRNEMD_outputRotTemperature()) {
155     outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
156     }
157 skuang 1330
158 skuang 1368 #ifdef IS_MPI
159     if (worldRank == 0) {
160     #endif
161    
162 gezelter 1722 //may have rnemdWriter separately
163 gezelter 1629 string rnemdFileName;
164 gezelter 1722
165     if (outputTemp_) {
166 skuang 1368 rnemdFileName = "temperature.log";
167 gezelter 1722 tempLog_.open(rnemdFileName.c_str());
168 skuang 1368 }
169 gezelter 1722 if (outputVx_) {
170     rnemdFileName = "velocityX.log";
171     vxzLog_.open(rnemdFileName.c_str());
172     }
173     if (outputVy_) {
174     rnemdFileName = "velocityY.log";
175     vyzLog_.open(rnemdFileName.c_str());
176     }
177 skuang 1368
178 gezelter 1629 if (output3DTemp_) {
179 gezelter 1722 rnemdFileName = "temperatureX.log";
180     xTempLog_.open(rnemdFileName.c_str());
181     rnemdFileName = "temperatureY.log";
182     yTempLog_.open(rnemdFileName.c_str());
183     rnemdFileName = "temperatureZ.log";
184     zTempLog_.open(rnemdFileName.c_str());
185 gezelter 1629 }
186 gezelter 1722 if (outputRotTemp_) {
187     rnemdFileName = "temperatureR.log";
188     rotTempLog_.open(rnemdFileName.c_str());
189     }
190 gezelter 1629
191 skuang 1368 #ifdef IS_MPI
192     }
193     #endif
194    
195     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
196 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
197 skuang 1368 midBin_ = nBins_ / 2;
198 gezelter 1629 if (simParams->haveRNEMD_binShift()) {
199     if (simParams->getRNEMD_binShift()) {
200     zShift_ = 0.5 / (RealType)(nBins_);
201     } else {
202     zShift_ = 0.0;
203     }
204     } else {
205     zShift_ = 0.0;
206     }
207 gezelter 1722 //cerr << "I shift slabs by " << zShift_ << " Lz\n";
208     //shift slabs by half slab width, maybe useful in heterogeneous systems
209     //set to 0.0 if not using it; N/A in status output yet
210 skuang 1368 if (simParams->haveRNEMD_logWidth()) {
211 gezelter 1629 set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
212 gezelter 1722 /*arbitary rnemdLogWidth_, no checking;
213     if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
214 gezelter 1629 cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
215     cerr << "Automaically set back to default.\n";
216 skuang 1368 rnemdLogWidth_ = nBins_;
217 gezelter 1722 }*/
218 skuang 1368 } else {
219 gezelter 1629 set_RNEMD_logWidth(nBins_);
220 skuang 1368 }
221 gezelter 1722 tempHist_.resize(rnemdLogWidth_, 0.0);
222     tempCount_.resize(rnemdLogWidth_, 0);
223     pxzHist_.resize(rnemdLogWidth_, 0.0);
224     //vxzCount_.resize(rnemdLogWidth_, 0);
225     pyzHist_.resize(rnemdLogWidth_, 0.0);
226     //vyzCount_.resize(rnemdLogWidth_, 0);
227    
228     mHist_.resize(rnemdLogWidth_, 0.0);
229 skuang 1368 xTempHist_.resize(rnemdLogWidth_, 0.0);
230     yTempHist_.resize(rnemdLogWidth_, 0.0);
231     zTempHist_.resize(rnemdLogWidth_, 0.0);
232 gezelter 1629 xyzTempCount_.resize(rnemdLogWidth_, 0);
233 gezelter 1722 rotTempHist_.resize(rnemdLogWidth_, 0.0);
234     rotTempCount_.resize(rnemdLogWidth_, 0);
235 skuang 1338
236 skuang 1368 set_RNEMD_exchange_total(0.0);
237     if (simParams->haveRNEMD_targetFlux()) {
238     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
239     } else {
240     set_RNEMD_target_flux(0.0);
241     }
242 gezelter 1722 if (simParams->haveRNEMD_targetJzKE()) {
243     set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
244     } else {
245     set_RNEMD_target_JzKE(0.0);
246     }
247     if (simParams->haveRNEMD_targetJzpx()) {
248     set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
249     } else {
250     set_RNEMD_target_jzpx(0.0);
251     }
252     jzp_.x() = targetJzpx_;
253     njzp_.x() = -targetJzpx_;
254     if (simParams->haveRNEMD_targetJzpy()) {
255     set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
256     } else {
257     set_RNEMD_target_jzpy(0.0);
258     }
259     jzp_.y() = targetJzpy_;
260     njzp_.y() = -targetJzpy_;
261     if (simParams->haveRNEMD_targetJzpz()) {
262     set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
263     } else {
264     set_RNEMD_target_jzpz(0.0);
265     }
266     jzp_.z() = targetJzpz_;
267     njzp_.z() = -targetJzpz_;
268 skuang 1368
269 gezelter 1329 #ifndef IS_MPI
270     if (simParams->haveSeed()) {
271     seedValue = simParams->getSeed();
272     randNumGen_ = new SeqRandNumGen(seedValue);
273     }else {
274     randNumGen_ = new SeqRandNumGen();
275     }
276     #else
277     if (simParams->haveSeed()) {
278     seedValue = simParams->getSeed();
279     randNumGen_ = new ParallelRandNumGen(seedValue);
280     }else {
281     randNumGen_ = new ParallelRandNumGen();
282     }
283     #endif
284     }
285    
286     RNEMD::~RNEMD() {
287     delete randNumGen_;
288 gezelter 1396
289 skuang 1368 #ifdef IS_MPI
290     if (worldRank == 0) {
291     #endif
292 gezelter 1629
293     sprintf(painCave.errMsg,
294     "RNEMD: total failed trials: %d\n",
295     failTrialCount_);
296     painCave.isFatal = 0;
297     painCave.severity = OPENMD_INFO;
298     simError();
299    
300 gezelter 1722 if (outputTemp_) tempLog_.close();
301     if (outputVx_) vxzLog_.close();
302     if (outputVy_) vyzLog_.close();
303    
304     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
305     rnemdType_ == rnemdPyScale) {
306 gezelter 1629 sprintf(painCave.errMsg,
307     "RNEMD: total root-checking warnings: %d\n",
308     failRootCount_);
309     painCave.isFatal = 0;
310     painCave.severity = OPENMD_INFO;
311     simError();
312     }
313     if (output3DTemp_) {
314 skuang 1368 xTempLog_.close();
315     yTempLog_.close();
316     zTempLog_.close();
317     }
318 gezelter 1722 if (outputRotTemp_) rotTempLog_.close();
319    
320 skuang 1368 #ifdef IS_MPI
321     }
322     #endif
323 gezelter 1329 }
324 skuang 1330
325 gezelter 1329 void RNEMD::doSwap() {
326 gezelter 1331
327 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
328     Mat3x3d hmat = currentSnap_->getHmat();
329    
330 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
331    
332 gezelter 1333 int selei;
333 gezelter 1331 StuntDouble* sd;
334 gezelter 1333 int idx;
335 gezelter 1331
336 skuang 1338 RealType min_val;
337     bool min_found = false;
338     StuntDouble* min_sd;
339    
340     RealType max_val;
341     bool max_found = false;
342     StuntDouble* max_sd;
343    
344 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
345     sd = seleMan_.nextSelected(selei)) {
346 gezelter 1332
347 gezelter 1333 idx = sd->getLocalIndex();
348    
349 gezelter 1331 Vector3d pos = sd->getPos();
350 gezelter 1332
351     // wrap the stuntdouble's position back into the box:
352    
353 gezelter 1331 if (usePeriodicBoundaryConditions_)
354 gezelter 1332 currentSnap_->wrapVector(pos);
355    
356     // which bin is this stuntdouble in?
