1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include <algorithm> |
43 |
#include <math.h> |
44 |
#include "primitives/RigidBody.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "utils/NumericConstant.hpp" |
47 |
namespace OpenMD { |
48 |
|
49 |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), |
50 |
inertiaTensor_(0.0){ |
51 |
} |
52 |
|
53 |
void RigidBody::setPrevA(const RotMat3x3d& a) { |
54 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
55 |
|
56 |
for (unsigned int i = 0 ; i < atoms_.size(); ++i){ |
57 |
if (atoms_[i]->isDirectional()) { |
58 |
atoms_[i]->setPrevA(refOrients_[i].transpose() * a); |
59 |
} |
60 |
} |
61 |
|
62 |
} |
63 |
|
64 |
|
65 |
void RigidBody::setA(const RotMat3x3d& a) { |
66 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
67 |
|
68 |
for (unsigned int i = 0 ; i < atoms_.size(); ++i){ |
69 |
if (atoms_[i]->isDirectional()) { |
70 |
atoms_[i]->setA(refOrients_[i].transpose() * a); |
71 |
} |
72 |
} |
73 |
} |
74 |
|
75 |
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
76 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
77 |
|
78 |
for (unsigned int i = 0 ; i < atoms_.size(); ++i){ |
79 |
if (atoms_[i]->isDirectional()) { |
80 |
atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); |
81 |
} |
82 |
} |
83 |
|
84 |
} |
85 |
|
86 |
Mat3x3d RigidBody::getI() { |
87 |
return inertiaTensor_; |
88 |
} |
89 |
|
90 |
std::vector<RealType> RigidBody::getGrad() { |
91 |
std::vector<RealType> grad(6, 0.0); |
92 |
Vector3d force; |
93 |
Vector3d torque; |
94 |
Vector3d myEuler; |
95 |
RealType phi, theta; |
96 |
// RealType psi; |
97 |
RealType cphi, sphi, ctheta, stheta; |
98 |
Vector3d ephi; |
99 |
Vector3d etheta; |
100 |
Vector3d epsi; |
101 |
|
102 |
force = getFrc(); |
103 |
torque =getTrq(); |
104 |
myEuler = getA().toEulerAngles(); |
105 |
|
106 |
phi = myEuler[0]; |
107 |
theta = myEuler[1]; |
108 |
// psi = myEuler[2]; |
109 |
|
110 |
cphi = cos(phi); |
111 |
sphi = sin(phi); |
112 |
ctheta = cos(theta); |
113 |
stheta = sin(theta); |
114 |
|
115 |
// get unit vectors along the phi, theta and psi rotation axes |
116 |
|
117 |
ephi[0] = 0.0; |
118 |
ephi[1] = 0.0; |
119 |
ephi[2] = 1.0; |
120 |
|
121 |
//etheta[0] = -sphi; |
122 |
//etheta[1] = cphi; |
123 |
//etheta[2] = 0.0; |
124 |
|
125 |
etheta[0] = cphi; |
126 |
etheta[1] = sphi; |
127 |
etheta[2] = 0.0; |
128 |
|
129 |
epsi[0] = stheta * cphi; |
130 |
epsi[1] = stheta * sphi; |
131 |
epsi[2] = ctheta; |
132 |
|
133 |
//gradient is equal to -force |
134 |
for (int j = 0 ; j<3; j++) |
135 |
grad[j] = -force[j]; |
136 |
|
137 |
for (int j = 0; j < 3; j++ ) { |
138 |
|
139 |
grad[3] += torque[j]*ephi[j]; |
140 |
grad[4] += torque[j]*etheta[j]; |
141 |
grad[5] += torque[j]*epsi[j]; |
142 |
|
143 |
} |
144 |
|
145 |
return grad; |
146 |
} |
147 |
|
148 |
void RigidBody::accept(BaseVisitor* v) { |
149 |
v->visit(this); |
150 |
} |
151 |
|
152 |
/**@todo need modification */ |
153 |
void RigidBody::calcRefCoords() { |
154 |
RealType mtmp; |
155 |
Vector3d refCOM(0.0); |
156 |
mass_ = 0.0; |
157 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
158 |
mtmp = atoms_[i]->getMass(); |
159 |
mass_ += mtmp; |
160 |
refCOM += refCoords_[i]*mtmp; |
161 |
} |
162 |
refCOM /= mass_; |
163 |
|
164 |
// Next, move the origin of the reference coordinate system to the COM: |
165 |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
166 |
refCoords_[i] -= refCOM; |
167 |
} |
168 |
|
169 |
// Moment of Inertia calculation |
170 |
