ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1627
Committed: Tue Sep 13 22:05:04 2011 UTC (13 years, 7 months ago) by gezelter
Original Path: branches/development/src/integrators/RNEMD.cpp
File size: 33271 byte(s)
Log Message:
Splitting out ifstrstream into a header and an implementation.  This
means that much of the code that depends on it can be compiled only
once and the parallel I/O is concentrated into a few files.  To do
this, a number of files that relied on basic_ifstrstream to load the
mpi header had to be modified to manage their own headers.


File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1329 #include "math/SquareMatrix3.hpp"
46 skuang 1368 #include "math/Polynomial.hpp"
47 gezelter 1329 #include "primitives/Molecule.hpp"
48     #include "primitives/StuntDouble.hpp"
49 gezelter 1390 #include "utils/PhysicalConstants.hpp"
50 gezelter 1332 #include "utils/Tuple.hpp"
51 gezelter 1329
52     #ifndef IS_MPI
53     #include "math/SeqRandNumGen.hpp"
54     #else
55 gezelter 1627 #include <mpi.h>
56 gezelter 1329 #include "math/ParallelRandNumGen.hpp"
57     #endif
58    
59 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
60 gezelter 1329
61 gezelter 1390 namespace OpenMD {
62 gezelter 1329
63 gezelter 1334 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
64 skuang 1368
65     failTrialCount_ = 0;
66     failRootCount_ = 0;
67    
68 gezelter 1329 int seedValue;
69     Globals * simParams = info->getSimParams();
70 skuang 1330
71 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
72     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73     stringToEnumMap_["PxScale"] = rnemdPxScale;
74     stringToEnumMap_["PyScale"] = rnemdPyScale;
75     stringToEnumMap_["PzScale"] = rnemdPzScale;
76 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
77     stringToEnumMap_["Py"] = rnemdPy;
78     stringToEnumMap_["Pz"] = rnemdPz;
79     stringToEnumMap_["Unknown"] = rnemdUnknown;
80    
81 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
82 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
83     seleMan_.setSelectionSet(evaluator_.evaluate());
84 gezelter 1331
85 skuang 1341 // do some sanity checking
86    
87     int selectionCount = seleMan_.getSelectionCount();
88     int nIntegrable = info->getNGlobalIntegrableObjects();
89    
90     if (selectionCount > nIntegrable) {
91     sprintf(painCave.errMsg,
92     "RNEMD warning: The current RNEMD_objectSelection,\n"
93     "\t\t%s\n"
94     "\thas resulted in %d selected objects. However,\n"
95     "\tthe total number of integrable objects in the system\n"
96     "\tis only %d. This is almost certainly not what you want\n"
97     "\tto do. A likely cause of this is forgetting the _RB_0\n"
98     "\tselector in the selection script!\n",
99     rnemdObjectSelection_.c_str(),
100     selectionCount, nIntegrable);
101     painCave.isFatal = 0;
102     simError();
103    
104     }
105 gezelter 1331
106 skuang 1368 const std::string st = simParams->getRNEMD_exchangeType();
107 skuang 1330
108     std::map<std::string, RNEMDTypeEnum>::iterator i;
109     i = stringToEnumMap_.find(st);
110 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111     if (rnemdType_ == rnemdUnknown) {
112     std::cerr << "WARNING! RNEMD Type Unknown!\n";
113     }
114 skuang 1330
115 skuang 1368 #ifdef IS_MPI
116     if (worldRank == 0) {
117     #endif
118    
119     std::string rnemdFileName;
120     std::string xTempFileName;
121     std::string yTempFileName;
122     std::string zTempFileName;
123     switch(rnemdType_) {
124     case rnemdKineticSwap :
125     case rnemdKineticScale :
126     rnemdFileName = "temperature.log";
127     break;
128     case rnemdPx :
129     case rnemdPxScale :
130     case rnemdPy :
131     case rnemdPyScale :