357 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
358 gezelter 1332
359 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
360 gezelter 1332
361 gezelter 1333
362 gezelter 1332 // if we're in bin 0 or the middleBin
363 skuang 1368 if (binNo == 0 || binNo == midBin_) {
364 gezelter 1332
365     RealType mass = sd->getMass();
366     Vector3d vel = sd->getVel();
367     RealType value;
368    
369     switch(rnemdType_) {
370 skuang 1368 case rnemdKineticSwap :
371 gezelter 1332
372 gezelter 1722 value = mass * vel.lengthSquare();
373    
374     if (sd->isDirectional()) {
375 gezelter 1332 Vector3d angMom = sd->getJ();
376     Mat3x3d I = sd->getI();
377    
378     if (sd->isLinear()) {
379 gezelter 1722 int i = sd->linearAxis();
380     int j = (i + 1) % 3;
381     int k = (i + 2) % 3;
382     value += angMom[j] * angMom[j] / I(j, j) +
383     angMom[k] * angMom[k] / I(k, k);
384 gezelter 1332 } else {
385 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
386     + angMom[1]*angMom[1]/I(1, 1)
387     + angMom[2]*angMom[2]/I(2, 2);
388 gezelter 1332 }
389 gezelter 1722 } //angular momenta exchange enabled
390     //energyConvert temporarily disabled
391 skuang 1368 //make exchangeSum_ comparable between swap & scale
392 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
393 skuang 1368 value *= 0.5;
394 gezelter 1332 break;
395     case rnemdPx :
396     value = mass * vel[0];
397     break;
398     case rnemdPy :
399     value = mass * vel[1];
400     break;
401     case rnemdPz :
402     value = mass * vel[2];
403     break;
404     default :
405     break;
406     }
407    
408 skuang 1338 if (binNo == 0) {
409     if (!min_found) {
410     min_val = value;
411     min_sd = sd;
412     min_found = true;
413     } else {
414     if (min_val > value) {
415     min_val = value;
416     min_sd = sd;
417     }
418     }
419 skuang 1368 } else { //midBin_
420 skuang 1338 if (!max_found) {
421     max_val = value;
422     max_sd = sd;
423     max_found = true;
424     } else {
425     if (max_val < value) {
426     max_val = value;
427     max_sd = sd;
428     }
429     }
430     }
431 gezelter 1332 }
432 gezelter 1331 }
433 skuang 1341
434 gezelter 1350 #ifdef IS_MPI
435     int nProc, worldRank;
436 skuang 1338
437 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
438     worldRank = MPI::COMM_WORLD.Get_rank();
439    
440     bool my_min_found = min_found;
441     bool my_max_found = max_found;
442    
443     // Even if we didn't find a minimum, did someone else?
444 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
445 gezelter 1350 // Even if we didn't find a maximum, did someone else?
446 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
447 gezelter 1722 #endif
448    
449     if (max_found && min_found) {
450    
451     #ifdef IS_MPI
452     struct {
453     RealType val;
454     int rank;
455     } max_vals, min_vals;
456 gezelter 1350
457 gezelter 1722 if (my_min_found) {
458 gezelter 1350 min_vals.val = min_val;
459 gezelter 1722 } else {
460 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
461 gezelter 1722 }
462 gezelter 1350 min_vals.rank = worldRank;
463    
464     // Who had the minimum?
465     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
466     1, MPI::REALTYPE_INT, MPI::MINLOC);
467     min_val = min_vals.val;
468    
469 gezelter 1722 if (my_max_found) {
470 gezelter 1350 max_vals.val = max_val;
471 gezelter 1722 } else {
472 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
473 gezelter 1722 }
474 gezelter 1350 max_vals.rank = worldRank;
475    
476     // Who had the maximum?