Mat3x3d Itmp(0.0); |
171 |
for (std::size_t i = 0; i < atoms_.size(); i++) { |
172 |
Mat3x3d IAtom(0.0); |
173 |
mtmp = atoms_[i]->getMass(); |
174 |
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
175 |
RealType r2 = refCoords_[i].lengthSquare(); |
176 |
IAtom(0, 0) += mtmp * r2; |
177 |
IAtom(1, 1) += mtmp * r2; |
178 |
IAtom(2, 2) += mtmp * r2; |
179 |
Itmp += IAtom; |
180 |
|
181 |
//project the inertial moment of directional atoms into this rigid body |
182 |
if (atoms_[i]->isDirectional()) { |
183 |
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
184 |
} |
185 |
} |
186 |
|
187 |
// std::cout << Itmp << std::endl; |
188 |
|
189 |
//diagonalize |
190 |
Vector3d evals; |
191 |
Mat3x3d::diagonalize(Itmp, evals, sU_); |
192 |
|
193 |
// zero out I and then fill the diagonals with the moments of inertia: |
194 |
inertiaTensor_(0, 0) = evals[0]; |
195 |
inertiaTensor_(1, 1) = evals[1]; |
196 |
inertiaTensor_(2, 2) = evals[2]; |
197 |
|
198 |
int nLinearAxis = 0; |
199 |
for (int i = 0; i < 3; i++) { |
200 |
if (fabs(evals[i]) < OpenMD::epsilon) { |
201 |
linear_ = true; |
202 |
linearAxis_ = i; |
203 |
++ nLinearAxis; |
204 |
} |
205 |
} |
206 |
|
207 |
if (nLinearAxis > 1) { |
208 |
sprintf( painCave.errMsg, |
209 |
"RigidBody error.\n" |
210 |
"\tOpenMD found more than one axis in this rigid body with a vanishing \n" |
211 |
"\tmoment of inertia. This can happen in one of three ways:\n" |
212 |
"\t 1) Only one atom was specified, or \n" |
213 |
"\t 2) All atoms were specified at the same location, or\n" |
214 |
"\t 3) The programmers did something stupid.\n" |
215 |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
216 |
); |
217 |
painCave.isFatal = 1; |
218 |
simError(); |
219 |
} |
220 |
|
221 |
} |
222 |
|
223 |
void RigidBody::calcForcesAndTorques() { |
224 |
Vector3d afrc; |
225 |
Vector3d atrq; |
226 |
Vector3d apos; |
227 |
Vector3d rpos; |
228 |
Vector3d frc(0.0); |
229 |
Vector3d trq(0.0); |
230 |
Vector3d ef(0.0); |
231 |
Vector3d pos = this->getPos(); |
232 |
AtomType* atype; |
233 |
int eCount = 0; |
234 |
|
235 |
int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); |
236 |
|
237 |
for (unsigned int i = 0; i < atoms_.size(); i++) { |
238 |
|
239 |
atype = atoms_[i]->getAtomType(); |
240 |
|
241 |
afrc = atoms_[i]->getFrc(); |
242 |
apos = atoms_[i]->getPos(); |
243 |
rpos = apos - pos; |
244 |
|
245 |
frc += afrc; |
246 |
|
247 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
248 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
249 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
250 |
|
251 |
// If the atom has a torque associated with it, then we also need to |
252 |
// migrate the torques onto the center of mass: |
253 |
|
254 |
if (atoms_[i]->isDirectional()) { |
255 |
atrq = atoms_[i]->getTrq(); |
256 |
trq += atrq; |
257 |
} |
258 |
|
259 |
if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { |
260 |
ef += atoms_[i]->getElectricField(); |
261 |
eCount++; |
262 |
} |
263 |
} |
264 |
addFrc(frc); |
265 |
addTrq(trq); |
266 |
|
267 |
if (sl & DataStorage::dslElectricField) { |
268 |
ef /= eCount; |
269 |
setElectricField(ef); |
270 |
} |
271 |
|
272 |
} |
273 |
|
274 |
Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { |
275 |
Vector3d afrc; |
276 |
Vector3d atrq; |
277 |
Vector3d apos; |
278 |
Vector3d rpos; |
279 |
Vector3d dfrc; |
280 |
Vector3d frc(0.0); |
281 |
Vector3d trq(0.0); |
282 |
Vector3d ef(0.0); |
283 |
AtomType* atype; |
284 |
int eCount = 0; |
285 |
|
286 |