132     rnemdFileName = "momemtum.log";
133     xTempFileName = "temperatureX.log";
134     yTempFileName = "temperatureY.log";
135     zTempFileName = "temperatureZ.log";
136     xTempLog_.open(xTempFileName.c_str());
137     yTempLog_.open(yTempFileName.c_str());
138     zTempLog_.open(zTempFileName.c_str());
139     break;
140     case rnemdPz :
141     case rnemdPzScale :
142     case rnemdUnknown :
143     default :
144     rnemdFileName = "rnemd.log";
145     break;
146     }
147     rnemdLog_.open(rnemdFileName.c_str());
148    
149     #ifdef IS_MPI
150     }
151     #endif
152    
153     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
154 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
155 skuang 1368 midBin_ = nBins_ / 2;
156     if (simParams->haveRNEMD_logWidth()) {
157     rnemdLogWidth_ = simParams->getRNEMD_logWidth();
158 gezelter 1396 if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
159 skuang 1368 std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
160     std::cerr << "Automaically set back to default.\n";
161     rnemdLogWidth_ = nBins_;
162     }
163     } else {
164     rnemdLogWidth_ = nBins_;
165     }
166     valueHist_.resize(rnemdLogWidth_, 0.0);
167     valueCount_.resize(rnemdLogWidth_, 0);
168     xTempHist_.resize(rnemdLogWidth_, 0.0);
169     yTempHist_.resize(rnemdLogWidth_, 0.0);
170     zTempHist_.resize(rnemdLogWidth_, 0.0);
171 skuang 1338
172 skuang 1368 set_RNEMD_exchange_total(0.0);
173     if (simParams->haveRNEMD_targetFlux()) {
174     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
175     } else {
176     set_RNEMD_target_flux(0.0);
177     }
178    
179 gezelter 1329 #ifndef IS_MPI
180     if (simParams->haveSeed()) {
181     seedValue = simParams->getSeed();
182     randNumGen_ = new SeqRandNumGen(seedValue);
183     }else {
184     randNumGen_ = new SeqRandNumGen();
185     }
186     #else
187     if (simParams->haveSeed()) {
188     seedValue = simParams->getSeed();
189     randNumGen_ = new ParallelRandNumGen(seedValue);
190     }else {
191     randNumGen_ = new ParallelRandNumGen();
192     }
193     #endif
194     }
195    
196     RNEMD::~RNEMD() {
197     delete randNumGen_;
198 gezelter 1396
199 skuang 1368 #ifdef IS_MPI
200     if (worldRank == 0) {
201     #endif
202 gezelter 1396 std::cerr << "total fail trials: " << failTrialCount_ << "\n";
203 skuang 1368 rnemdLog_.close();
204     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
205     std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
206     if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207     xTempLog_.close();
208     yTempLog_.close();
209     zTempLog_.close();
210     }
211     #ifdef IS_MPI
212     }
213     #endif
214 gezelter 1329 }
215 skuang 1330
216 gezelter 1329 void RNEMD::doSwap() {
217 gezelter 1331
218 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
219     Mat3x3d hmat = currentSnap_->getHmat();
220    
221 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
222    
223 gezelter 1333 int selei;
224 gezelter 1331 StuntDouble* sd;
225 gezelter 1333 int idx;
226 gezelter 1331
227 skuang 1338 RealType min_val;
228     bool min_found = false;
229     StuntDouble* min_sd;
230    
231     RealType max_val;
232     bool max_found = false;
233     StuntDouble* max_sd;
234    
235 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
236     sd = seleMan_.nextSelected(selei)) {
237 gezelter 1332
238 gezelter 1333 idx = sd->getLocalIndex();
239    
240 gezelter 1331 Vector3d pos = sd->getPos();
241 gezelter 1332
242     // wrap the stuntdouble's position back into the box:
243    
244 gezelter 1331 if (usePeriodicBoundaryConditions_)
245 gezelter 1332 currentSnap_->wrapVector(pos);
246    
247     // which bin is this stuntdouble in?