477     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
478     1, MPI::REALTYPE_INT, MPI::MAXLOC);
479     max_val = max_vals.val;
480     #endif
481 gezelter 1722
482 gezelter 1629 if (min_val < max_val) {
483 gezelter 1722
484 gezelter 1350 #ifdef IS_MPI
485     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
486     // I have both maximum and minimum, so proceed like a single
487     // processor version:
488     #endif
489 gezelter 1722
490 gezelter 1350 Vector3d min_vel = min_sd->getVel();
491     Vector3d max_vel = max_sd->getVel();
492     RealType temp_vel;
493    
494     switch(rnemdType_) {
495 skuang 1368 case rnemdKineticSwap :
496 gezelter 1350 min_sd->setVel(max_vel);
497     max_sd->setVel(min_vel);
498 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
499 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
500     Vector3d max_angMom = max_sd->getJ();
501     min_sd->setJ(max_angMom);
502     max_sd->setJ(min_angMom);
503 gezelter 1722 }//angular momenta exchange enabled
504     //assumes same rigid body identity
505 gezelter 1350 break;
506     case rnemdPx :
507     temp_vel = min_vel.x();
508     min_vel.x() = max_vel.x();
509     max_vel.x() = temp_vel;
510     min_sd->setVel(min_vel);
511     max_sd->setVel(max_vel);
512     break;
513     case rnemdPy :
514     temp_vel = min_vel.y();
515     min_vel.y() = max_vel.y();
516     max_vel.y() = temp_vel;
517     min_sd->setVel(min_vel);
518     max_sd->setVel(max_vel);
519     break;
520     case rnemdPz :
521     temp_vel = min_vel.z();
522     min_vel.z() = max_vel.z();
523     max_vel.z() = temp_vel;
524     min_sd->setVel(min_vel);
525     max_sd->setVel(max_vel);
526     break;
527     default :
528     break;
529     }
530 gezelter 1722
531 gezelter 1350 #ifdef IS_MPI
532     // the rest of the cases only apply in parallel simulations:
533     } else if (max_vals.rank == worldRank) {
534     // I had the max, but not the minimum
535    
536     Vector3d min_vel;
537     Vector3d max_vel = max_sd->getVel();
538     MPI::Status status;
539 skuang 1341
540 gezelter 1350 // point-to-point swap of the velocity vector
541     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
542     min_vals.rank, 0,
543     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
544     min_vals.rank, 0, status);
545    
546     switch(rnemdType_) {
547 skuang 1368 case rnemdKineticSwap :
548 gezelter 1350 max_sd->setVel(min_vel);
549 gezelter 1722 //angular momenta exchange enabled
550 gezelter 1350 if (max_sd->isDirectional()) {
551     Vector3d min_angMom;
552     Vector3d max_angMom = max_sd->getJ();
553 gezelter 1629
554 gezelter 1350 // point-to-point swap of the angular momentum vector
555     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
556     MPI::REALTYPE, min_vals.rank, 1,
557     min_angMom.getArrayPointer(), 3,
558     MPI::REALTYPE, min_vals.rank, 1,
559     status);
560 gezelter 1629
561 gezelter 1350 max_sd->setJ(min_angMom);
562 gezelter 1722 }
563 gezelter 1350 break;
564     case rnemdPx :
565     max_vel.x() = min_vel.x();
566     max_sd->setVel(max_vel);
567     break;
568     case rnemdPy :
569     max_vel.y() = min_vel.y();
570     max_sd->setVel(max_vel);
571     break;
572     case rnemdPz :
573     max_vel.z() = min_vel.z();
574     max_sd->setVel(max_vel);
575     break;
576     default :
577     break;
578 skuang 1341 }
579 gezelter 1350 } else if (min_vals.rank == worldRank) {
580     // I had the minimum but not the maximum:
581    
582     Vector3d max_vel;
583     Vector3d min_vel = min_sd->getVel();
584     MPI::Status status;
585    
586     // point-to-point swap of the velocity vector
587     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
588     max_vals.rank, 0,
589     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
590     max_vals.rank, 0, status);
591    
592     switch(rnemdType_) {
593 skuang 1368 case rnemdKineticSwap :
594 gezelter 1350 min_sd->setVel(max_vel);
595 gezelter 1722 //angular momenta exchange enabled
596 gezelter 1350 if (min_sd->isDirectional()) {
597     Vector3d min_angMom = min_sd->getJ();
598     Vector3d max_angMom;
599 gezelter 1629
600 gezelter 1350 // point-to-point swap of the angular momentum vector
601     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
602     MPI::REALTYPE, max_vals.rank, 1,
603     max_angMom.getArrayPointer(), 3,
604     MPI::REALTYPE, max_vals.rank, 1,
605     status);
606 gezelter 1629
607 gezelter 1350 min_sd->setJ(max_angMom);
608     }
609     break;
610     case rnemdPx :
611     min_vel.x() = max_vel.x();
612     min_sd->setVel(min_vel);
613     break;
614     case rnemdPy :
615     min_vel.y() = max_vel.y();
616     min_sd->setVel(min_vel);
617     break;
618     case rnemdPz :
619     min_vel.z() = max_vel.z();
620     min_sd->setVel(min_vel);
621     break;
622     default :
623     break;
624     }
625     }
626     #endif
627     exchangeSum_ += max_val - min_val;
628 gezelter 1629 } else {
629     sprintf(painCave.errMsg,
630     "RNEMD: exchange NOT performed because min_val > max_val\n");
631     painCave.isFatal = 0;
632     painCave.severity = OPENMD_INFO;
633     simError();
634 skuang 1368 failTrialCount_++;
635 skuang 1338 }
636     } else {
637 gezelter 1629 sprintf(painCave.errMsg,
638 gezelter 1722 "RNEMD: exchange NOT performed because selected object\n"
639     "\tnot present in at least one of the two slabs.\n");
640 gezelter 1629 painCave.isFatal = 0;
641     painCave.severity = OPENMD_INFO;
642     simError();
643 skuang 1368 failTrialCount_++;
644 skuang 1338 }
645 gezelter 1350
646 skuang 1338 }
647 gezelter 1350
648 skuang 1368 void RNEMD::doScale() {
649 skuang 1338
650     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
651     Mat3x3d hmat = currentSnap_->getHmat();
652    
653     seleMan_.setSelectionSet(evaluator_.evaluate());
654    
655     int selei;
656     StuntDouble* sd;
657     int idx;
658    
659 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
660 gezelter 1350
661 skuang 1368 RealType Phx = 0.0;
662     RealType Phy = 0.0;
663     RealType Phz = 0.0;
664     RealType Khx = 0.0;
665     RealType Khy = 0.0;
666     RealType Khz = 0.0;
667 gezelter 1722 RealType Khw = 0.0;
668 skuang 1368 RealType Pcx = 0.0;
669     RealType Pcy = 0.0;
670     RealType Pcz = 0.0;
671     RealType Kcx = 0.0;
672     RealType Kcy = 0.0;
673     RealType Kcz = 0.0;
674 gezelter 1722 RealType Kcw = 0.0;
675 skuang 1368
676 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
677     sd = seleMan_.nextSelected(selei)) {
678 skuang 1368
679     idx = sd->getLocalIndex();
680    
681     Vector3d pos = sd->getPos();
682    
683     // wrap the stuntdouble's position back into the box:
684    
685     if (usePeriodicBoundaryConditions_)
686     currentSnap_->wrapVector(pos);
687    
688     // which bin is this stuntdouble in?