Vector3d pos = this->getPos(); |
287 |
Mat3x3d tau_(0.0); |
288 |
|
289 |
int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); |
290 |
|
291 |
for (unsigned int i = 0; i < atoms_.size(); i++) { |
292 |
|
293 |
afrc = atoms_[i]->getFrc(); |
294 |
apos = atoms_[i]->getPos(); |
295 |
rpos = apos - pos; |
296 |
|
297 |
frc += afrc; |
298 |
|
299 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
300 |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
301 |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
302 |
|
303 |
// If the atom has a torque associated with it, then we also need to |
304 |
// migrate the torques onto the center of mass: |
305 |
|
306 |
if (atoms_[i]->isDirectional()) { |
307 |
atrq = atoms_[i]->getTrq(); |
308 |
trq += atrq; |
309 |
} |
310 |
if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { |
311 |
ef += atoms_[i]->getElectricField(); |
312 |
eCount++; |
313 |
} |
314 |
|
315 |
tau_(0,0) -= rpos[0]*afrc[0]; |
316 |
tau_(0,1) -= rpos[0]*afrc[1]; |
317 |
tau_(0,2) -= rpos[0]*afrc[2]; |
318 |
tau_(1,0) -= rpos[1]*afrc[0]; |
319 |
tau_(1,1) -= rpos[1]*afrc[1]; |
320 |
tau_(1,2) -= rpos[1]*afrc[2]; |
321 |
tau_(2,0) -= rpos[2]*afrc[0]; |
322 |
tau_(2,1) -= rpos[2]*afrc[1]; |
323 |
tau_(2,2) -= rpos[2]*afrc[2]; |
324 |
|
325 |
} |
326 |
addFrc(frc); |
327 |
addTrq(trq); |
328 |
|
329 |
if (sl & DataStorage::dslElectricField) { |
330 |
ef /= eCount; |
331 |
setElectricField(ef); |
332 |
} |
333 |
|
334 |
return tau_; |
335 |
} |
336 |
|
337 |
void RigidBody::updateAtoms() { |
338 |
unsigned int i; |
339 |
Vector3d ref; |
340 |
Vector3d apos; |
341 |
DirectionalAtom* dAtom; |
342 |
Vector3d pos = getPos(); |
343 |
RotMat3x3d a = getA(); |
344 |
|
345 |
for (i = 0; i < atoms_.size(); i++) { |
346 |
|
347 |
ref = body2Lab(refCoords_[i]); |
348 |
|
349 |
apos = pos + ref; |
350 |
|
351 |
atoms_[i]->setPos(apos); |
352 |
|
353 |
if (atoms_[i]->isDirectional()) { |
354 |
|
355 |
dAtom = (DirectionalAtom *) atoms_[i]; |
356 |
dAtom->setA(refOrients_[i].transpose() * a); |
357 |
} |
358 |
|
359 |
} |
360 |
|
361 |
} |
362 |
|
363 |
|
364 |
void RigidBody::updateAtoms(int frame) { |
365 |
unsigned int i; |
366 |
Vector3d ref; |
367 |
Vector3d apos; |
368 |
DirectionalAtom* dAtom; |
369 |
Vector3d pos = getPos(frame); |
370 |
RotMat3x3d a = getA(frame); |
371 |
|
372 |
for (i = 0; i < atoms_.size(); i++) { |
373 |
|
374 |
ref = body2Lab(refCoords_[i], frame); |
375 |
|
376 |
apos = pos + ref; |
377 |
|
378 |
atoms_[i]->setPos(apos, frame); |
379 |
|
380 |
if (atoms_[i]->isDirectional()) { |
381 |
|
382 |
dAtom = (DirectionalAtom *) atoms_[i]; |
383 |
dAtom->setA(refOrients_[i].transpose() * a, frame); |
384 |
} |
385 |
|
386 |
} |
387 |
|
388 |
} |
389 |
|
390 |
void RigidBody::updateAtomVel() { |
391 |
Mat3x3d skewMat;; |
392 |
|
393 |
Vector3d ji = getJ(); |
394 |
Mat3x3d I = getI(); |
395 |
|
396 |
skewMat(0, 0) =0; |
397 |
skewMat(0, 1) = ji[2] /I(2, 2); |
398 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
399 |
|
400 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
401 |
skewMat(1, 1) = 0; |
402 |
skewMat(1, 2) = ji[0]/I(0, 0); |
403 |
|
404 |
skewMat(2, 0) =ji[1] /I(1, 1); |
405 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
406 |
skewMat(2, 2) = 0; |
407 |
|
408 |
Mat3x3d mat = (getA() * skewMat).transpose(); |
409 |
Vector3d rbVel = getVel(); |
410 |
|
411 |
|
412 |
Vector3d velRot; |
413 |
for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { |
414 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i]); |