248 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
249 gezelter 1332
250 skuang 1341 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
251 gezelter 1332
252 gezelter 1333
253 gezelter 1332 // if we're in bin 0 or the middleBin
254 skuang 1368 if (binNo == 0 || binNo == midBin_) {
255 gezelter 1332
256     RealType mass = sd->getMass();
257     Vector3d vel = sd->getVel();
258     RealType value;
259    
260     switch(rnemdType_) {
261 skuang 1368 case rnemdKineticSwap :
262 gezelter 1332
263     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
264     vel[2]*vel[2]);
265     if (sd->isDirectional()) {
266     Vector3d angMom = sd->getJ();
267     Mat3x3d I = sd->getI();
268    
269     if (sd->isLinear()) {
270     int i = sd->linearAxis();
271     int j = (i + 1) % 3;
272     int k = (i + 2) % 3;
273     value += angMom[j] * angMom[j] / I(j, j) +
274     angMom[k] * angMom[k] / I(k, k);
275     } else {
276     value += angMom[0]*angMom[0]/I(0, 0)
277     + angMom[1]*angMom[1]/I(1, 1)
278     + angMom[2]*angMom[2]/I(2, 2);
279     }
280     }
281 skuang 1368 //make exchangeSum_ comparable between swap & scale
282     //temporarily without using energyConvert
283 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
284 skuang 1368 value *= 0.5;
285 gezelter 1332 break;
286     case rnemdPx :
287     value = mass * vel[0];
288     break;
289     case rnemdPy :
290     value = mass * vel[1];
291     break;
292     case rnemdPz :
293     value = mass * vel[2];
294     break;
295     default :
296     break;
297     }
298    
299 skuang 1338 if (binNo == 0) {
300     if (!min_found) {
301     min_val = value;
302     min_sd = sd;
303     min_found = true;
304     } else {
305     if (min_val > value) {
306     min_val = value;
307     min_sd = sd;
308     }
309     }
310 skuang 1368 } else { //midBin_
311 skuang 1338 if (!max_found) {
312     max_val = value;
313     max_sd = sd;
314     max_found = true;
315     } else {
316     if (max_val < value) {
317     max_val = value;
318     max_sd = sd;
319     }
320     }
321     }
322 gezelter 1332 }
323 gezelter 1331 }
324 skuang 1341
325 gezelter 1350 #ifdef IS_MPI
326     int nProc, worldRank;
327 skuang 1338
328 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
329     worldRank = MPI::COMM_WORLD.Get_rank();
330    
331     bool my_min_found = min_found;
332     bool my_max_found = max_found;
333    
334     // Even if we didn't find a minimum, did someone else?
335     MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336     1, MPI::BOOL, MPI::LAND);
337    
338     // Even if we didn't find a maximum, did someone else?
339     MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
340     1, MPI::BOOL, MPI::LAND);
341    
342     struct {
343     RealType val;
344     int rank;
345     } max_vals, min_vals;
346    
347     if (min_found) {
348     if (my_min_found)
349     min_vals.val = min_val;
350     else
351     min_vals.val = HONKING_LARGE_VALUE;
352    
353     min_vals.rank = worldRank;
354    
355     // Who had the minimum?
356     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
357     1, MPI::REALTYPE_INT, MPI::MINLOC);
358     min_val = min_vals.val;
359     }
360    
361     if (max_found) {
362     if (my_max_found)
363     max_vals.val = max_val;
364     else
365     max_vals.val = -HONKING_LARGE_VALUE;
366    
367     max_vals.rank = worldRank;
368    
369     // Who had the maximum?