689     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
690    
691 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
692 skuang 1368
693     // if we're in bin 0 or the middleBin
694     if (binNo == 0 || binNo == midBin_) {
695    
696     RealType mass = sd->getMass();
697     Vector3d vel = sd->getVel();
698    
699     if (binNo == 0) {
700     hotBin.push_back(sd);
701     Phx += mass * vel.x();
702     Phy += mass * vel.y();
703     Phz += mass * vel.z();
704     Khx += mass * vel.x() * vel.x();
705     Khy += mass * vel.y() * vel.y();
706     Khz += mass * vel.z() * vel.z();
707 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
708     if (sd->isDirectional()) {
709     Vector3d angMom = sd->getJ();
710     Mat3x3d I = sd->getI();
711     if (sd->isLinear()) {
712     int i = sd->linearAxis();
713     int j = (i + 1) % 3;
714     int k = (i + 2) % 3;
715     Khw += angMom[j] * angMom[j] / I(j, j) +
716     angMom[k] * angMom[k] / I(k, k);
717     } else {
718     Khw += angMom[0]*angMom[0]/I(0, 0)
719     + angMom[1]*angMom[1]/I(1, 1)
720     + angMom[2]*angMom[2]/I(2, 2);
721     }
722     }
723     //}
724 skuang 1368 } else { //midBin_
725     coldBin.push_back(sd);
726     Pcx += mass * vel.x();
727     Pcy += mass * vel.y();
728     Pcz += mass * vel.z();
729     Kcx += mass * vel.x() * vel.x();
730     Kcy += mass * vel.y() * vel.y();
731     Kcz += mass * vel.z() * vel.z();
732 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
733     if (sd->isDirectional()) {
734     Vector3d angMom = sd->getJ();
735     Mat3x3d I = sd->getI();
736     if (sd->isLinear()) {
737     int i = sd->linearAxis();
738     int j = (i + 1) % 3;
739     int k = (i + 2) % 3;
740     Kcw += angMom[j] * angMom[j] / I(j, j) +
741     angMom[k] * angMom[k] / I(k, k);
742     } else {
743     Kcw += angMom[0]*angMom[0]/I(0, 0)
744     + angMom[1]*angMom[1]/I(1, 1)
745     + angMom[2]*angMom[2]/I(2, 2);
746     }
747     }
748     //}
749 skuang 1368 }
750     }
751     }
752 gezelter 1722
753 skuang 1368 Khx *= 0.5;
754     Khy *= 0.5;
755     Khz *= 0.5;
756 gezelter 1722 Khw *= 0.5;
757 skuang 1368 Kcx *= 0.5;
758     Kcy *= 0.5;
759     Kcz *= 0.5;
760 gezelter 1722 Kcw *= 0.5;
761 skuang 1368
762 gezelter 1722 std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
763     << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
764     << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
765     std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
766     << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
767    
768 skuang 1368 #ifdef IS_MPI
769     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
770     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
771     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
772     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
773     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
774     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
775    
776     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
777     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
778     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
779 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
780    
781 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
782     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
783     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
784 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
785 skuang 1368 #endif
786    
787 gezelter 1722 //solve coldBin coeff's first
788 skuang 1368 RealType px = Pcx / Phx;
789     RealType py = Pcy / Phy;
790     RealType pz = Pcz / Phz;
791 gezelter 1722 RealType c, x, y, z;
792     bool successfulScale = false;
793     if ((rnemdType_ == rnemdKineticScaleVAM) ||
794     (rnemdType_ == rnemdKineticScaleAM)) {
795     //may need sanity check Khw & Kcw > 0
796 skuang 1368
797 gezelter 1722 if (rnemdType_ == rnemdKineticScaleVAM) {
798     c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
799     } else {
800     c = 1.0 - targetFlux_ / Kcw;
801     }
802 skuang 1368
803 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
804     c = sqrt(c);
805     std::cerr << "cold slab scaling coefficient: " << c << endl;
806     //now convert to hotBin coefficient
807     RealType w = 0.0;
808     if (rnemdType_ == rnemdKineticScaleVAM) {
809     x = 1.0 + px * (1.0 - c);
810     y = 1.0 + py * (1.0 - c);
811     z = 1.0 + pz * (1.0 - c);
812     /* more complicated way
813     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
814     + Khx * px * px + Khy * py * py + Khz * pz * pz)
815     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
816     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
817     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
818     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
819     */
820     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
821     (fabs(z - 1.0) < 0.1)) {
822     w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
823     + Khz * (1.0 - z * z)) / Khw;
824     }//no need to calculate w if x, y or z is out of range
825     } else {
826     w = 1.0 + targetFlux_ / Khw;
827     }
828     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
829     //if w is in the right range, so should be x, y, z.
830     vector<StuntDouble*>::iterator sdi;
831     Vector3d vel;
832     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
833     if (rnemdType_ == rnemdKineticScaleVAM) {
834     vel = (*sdi)->getVel() * c;
835     //vel.x() *= c;
836     //vel.y() *= c;
837     //vel.z() *= c;
838     (*sdi)->setVel(vel);
839     }
840     if ((*sdi)->isDirectional()) {
841     Vector3d angMom = (*sdi)->getJ() * c;
842     //angMom[0] *= c;
843     //angMom[1] *= c;
844     //angMom[2] *= c;
845     (*sdi)->setJ(angMom);
846     }
847     }
848     w = sqrt(w);
849     std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
850     << "\twh= " << w << endl;
851     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
852     if (rnemdType_ == rnemdKineticScaleVAM) {
853     vel = (*sdi)->getVel();
854     vel.x() *= x;
855     vel.y() *= y;
856     vel.z() *= z;
857     (*sdi)->setVel(vel);
858     }
859     if ((*sdi)->isDirectional()) {
860     Vector3d angMom = (*sdi)->getJ() * w;
861     //angMom[0] *= w;
862     //angMom[1] *= w;
863     //angMom[2] *= w;
864     (*sdi)->setJ(angMom);
865     }
866     }
867     successfulScale = true;
868     exchangeSum_ += targetFlux_;
869     }
870 skuang 1368 }
871 gezelter 1722 } else {
872     RealType a000, a110, c0, a001, a111, b01, b11, c1;
873     switch(rnemdType_) {
874     case rnemdKineticScale :
875     /* used hotBin coeff's & only scale x & y dimensions
876     RealType px = Phx / Pcx;
877     RealType py = Phy / Pcy;
878     a110 = Khy;
879     c0 = - Khx - Khy - targetFlux_;
880     a000 = Khx;
881     a111 = Kcy * py * py;
882     b11 = -2.0 * Kcy * py * (1.0 + py);
883     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
884     b01 = -2.0 * Kcx * px * (1.0 + px);
885     a001 = Kcx * px * px;
886     */
887     //scale all three dimensions, let c_x = c_y
888     a000 = Kcx + Kcy;
889     a110 = Kcz;
890     c0 = targetFlux_ - Kcx - Kcy - Kcz;
891     a001 = Khx * px * px + Khy * py * py;
892     a111 = Khz * pz * pz;
893     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
894     b11 = -2.0 * Khz * pz * (1.0 + pz);
895     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
896     + Khz * pz * (2.0 + pz) - targetFlux_;
897     break;
898     case rnemdPxScale :
899     c = 1 - targetFlux_ / Pcx;
900     a000 = Kcy;
901     a110 = Kcz;
902     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
903     a001 = py * py * Khy;
904     a111 = pz * pz * Khz;
905     b01 = -2.0 * Khy * py * (1.0 + py);
906     b11 = -2.0 * Khz * pz * (1.0 + pz);
907     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
908     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
909     break;
910     case rnemdPyScale :
911     c = 1 - targetFlux_ / Pcy;
912     a000 = Kcx;
913     a110 = Kcz;
914     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
915     a001 = px * px * Khx;
916     a111 = pz * pz * Khz;
917     b01 = -2.0 * Khx * px * (1.0 + px);
918     b11 = -2.0 * Khz * pz * (1.0 + pz);
919     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
920     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
921     break;
922     case rnemdPzScale ://we don't really do this, do we?