370     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
371     1, MPI::REALTYPE_INT, MPI::MAXLOC);
372     max_val = max_vals.val;
373     }
374     #endif
375    
376 skuang 1338 if (max_found && min_found) {
377     if (min_val< max_val) {
378 skuang 1341
379 gezelter 1350 #ifdef IS_MPI
380     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
381     // I have both maximum and minimum, so proceed like a single
382     // processor version:
383     #endif
384     // objects to be swapped: velocity & angular velocity
385     Vector3d min_vel = min_sd->getVel();
386     Vector3d max_vel = max_sd->getVel();
387     RealType temp_vel;
388    
389     switch(rnemdType_) {
390 skuang 1368 case rnemdKineticSwap :
391 gezelter 1350 min_sd->setVel(max_vel);
392     max_sd->setVel(min_vel);
393     if (min_sd->isDirectional() && max_sd->isDirectional()) {
394     Vector3d min_angMom = min_sd->getJ();
395     Vector3d max_angMom = max_sd->getJ();
396     min_sd->setJ(max_angMom);
397     max_sd->setJ(min_angMom);
398     }
399     break;
400     case rnemdPx :
401     temp_vel = min_vel.x();
402     min_vel.x() = max_vel.x();
403     max_vel.x() = temp_vel;
404     min_sd->setVel(min_vel);
405     max_sd->setVel(max_vel);
406     break;
407     case rnemdPy :
408     temp_vel = min_vel.y();
409     min_vel.y() = max_vel.y();
410     max_vel.y() = temp_vel;
411     min_sd->setVel(min_vel);
412     max_sd->setVel(max_vel);
413     break;
414     case rnemdPz :
415     temp_vel = min_vel.z();
416     min_vel.z() = max_vel.z();
417     max_vel.z() = temp_vel;
418     min_sd->setVel(min_vel);
419     max_sd->setVel(max_vel);
420     break;
421     default :
422     break;
423     }
424     #ifdef IS_MPI
425     // the rest of the cases only apply in parallel simulations:
426     } else if (max_vals.rank == worldRank) {
427     // I had the max, but not the minimum
428    
429     Vector3d min_vel;
430     Vector3d max_vel = max_sd->getVel();
431     MPI::Status status;
432 skuang 1341
433 gezelter 1350 // point-to-point swap of the velocity vector
434     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
435     min_vals.rank, 0,
436     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
437     min_vals.rank, 0, status);
438    
439     switch(rnemdType_) {
440 skuang 1368 case rnemdKineticSwap :
441 gezelter 1350 max_sd->setVel(min_vel);
442    
443     if (max_sd->isDirectional()) {
444     Vector3d min_angMom;
445     Vector3d max_angMom = max_sd->getJ();
446 skuang 1341
447 gezelter 1350 // point-to-point swap of the angular momentum vector
448     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
449     MPI::REALTYPE, min_vals.rank, 1,
450     min_angMom.getArrayPointer(), 3,
451     MPI::REALTYPE, min_vals.rank, 1,
452     status);
453    
454     max_sd->setJ(min_angMom);
455     }
456     break;
457     case rnemdPx :
458     max_vel.x() = min_vel.x();
459     max_sd->setVel(max_vel);
460     break;
461     case rnemdPy :
462     max_vel.y() = min_vel.y();
463     max_sd->setVel(max_vel);
464     break;
465     case rnemdPz :
466     max_vel.z() = min_vel.z();
467     max_sd->setVel(max_vel);
468     break;
469     default :
470     break;
471 skuang 1341 }
472 gezelter 1350 } else if (min_vals.rank == worldRank) {
473     // I had the minimum but not the maximum:
474    
475     Vector3d max_vel;
476     Vector3d min_vel = min_sd->getVel();
477     MPI::Status status;
478    
479     // point-to-point swap of the velocity vector
480     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
481     max_vals.rank, 0,
482     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
483     max_vals.rank, 0, status);
484    
485     switch(rnemdType_) {
486 skuang 1368 case rnemdKineticSwap :
487 gezelter 1350 min_sd->setVel(max_vel);
488    
489     if (min_sd->isDirectional()) {
490     Vector3d min_angMom = min_sd->getJ();
491     Vector3d max_angMom;
492    
493     // point-to-point swap of the angular momentum vector
494     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
495     MPI::REALTYPE, max_vals.rank, 1,
496     max_angMom.getArrayPointer(), 3,
497     MPI::REALTYPE, max_vals.rank, 1,
498     status);
499    
500     min_sd->setJ(max_angMom);
501     }
502     break;
503     case rnemdPx :
504     min_vel.x() = max_vel.x();
505     min_sd->setVel(min_vel);
506     break;
507     case rnemdPy :
508     min_vel.y() = max_vel.y();
509     min_sd->setVel(min_vel);
510     break;
511     case rnemdPz :
512     min_vel.z() = max_vel.z();
513     min_sd->setVel(min_vel);
514     break;
515     default :
516     break;
517     }
518     }
519     #endif
520     exchangeSum_ += max_val - min_val;
521 skuang 1338 } else {
522 skuang 1368 std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
523     failTrialCount_++;
524 skuang 1338 }
525     } else {
526 skuang 1368 std::cerr << "exchange NOT performed!\n";
527     std::cerr << "at least one of the two slabs empty.\n";
528     failTrialCount_++;
529 skuang 1338 }
530 gezelter 1350
531 skuang 1338 }
532 gezelter 1350