923     c = 1 - targetFlux_ / Pcz;
924     a000 = Kcx;
925     a110 = Kcy;
926     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
927     a001 = px * px * Khx;
928     a111 = py * py * Khy;
929     b01 = -2.0 * Khx * px * (1.0 + px);
930     b11 = -2.0 * Khy * py * (1.0 + py);
931     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
932     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
933     break;
934     default :
935     break;
936 skuang 1368 }
937 gezelter 1722
938     RealType v1 = a000 * a111 - a001 * a110;
939     RealType v2 = a000 * b01;
940     RealType v3 = a000 * b11;
941     RealType v4 = a000 * c1 - a001 * c0;
942     RealType v8 = a110 * b01;
943     RealType v10 = - b01 * c0;
944    
945     RealType u0 = v2 * v10 - v4 * v4;
946     RealType u1 = -2.0 * v3 * v4;
947     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
948     RealType u3 = -2.0 * v1 * v3;
949     RealType u4 = - v1 * v1;
950     //rescale coefficients
951     RealType maxAbs = fabs(u0);
952     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
953     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
954     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
955     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
956     u0 /= maxAbs;
957     u1 /= maxAbs;
958     u2 /= maxAbs;
959     u3 /= maxAbs;
960     u4 /= maxAbs;
961     //max_element(start, end) is also available.
962     Polynomial<RealType> poly; //same as DoublePolynomial poly;
963     poly.setCoefficient(4, u4);
964     poly.setCoefficient(3, u3);
965     poly.setCoefficient(2, u2);
966     poly.setCoefficient(1, u1);
967     poly.setCoefficient(0, u0);
968     vector<RealType> realRoots = poly.FindRealRoots();
969    
970     vector<RealType>::iterator ri;
971     RealType r1, r2, alpha0;
972     vector<pair<RealType,RealType> > rps;
973     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
974     r2 = *ri;
975     //check if FindRealRoots() give the right answer
976     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
977     sprintf(painCave.errMsg,
978     "RNEMD Warning: polynomial solve seems to have an error!");
979     painCave.isFatal = 0;
980     simError();
981     failRootCount_++;
982     }
983     //might not be useful w/o rescaling coefficients
984     alpha0 = -c0 - a110 * r2 * r2;
985     if (alpha0 >= 0.0) {
986     r1 = sqrt(alpha0 / a000);
987     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
988     < 1e-6)
989     { rps.push_back(make_pair(r1, r2)); }
990     if (r1 > 1e-6) { //r1 non-negative
991     r1 = -r1;
992     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
993     < 1e-6)
994     { rps.push_back(make_pair(r1, r2)); }
995     }
996     }
997 skuang 1368 }
998 gezelter 1722 // Consider combining together the solving pair part w/ the searching
999     // best solution part so that we don't need the pairs vector
1000     if (!rps.empty()) {
1001     RealType smallestDiff = HONKING_LARGE_VALUE;
1002     RealType diff;
1003     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1004     vector<pair<RealType,RealType> >::iterator rpi;
1005     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1006     r1 = (*rpi).first;
1007     r2 = (*rpi).second;
1008     switch(rnemdType_) {
1009     case rnemdKineticScale :
1010     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1011     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1012     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1013     break;
1014     case rnemdPxScale :
1015     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1016     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1017     break;
1018     case rnemdPyScale :
1019     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1020     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1021     break;
1022     case rnemdPzScale :
1023     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1024     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1025     default :
1026     break;
1027     }
1028     if (diff < smallestDiff) {
1029     smallestDiff = diff;
1030     bestPair = *rpi;
1031     }
1032     }
1033 skuang 1368 #ifdef IS_MPI
1034 gezelter 1722 if (worldRank == 0) {
1035 skuang 1368 #endif
1036 gezelter 1722 sprintf(painCave.errMsg,
1037     "RNEMD: roots r1= %lf\tr2 = %lf\n",
1038     bestPair.first, bestPair.second);
1039     painCave.isFatal = 0;
1040     painCave.severity = OPENMD_INFO;
1041     simError();
1042 skuang 1368 #ifdef IS_MPI
1043 gezelter 1722 }
1044 skuang 1368 #endif
1045 gezelter 1722
1046     switch(rnemdType_) {
1047     case rnemdKineticScale :
1048     x = bestPair.first;
1049     y = bestPair.first;
1050     z = bestPair.second;
1051     break;
1052     case rnemdPxScale :
1053     x = c;
1054     y = bestPair.first;
1055     z = bestPair.second;
1056     break;
1057     case rnemdPyScale :
1058     x = bestPair.first;
1059     y = c;
1060     z = bestPair.second;
1061     break;
1062     case rnemdPzScale :
1063     x = bestPair.first;
1064     y = bestPair.second;
1065     z = c;
1066     break;
1067     default :
1068     break;
1069     }
1070     vector<StuntDouble*>::iterator sdi;
1071     Vector3d vel;
1072     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1073     vel = (*sdi)->getVel();
1074     vel.x() *= x;
1075     vel.y() *= y;
1076     vel.z() *= z;
1077     (*sdi)->setVel(vel);
1078     }
1079     //convert to hotBin coefficient
1080     x = 1.0 + px * (1.0 - x);
1081     y = 1.0 + py * (1.0 - y);
1082     z = 1.0 + pz * (1.0 - z);
1083     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1084     vel = (*sdi)->getVel();
1085     vel.x() *= x;
1086     vel.y() *= y;
1087     vel.z() *= z;
1088     (*sdi)->setVel(vel);
1089     }
1090     successfulScale = true;
1091     exchangeSum_ += targetFlux_;
1092 gezelter 1629 }
1093 gezelter 1722 }
1094     if (successfulScale != true) {
1095     sprintf(painCave.errMsg,
1096     "RNEMD: exchange NOT performed!\n");
1097     painCave.isFatal = 0;
1098     painCave.severity = OPENMD_INFO;
1099     simError();
1100     failTrialCount_++;
1101     }
1102     }
1103    
1104     void RNEMD::doShiftScale() {
1105    
1106     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1107     Mat3x3d hmat = currentSnap_->getHmat();
1108    
1109     seleMan_.setSelectionSet(evaluator_.evaluate());
1110    
1111     int selei;
1112     StuntDouble* sd;
1113     int idx;
1114    
1115     vector<StuntDouble*> hotBin, coldBin;
1116    
1117     Vector3d Ph(V3Zero);
1118     RealType Mh = 0.0;
1119     RealType Kh = 0.0;
1120     Vector3d Pc(V3Zero);
1121     RealType Mc = 0.0;
1122     RealType Kc = 0.0;
1123    
1124     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1125     sd = seleMan_.nextSelected(selei)) {
1126    
1127     idx = sd->getLocalIndex();
1128    
1129     Vector3d pos = sd->getPos();
1130    
1131     // wrap the stuntdouble's position back into the box:
1132    
1133     if (usePeriodicBoundaryConditions_)
1134     currentSnap_->wrapVector(pos);
1135    
1136     // which bin is this stuntdouble in?
1137     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1138    
1139     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1140    
1141     // if we're in bin 0 or the middleBin
1142     if (binNo == 0 || binNo == midBin_) {
1143    
1144     RealType mass = sd->getMass();
1145     Vector3d vel = sd->getVel();
1146    
1147     if (binNo == 0) {
1148     hotBin.push_back(sd);
1149     //std::cerr << "before, velocity = " << vel << endl;
1150     Ph += mass * vel;
1151     //std::cerr << "after, velocity = " << vel << endl;
1152     Mh += mass;
1153     Kh += mass * vel.lengthSquare();
1154     if (rnemdType_ == rnemdShiftScaleVAM) {
1155     if (sd->isDirectional()) {
1156     Vector3d angMom = sd->getJ();
1157     Mat3x3d I = sd->getI();
1158     if (sd->isLinear()) {
1159     int i = sd->linearAxis();
1160     int j = (i + 1) % 3;
1161     int k = (i + 2) % 3;
1162     Kh += angMom[j] * angMom[j] / I(j, j) +
1163     angMom[k] * angMom[k] / I(k, k);
1164     } else {
1165     Kh += angMom[0] * angMom[0] / I(0, 0) +
1166     angMom[1] * angMom[1] / I(1, 1) +
1167     angMom[2] * angMom[2] / I(2, 2);
1168     }
1169     }
1170     }
1171     } else { //midBin_
1172     coldBin.push_back(sd);
1173     Pc += mass * vel;
1174     Mc += mass;
1175     Kc += mass * vel.lengthSquare();
1176     if (rnemdType_ == rnemdShiftScaleVAM) {
1177     if (sd->isDirectional()) {
1178     Vector3d angMom = sd->getJ();
1179     Mat3x3d I = sd->getI();
1180     if (sd->isLinear()) {
1181     int i = sd->linearAxis();
1182     int j = (i + 1) % 3;
1183     int k = (i + 2) % 3;
1184     Kc += angMom[j] * angMom[j] / I(j, j) +
1185     angMom[k] * angMom[k] / I(k, k);
1186     } else {
1187     Kc += angMom[0] * angMom[0] / I(0, 0) +
1188     angMom[1] * angMom[1] / I(1, 1) +
1189     angMom[2] * angMom[2] / I(2, 2);
1190     }
1191     }
1192     }
1193     }
1194 skuang 1368 }
1195 gezelter 1722 }
1196    
1197     Kh *= 0.5;
1198     Kc *= 0.5;
1199    
1200     std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1201     << "\tKc= " << Kc << endl;
1202     std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1203    
1204     #ifdef IS_MPI
1205     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1206     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1207     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1208     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1209     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1210     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1211     #endif
1212    
1213     bool successfulExchange = false;
1214     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1215     Vector3d vc = Pc / Mc;
1216     Vector3d ac = njzp_ / Mc + vc;
1217     RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1218     if (cNumerator > 0.0) {
1219     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1220     if (cDenominator > 0.0) {
1221     RealType c = sqrt(cNumerator / cDenominator);
1222     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1223     Vector3d vh = Ph / Mh;
1224     Vector3d ah = jzp_ / Mh + vh;
1225     RealType hNumerator = Kh + targetJzKE_
1226     - 0.5 * Mh * ah.lengthSquare();
1227     if (hNumerator > 0.0) {
1228     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1229     if (hDenominator > 0.0) {
1230     RealType h = sqrt(hNumerator / hDenominator);
1231     if ((h > 0.9) && (h < 1.1)) {
1232     std::cerr << "cold slab scaling coefficient: " << c << "\n";
1233     std::cerr << "hot slab scaling coefficient: " << h << "\n";
1234     vector<StuntDouble*>::iterator sdi;
1235     Vector3d vel;
1236     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1237     //vel = (*sdi)->getVel();
1238     vel = ((*sdi)->getVel() - vc) * c + ac;
1239     (*sdi)->setVel(vel);
1240     if (rnemdType_ == rnemdShiftScaleVAM) {
1241     if ((*sdi)->isDirectional()) {
1242     Vector3d angMom = (*sdi)->getJ() * c;
1243     (*sdi)->setJ(angMom);
1244     }
1245     }
1246     }
1247     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1248     //vel = (*sdi)->getVel();
1249     vel = ((*sdi)->getVel() - vh) * h + ah;
1250     (*sdi)->setVel(vel);
1251     if (rnemdType_ == rnemdShiftScaleVAM) {
1252     if ((*sdi)->isDirectional()) {
1253     Vector3d angMom = (*sdi)->getJ() * h;
1254     (*sdi)->setJ(angMom);
1255     }
1256     }
1257     }
1258     successfulExchange = true;
1259     exchangeSum_ += targetFlux_;
1260     // this is a redundant variable for doShiftScale() so that
1261     // RNEMD can output one exchange quantity needed in a job.