533 skuang 1368 void RNEMD::doScale() {
534 skuang 1338
535     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
536     Mat3x3d hmat = currentSnap_->getHmat();
537    
538     seleMan_.setSelectionSet(evaluator_.evaluate());
539    
540     int selei;
541     StuntDouble* sd;
542     int idx;
543    
544 skuang 1368 std::vector<StuntDouble*> hotBin, coldBin;
545 gezelter 1350
546 skuang 1368 RealType Phx = 0.0;
547     RealType Phy = 0.0;
548     RealType Phz = 0.0;
549     RealType Khx = 0.0;
550     RealType Khy = 0.0;
551     RealType Khz = 0.0;
552     RealType Pcx = 0.0;
553     RealType Pcy = 0.0;
554     RealType Pcz = 0.0;
555     RealType Kcx = 0.0;
556     RealType Kcy = 0.0;
557     RealType Kcz = 0.0;
558    
559 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
560     sd = seleMan_.nextSelected(selei)) {
561 skuang 1368
562     idx = sd->getLocalIndex();
563    
564     Vector3d pos = sd->getPos();
565    
566     // wrap the stuntdouble's position back into the box:
567    
568     if (usePeriodicBoundaryConditions_)
569     currentSnap_->wrapVector(pos);
570    
571     // which bin is this stuntdouble in?
572     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
573    
574     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
575    
576     // if we're in bin 0 or the middleBin
577     if (binNo == 0 || binNo == midBin_) {
578    
579     RealType mass = sd->getMass();
580     Vector3d vel = sd->getVel();
581    
582     if (binNo == 0) {
583     hotBin.push_back(sd);
584     Phx += mass * vel.x();
585     Phy += mass * vel.y();
586     Phz += mass * vel.z();
587     Khx += mass * vel.x() * vel.x();
588     Khy += mass * vel.y() * vel.y();
589     Khz += mass * vel.z() * vel.z();
590     } else { //midBin_
591     coldBin.push_back(sd);
592     Pcx += mass * vel.x();
593     Pcy += mass * vel.y();
594     Pcz += mass * vel.z();
595     Kcx += mass * vel.x() * vel.x();
596     Kcy += mass * vel.y() * vel.y();
597     Kcz += mass * vel.z() * vel.z();
598     }
599     }
600     }
601    
602     Khx *= 0.5;
603     Khy *= 0.5;
604     Khz *= 0.5;
605     Kcx *= 0.5;
606     Kcy *= 0.5;
607     Kcz *= 0.5;
608    
609     #ifdef IS_MPI
610     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
611     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
612     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
613     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
614     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
615     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
616    
617     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
618     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
619     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
620     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
621     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
622     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
623     #endif
624    
625     //use coldBin coeff's
626     RealType px = Pcx / Phx;
627     RealType py = Pcy / Phy;
628     RealType pz = Pcz / Phz;
629    
630     RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
631     switch(rnemdType_) {
632     case rnemdKineticScale :
633     /*used hotBin coeff's & only scale x & y dimensions
634     RealType px = Phx / Pcx;
635     RealType py = Phy / Pcy;
636     a110 = Khy;
637     c0 = - Khx - Khy - targetFlux_;
638     a000 = Khx;
639     a111 = Kcy * py * py
640     b11 = -2.0 * Kcy * py * (1.0 + py);
641     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642     b01 = -2.0 * Kcx * px * (1.0 + px);
643     a001 = Kcx * px * px;
644     */
645    
646 gezelter 1396 //scale all three dimensions, let c_x = c_y
647 skuang 1368 a000 = Kcx + Kcy;
648     a110 = Kcz;
649     c0 = targetFlux_ - Kcx - Kcy - Kcz;
650     a001 = Khx * px * px + Khy * py * py;
651     a111 = Khz * pz * pz;
652     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
653     b11 = -2.0 * Khz * pz * (1.0 + pz);
654     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
655     + Khz * pz * (2.0 + pz) - targetFlux_;
656     break;
657     case rnemdPxScale :
658     c = 1 - targetFlux_ / Pcx;
659     a000 = Kcy;
660     a110 = Kcz;
661     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
662     a001 = py * py * Khy;
663     a111 = pz * pz * Khz;
664     b01 = -2.0 * Khy * py * (1.0 + py);
665     b11 = -2.0 * Khz * pz * (1.0 + pz);
666     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
667     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
668     break;
669     case rnemdPyScale :
670     c = 1 - targetFlux_ / Pcy;
671     a000 = Kcx;
672     a110 = Kcz;
673     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
674     a001 = px * px * Khx;
675     a111 = pz * pz * Khz;
676     b01 = -2.0 * Khx * px * (1.0 + px);
677     b11 = -2.0 * Khz * pz * (1.0 + pz);
678     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
679     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
680     break;
681     case rnemdPzScale ://we don't really do this, do we?
682 gezelter 1396 c = 1 - targetFlux_ / Pcz;
683     a000 = Kcx;
684     a110 = Kcy;
685     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
686     a001 = px * px * Khx;
687     a111 = py * py * Khy;
688     b01 = -2.0 * Khx * px * (1.0 + px);
689     b11 = -2.0 * Khy * py * (1.0 + py);
690     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
691     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
692     break;
693 skuang 1368 default :
694     break;
695     }
696    
697     RealType v1 = a000 * a111 - a001 * a110;
698     RealType v2 = a000 * b01;
699     RealType v3 = a000 * b11;
700     RealType v4 = a000 * c1 - a001 * c0;
701     RealType v8 = a110 * b01;
702     RealType v10 = - b01 * c0;
703    
704     RealType u0 = v2 * v10 - v4 * v4;
705     RealType u1 = -2.0 * v3 * v4;
706     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
707     RealType u3 = -2.0 * v1 * v3;
708     RealType u4 = - v1 * v1;
709     //rescale coefficients
710     RealType maxAbs = fabs(u0);
711     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
712     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
713     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
714     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
715     u0 /= maxAbs;
716     u1 /= maxAbs;
717     u2 /= maxAbs;
718     u3 /= maxAbs;
719     u4 /= maxAbs;
720     //max_element(start, end) is also available.
721     Polynomial<RealType> poly; //same as DoublePolynomial poly;
722     poly.setCoefficient(4, u4);
723     poly.setCoefficient(3, u3);
724     poly.setCoefficient(2, u2);
725     poly.setCoefficient(1, u1);
726     poly.setCoefficient(0, u0);
727     std::vector<RealType> realRoots = poly.FindRealRoots();
728    
729     std::vector<RealType>::iterator ri;
730     RealType r1, r2, alpha0;
731     std::vector<std::pair<RealType,RealType> > rps;
732     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
733     r2 = *ri;
734     //check if FindRealRoots() give the right answer
735     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
736 gezelter 1396 sprintf(painCave.errMsg,
737     "RNEMD Warning: polynomial solve seems to have an error!");
738     painCave.isFatal = 0;
739     simError();
740 skuang 1368 failRootCount_++;
741     }
742     //might not be useful w/o rescaling coefficients
743     alpha0 = -c0 - a110 * r2 * r2;
744     if (alpha0 >= 0.0) {
745     r1 = sqrt(alpha0 / a000);
746     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
747     { rps.push_back(std::make_pair(r1, r2)); }
748     if (r1 > 1e-6) { //r1 non-negative
749     r1 = -r1;
750     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
751     { rps.push_back(std::make_pair(r1, r2)); }
752     }
753     }
754     }
755     // Consider combininig together the solving pair part w/ the searching
756     // best solution part so that we don't need the pairs vector
757     if (!rps.empty()) {
758     RealType smallestDiff = HONKING_LARGE_VALUE;
759     RealType diff;
760     std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
761     std::vector<std::pair<RealType,RealType> >::iterator rpi;
762     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
763     r1 = (*rpi).first;
764     r2 = (*rpi).second;
765     switch(rnemdType_) {
766     case rnemdKineticScale :
767     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
768     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