1262     // need a better way to do this.
1263     }
1264     }
1265     }
1266     }
1267     }
1268 skuang 1368 }
1269 gezelter 1722 }
1270     if (successfulExchange != true) {
1271 gezelter 1629 sprintf(painCave.errMsg,
1272 gezelter 1722 "RNEMD: exchange NOT performed!\n");
1273 gezelter 1629 painCave.isFatal = 0;
1274     painCave.severity = OPENMD_INFO;
1275     simError();
1276 skuang 1368 failTrialCount_++;
1277     }
1278     }
1279    
1280     void RNEMD::doRNEMD() {
1281    
1282     switch(rnemdType_) {
1283     case rnemdKineticScale :
1284 gezelter 1722 case rnemdKineticScaleVAM :
1285     case rnemdKineticScaleAM :
1286 skuang 1368 case rnemdPxScale :
1287     case rnemdPyScale :
1288     case rnemdPzScale :
1289     doScale();
1290     break;
1291     case rnemdKineticSwap :
1292     case rnemdPx :
1293     case rnemdPy :
1294     case rnemdPz :
1295     doSwap();
1296     break;
1297 gezelter 1722 case rnemdShiftScaleV :
1298     case rnemdShiftScaleVAM :
1299     doShiftScale();
1300     break;
1301 skuang 1368 case rnemdUnknown :
1302     default :
1303     break;
1304     }
1305     }
1306    
1307     void RNEMD::collectData() {
1308    
1309     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1310     Mat3x3d hmat = currentSnap_->getHmat();
1311    
1312     seleMan_.setSelectionSet(evaluator_.evaluate());
1313    
1314     int selei;
1315     StuntDouble* sd;
1316     int idx;
1317    
1318 gezelter 1629 // alternative approach, track all molecules instead of only those
1319     // selected for scaling/swapping:
1320     /*
1321     SimInfo::MoleculeIterator miter;
1322     vector<StuntDouble*>::iterator iiter;
1323     Molecule* mol;
1324     StuntDouble* integrableObject;
1325     for (mol = info_->beginMolecule(miter); mol != NULL;
1326     mol = info_->nextMolecule(miter))
1327     integrableObject is essentially sd
1328     for (integrableObject = mol->beginIntegrableObject(iiter);
1329     integrableObject != NULL;
1330     integrableObject = mol->nextIntegrableObject(iiter))
1331     */
1332 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1333     sd = seleMan_.nextSelected(selei)) {
1334 skuang 1338
1335     idx = sd->getLocalIndex();
1336    
1337     Vector3d pos = sd->getPos();
1338    
1339     // wrap the stuntdouble's position back into the box:
1340    
1341     if (usePeriodicBoundaryConditions_)
1342     currentSnap_->wrapVector(pos);
1343    
1344     // which bin is this stuntdouble in?
1345     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1346    
1347 gezelter 1629 int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1348     rnemdLogWidth_;
1349 gezelter 1722 // no symmetrization allowed due to arbitary rnemdLogWidth_
1350 gezelter 1629 /*
1351 skuang 1368 if (rnemdLogWidth_ == midBin_ + 1)
1352     if (binNo > midBin_)
1353     binNo = nBins_ - binNo;
1354 gezelter 1629 */
1355 skuang 1338 RealType mass = sd->getMass();
1356 gezelter 1722 mHist_[binNo] += mass;
1357 skuang 1338 Vector3d vel = sd->getVel();
1358     RealType value;
1359 gezelter 1722 //RealType xVal, yVal, zVal;
1360 skuang 1338
1361 gezelter 1722 if (outputTemp_) {
1362     value = mass * vel.lengthSquare();
1363     tempCount_[binNo] += 3;
1364 skuang 1338 if (sd->isDirectional()) {
1365     Vector3d angMom = sd->getJ();
1366     Mat3x3d I = sd->getI();
1367     if (sd->isLinear()) {
1368     int i = sd->linearAxis();
1369     int j = (i + 1) % 3;
1370     int k = (i + 2) % 3;
1371     value += angMom[j] * angMom[j] / I(j, j) +
1372     angMom[k] * angMom[k] / I(k, k);
1373 gezelter 1722 tempCount_[binNo] +=2;
1374 skuang 1341 } else {
1375 gezelter 1722 value += angMom[0] * angMom[0] / I(0, 0) +
1376     angMom[1]*angMom[1]/I(1, 1) +
1377     angMom[2]*angMom[2]/I(2, 2);
1378     tempCount_[binNo] +=3;
1379 skuang 1338 }
1380     }
1381 gezelter 1722 value = value / PhysicalConstants::energyConvert
1382     / PhysicalConstants::kb;//may move to getStatus()
1383     tempHist_[binNo] += value;
1384     }
1385     if (outputVx_) {
1386 skuang 1338 value = mass * vel[0];
1387 gezelter 1722 //vxzCount_[binNo]++;
1388     pxzHist_[binNo] += value;
1389     }
1390     if (outputVy_) {
1391 skuang 1338 value = mass * vel[1];
1392 gezelter 1722 //vyzCount_[binNo]++;
1393     pyzHist_[binNo] += value;
1394 skuang 1338 }
1395 gezelter 1629
1396     if (output3DTemp_) {
1397 gezelter 1722 value = mass * vel.x() * vel.x();
1398     xTempHist_[binNo] += value;
1399     value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1400 gezelter 1629 / PhysicalConstants::kb;
1401 gezelter 1722 yTempHist_[binNo] += value;
1402     value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1403 gezelter 1629 / PhysicalConstants::kb;
1404 gezelter 1722 zTempHist_[binNo] += value;
1405 gezelter 1629 xyzTempCount_[binNo]++;
1406     }
1407 gezelter 1722 if (outputRotTemp_) {
1408     if (sd->isDirectional()) {
1409     Vector3d angMom = sd->getJ();
1410     Mat3x3d I = sd->getI();
1411     if (sd->isLinear()) {
1412     int i = sd->linearAxis();
1413     int j = (i + 1) % 3;
1414     int k = (i + 2) % 3;
1415     value = angMom[j] * angMom[j] / I(j, j) +
1416     angMom[k] * angMom[k] / I(k, k);
1417     rotTempCount_[binNo] +=2;
1418     } else {
1419     value = angMom[0] * angMom[0] / I(0, 0) +
1420     angMom[1] * angMom[1] / I(1, 1) +
1421     angMom[2] * angMom[2] / I(2, 2);
1422     rotTempCount_[binNo] +=3;
1423     }
1424     }
1425     value = value / PhysicalConstants::energyConvert
1426     / PhysicalConstants::kb;//may move to getStatus()
1427     rotTempHist_[binNo] += value;
1428     }
1429    
1430 skuang 1338 }
1431 skuang 1368 }
1432    
1433     void RNEMD::getStarted() {
1434 gezelter 1629 collectData();
1435 gezelter 1722 /*now can output profile in step 0, but might not be useful;