769     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
770     break;
771     case rnemdPxScale :
772     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
773     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
774     break;
775     case rnemdPyScale :
776     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
777     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
778     break;
779     case rnemdPzScale :
780     default :
781     break;
782     }
783     if (diff < smallestDiff) {
784     smallestDiff = diff;
785     bestPair = *rpi;
786     }
787     }
788     #ifdef IS_MPI
789     if (worldRank == 0) {
790     #endif
791     std::cerr << "we choose r1 = " << bestPair.first
792     << " and r2 = " << bestPair.second << "\n";
793     #ifdef IS_MPI
794     }
795     #endif
796    
797     RealType x, y, z;
798     switch(rnemdType_) {
799     case rnemdKineticScale :
800     x = bestPair.first;
801     y = bestPair.first;
802     z = bestPair.second;
803     break;
804     case rnemdPxScale :
805     x = c;
806     y = bestPair.first;
807     z = bestPair.second;
808     break;
809     case rnemdPyScale :
810     x = bestPair.first;
811     y = c;
812     z = bestPair.second;
813     break;
814     case rnemdPzScale :
815 gezelter 1396 x = bestPair.first;
816     y = bestPair.second;
817     z = c;
818     break;
819 skuang 1368 default :
820     break;
821     }
822     std::vector<StuntDouble*>::iterator sdi;
823     Vector3d vel;
824     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
825     vel = (*sdi)->getVel();
826     vel.x() *= x;
827     vel.y() *= y;
828     vel.z() *= z;
829     (*sdi)->setVel(vel);
830     }
831     //convert to hotBin coefficient
832     x = 1.0 + px * (1.0 - x);
833     y = 1.0 + py * (1.0 - y);
834     z = 1.0 + pz * (1.0 - z);
835     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
836     vel = (*sdi)->getVel();
837     vel.x() *= x;
838     vel.y() *= y;
839     vel.z() *= z;
840     (*sdi)->setVel(vel);
841     }
842     exchangeSum_ += targetFlux_;
843     //we may want to check whether the exchange has been successful
844     } else {
845 gezelter 1396 std::cerr << "exchange NOT performed!\n";//MPI incompatible
846 skuang 1368 failTrialCount_++;
847     }
848    
849     }
850    
851     void RNEMD::doRNEMD() {
852    
853     switch(rnemdType_) {
854     case rnemdKineticScale :
855     case rnemdPxScale :
856     case rnemdPyScale :
857     case rnemdPzScale :
858     doScale();
859     break;
860     case rnemdKineticSwap :
861     case rnemdPx :
862     case rnemdPy :
863     case rnemdPz :
864     doSwap();
865     break;
866     case rnemdUnknown :
867     default :
868     break;
869     }
870     }
871    
872     void RNEMD::collectData() {
873    
874     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
875     Mat3x3d hmat = currentSnap_->getHmat();
876    
877     seleMan_.setSelectionSet(evaluator_.evaluate());
878    
879     int selei;
880     StuntDouble* sd;
881     int idx;
882    
883     for (sd = seleMan_.beginSelected(selei); sd != NULL;
884     sd = seleMan_.nextSelected(selei)) {
885 skuang 1338
886     idx = sd->getLocalIndex();
887    
888     Vector3d pos = sd->getPos();
889    
890     // wrap the stuntdouble's position back into the box:
891    
892     if (usePeriodicBoundaryConditions_)
893     currentSnap_->wrapVector(pos);
894    
895     // which bin is this stuntdouble in?
896     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
897    
898 skuang 1368 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
899    
900     if (rnemdLogWidth_ == midBin_ + 1)
901     if (binNo > midBin_)
902     binNo = nBins_ - binNo;
903    
904 skuang 1338 RealType mass = sd->getMass();
905     Vector3d vel = sd->getVel();
906     RealType value;
907 skuang 1368 RealType xVal, yVal, zVal;
908 skuang 1338
909     switch(rnemdType_) {
910 skuang 1368 case rnemdKineticSwap :
911     case rnemdKineticScale :
912 skuang 1338
913     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
914     vel[2]*vel[2]);
915    
916 skuang 1368 valueCount_[binNo] += 3;
917 skuang 1338 if (sd->isDirectional()) {
918     Vector3d angMom = sd->getJ();
919     Mat3x3d I = sd->getI();
920    
921     if (sd->isLinear()) {
922     int i = sd->linearAxis();
923     int j = (i + 1) % 3;
924     int k = (i + 2) % 3;
925     value += angMom[j] * angMom[j] / I(j, j) +
926     angMom[k] * angMom[k] / I(k, k);
927 gezelter 1339
928 skuang 1368 valueCount_[binNo] +=2;
929 gezelter 1339
930 skuang 1341 } else {
931 skuang 1338 value += angMom[0]*angMom[0]/I(0, 0)
932     + angMom[1]*angMom[1]/I(1, 1)
933     + angMom[2]*angMom[2]/I(2, 2);
934 skuang 1368 valueCount_[binNo] +=3;
935 skuang 1338 }
936     }
937 gezelter 1390 value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
938 gezelter 1350
939 skuang 1338 break;
940     case rnemdPx :
941 skuang 1368 case rnemdPxScale :
942 skuang 1338 value = mass * vel[0];
943 skuang 1368 valueCount_[binNo]++;
944 gezelter 1390 xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
945     / PhysicalConstants::kb;
946     yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
947     / PhysicalConstants::kb;
948     zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
949     / PhysicalConstants::kb;
950 skuang 1368 xTempHist_[binNo] += xVal;
951     yTempHist_[binNo] += yVal;
952     zTempHist_[binNo] += zVal;
953 skuang 1338 break;
954     case rnemdPy :
955 skuang 1368 case rnemdPyScale :
956 skuang 1338 value = mass * vel[1];
957 skuang 1368 valueCount_[binNo]++;
958 skuang 1338 break;
959     case rnemdPz :
960 skuang 1368 case rnemdPzScale :
961 skuang 1338 value = mass * vel[2];
962 skuang 1368 valueCount_[binNo]++;
963 skuang 1338 break;
964     case rnemdUnknown :
965     default :
966     break;
967     }
968 skuang 1368 valueHist_[binNo] += value;
969 skuang 1338 }
970 gezelter 1350
971 skuang 1368 }
972    
973     void RNEMD::getStarted() {
974     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
975     Stats& stat = currentSnap_->statData;
976     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
977     }
978    
979     void RNEMD::getStatus() {
980    
981     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
982     Stats& stat = currentSnap_->statData;
983     RealType time = currentSnap_->getTime();
984    
985     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
986     //or to be more meaningful, define another item as exchangeSum_ / time
987 gezelter 1396 int j;
988 skuang 1368
989 gezelter 1350 #ifdef IS_MPI
990    
991     // all processors have the same number of bins, and STL vectors pack their
992     // arrays, so in theory, this should be safe:
993    
994 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997     rnemdLogWidth_, MPI::INT, MPI::SUM);
998 gezelter 1396 if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005     }
1006 gezelter 1350 // If we're the root node, should we print out the results
1007     int worldRank = MPI::COMM_WORLD.Get_rank();
1008     if (worldRank == 0) {
1009     #endif
1010 skuang 1368 rnemdLog_ << time;
1011     for (j = 0; j < rnemdLogWidth_; j++) {
1012     rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1013     }
1014     rnemdLog_ << "\n";
1015     if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1016     xTempLog_ << time;
1017     for (j = 0; j < rnemdLogWidth_; j++) {
1018     xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1019     }
1020     xTempLog_ << "\n";
1021     yTempLog_ << time;
1022     for (j = 0; j < rnemdLogWidth_; j++) {
1023     yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1024     }
1025     yTempLog_ << "\n";
1026     zTempLog_ << time;
1027     for (j = 0; j < rnemdLogWidth_; j++) {
1028     zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1029     }
1030     zTempLog_ << "\n";
1031     }
1032 gezelter 1350 #ifdef IS_MPI
1033 gezelter 1396 }
1034 gezelter 1350 #endif
1035 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1036     valueCount_[j] = 0;
1037     valueHist_[j] = 0.0;
1038     }
1039     if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1040     for (j = 0; j < rnemdLogWidth_; j++) {
1041     xTempHist_[j] = 0.0;
1042     yTempHist_[j] = 0.0;
1043     zTempHist_[j] = 0.0;
1044     }
1045 gezelter 1334 }
1046 skuang 1338 }

Properties

Name Value
svn:keywords Author Id Revision Date