1436     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1437     Stats& stat = currentSnap_->statData;
1438     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1439 gezelter 1629 */
1440 gezelter 1722 //may output a header for the log file here
1441 gezelter 1629 getStatus();
1442 skuang 1368 }
1443    
1444     void RNEMD::getStatus() {
1445    
1446     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1447     Stats& stat = currentSnap_->statData;
1448     RealType time = currentSnap_->getTime();
1449    
1450     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1451     //or to be more meaningful, define another item as exchangeSum_ / time
1452 gezelter 1396 int j;
1453 skuang 1368
1454 gezelter 1350 #ifdef IS_MPI
1455    
1456     // all processors have the same number of bins, and STL vectors pack their
1457     // arrays, so in theory, this should be safe:
1458    
1459 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1460     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1461     if (outputTemp_) {
1462     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1463     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1464     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1465     rnemdLogWidth_, MPI::INT, MPI::SUM);
1466     }
1467     if (outputVx_) {
1468     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1469     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1470     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1471     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1472     }
1473     if (outputVy_) {
1474     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1475     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1476     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1477     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1478     }
1479 gezelter 1629 if (output3DTemp_) {
1480 gezelter 1396 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1481     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1482     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1483     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1484     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1485     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1486 gezelter 1629 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1487     rnemdLogWidth_, MPI::INT, MPI::SUM);
1488 gezelter 1396 }
1489 gezelter 1722 if (outputRotTemp_) {
1490     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1491     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1492     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1493     rnemdLogWidth_, MPI::INT, MPI::SUM);
1494     }
1495    
1496 gezelter 1350 // If we're the root node, should we print out the results
1497     int worldRank = MPI::COMM_WORLD.Get_rank();
1498     if (worldRank == 0) {
1499     #endif
1500 gezelter 1722
1501     if (outputTemp_) {
1502     tempLog_ << time;
1503     for (j = 0; j < rnemdLogWidth_; j++) {
1504     tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1505     }
1506     tempLog_ << endl;
1507 skuang 1368 }
1508 gezelter 1722 if (outputVx_) {
1509     vxzLog_ << time;
1510     for (j = 0; j < rnemdLogWidth_; j++) {
1511     vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1512     }
1513     vxzLog_ << endl;
1514     }
1515     if (outputVy_) {
1516     vyzLog_ << time;
1517     for (j = 0; j < rnemdLogWidth_; j++) {
1518     vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1519     }
1520     vyzLog_ << endl;
1521     }
1522    
1523 gezelter 1629 if (output3DTemp_) {
1524 gezelter 1722 RealType temp;
1525     xTempLog_ << time;
1526 skuang 1368 for (j = 0; j < rnemdLogWidth_; j++) {
1527 gezelter 1722 if (outputVx_)
1528     xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1529     temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1530     / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1531     xTempLog_ << "\t" << temp;
1532 skuang 1368 }
1533 gezelter 1722 xTempLog_ << endl;
1534 skuang 1368 yTempLog_ << time;
1535     for (j = 0; j < rnemdLogWidth_; j++) {
1536 gezelter 1629 yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1537 skuang 1368 }
1538 gezelter 1722 yTempLog_ << endl;
1539 skuang 1368 zTempLog_ << time;
1540     for (j = 0; j < rnemdLogWidth_; j++) {
1541 gezelter 1629 zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1542 skuang 1368 }
1543 gezelter 1722 zTempLog_ << endl;
1544 skuang 1368 }
1545 gezelter 1722 if (outputRotTemp_) {
1546     rotTempLog_ << time;
1547     for (j = 0; j < rnemdLogWidth_; j++) {
1548     rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1549     }
1550     rotTempLog_ << endl;
1551     }
1552    
1553 gezelter 1350 #ifdef IS_MPI
1554 gezelter 1396 }
1555 gezelter 1350 #endif
1556 gezelter 1722
1557 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1558 gezelter 1722 mHist_[j] = 0.0;
1559 gezelter 1396 }
1560 gezelter 1722 if (outputTemp_)
1561     for (j = 0; j < rnemdLogWidth_; j++) {
1562     tempCount_[j] = 0;
1563     tempHist_[j] = 0.0;
1564     }
1565     if (outputVx_)
1566     for (j = 0; j < rnemdLogWidth_; j++) {
1567     //pxzCount_[j] = 0;
1568     pxzHist_[j] = 0.0;
1569     }
1570     if (outputVy_)
1571     for (j = 0; j < rnemdLogWidth_; j++) {
1572     //pyzCount_[j] = 0;
1573     pyzHist_[j] = 0.0;
1574     }
1575    
1576 gezelter 1629 if (output3DTemp_)
1577 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1578     xTempHist_[j] = 0.0;
1579     yTempHist_[j] = 0.0;
1580     zTempHist_[j] = 0.0;
1581 gezelter 1629 xyzTempCount_[j] = 0;
1582 gezelter 1396 }
1583 gezelter 1722 if (outputRotTemp_)
1584     for (j = 0; j < rnemdLogWidth_; j++) {
1585     rotTempCount_[j] = 0;
1586     rotTempHist_[j] = 0.0;
1587     }
1588 gezelter 1334 }
1589 skuang 1338 }
1590 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date