415 |
} |
416 |
|
417 |
} |
418 |
|
419 |
void RigidBody::updateAtomVel(int frame) { |
420 |
Mat3x3d skewMat;; |
421 |
|
422 |
Vector3d ji = getJ(frame); |
423 |
Mat3x3d I = getI(); |
424 |
|
425 |
skewMat(0, 0) =0; |
426 |
skewMat(0, 1) = ji[2] /I(2, 2); |
427 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
428 |
|
429 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
430 |
skewMat(1, 1) = 0; |
431 |
skewMat(1, 2) = ji[0]/I(0, 0); |
432 |
|
433 |
skewMat(2, 0) =ji[1] /I(1, 1); |
434 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
435 |
skewMat(2, 2) = 0; |
436 |
|
437 |
Mat3x3d mat = (getA(frame) * skewMat).transpose(); |
438 |
Vector3d rbVel = getVel(frame); |
439 |
|
440 |
|
441 |
Vector3d velRot; |
442 |
for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { |
443 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); |
444 |
} |
445 |
|
446 |
} |
447 |
|
448 |
|
449 |
|
450 |
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { |
451 |
if (index < atoms_.size()) { |
452 |
|
453 |
Vector3d ref = body2Lab(refCoords_[index]); |
454 |
pos = getPos() + ref; |
455 |
return true; |
456 |
} else { |
457 |
std::cerr << index << " is an invalid index, current rigid body contains " |
458 |
<< atoms_.size() << "atoms" << std::endl; |
459 |
return false; |
460 |
} |
461 |
} |
462 |
|
463 |
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { |
464 |
std::vector<Atom*>::iterator i; |
465 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
466 |
if (i != atoms_.end()) { |
467 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
468 |
Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); |
469 |
pos = getPos() + ref; |
470 |
return true; |
471 |
} else { |
472 |
std::cerr << "Atom " << atom->getGlobalIndex() |
473 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
474 |
return false; |
475 |
} |
476 |
} |
477 |
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { |
478 |
|
479 |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
480 |
|
481 |
if (index < atoms_.size()) { |
482 |
|
483 |
Vector3d velRot; |
484 |
Mat3x3d skewMat;; |
485 |
Vector3d ref = refCoords_[index]; |
486 |
Vector3d ji = getJ(); |
487 |
Mat3x3d I = getI(); |
488 |
|
489 |
skewMat(0, 0) =0; |
490 |
skewMat(0, 1) = ji[2] /I(2, 2); |
491 |
skewMat(0, 2) = -ji[1] /I(1, 1); |
492 |
|
493 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
494 |
skewMat(1, 1) = 0; |
495 |
skewMat(1, 2) = ji[0]/I(0, 0); |
496 |
|
497 |
skewMat(2, 0) =ji[1] /I(1, 1); |
498 |
skewMat(2, 1) = -ji[0]/I(0, 0); |
499 |
skewMat(2, 2) = 0; |
500 |
|
501 |
velRot = (getA() * skewMat).transpose() * ref; |
502 |
|
503 |
vel =getVel() + velRot; |
504 |
return true; |
505 |
|
506 |
} else { |
507 |
std::cerr << index << " is an invalid index, current rigid body contains " |
508 |
<< atoms_.size() << "atoms" << std::endl; |
509 |
return false; |
510 |
} |
511 |
} |
512 |
|
513 |
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { |
514 |
|
515 |
std::vector<Atom*>::iterator i; |
516 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
517 |
if (i != atoms_.end()) { |
518 |
return getAtomVel(vel, i - atoms_.begin()); |
519 |
} else { |
520 |
std::cerr << "Atom " << atom->getGlobalIndex() |
521 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
522 |
return false; |
523 |
} |
524 |
} |
525 |
|
526 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { |
527 |
if (index < atoms_.size()) { |
528 |
|
529 |
coor = refCoords_[index]; |
530 |
return true; |
531 |
} else { |
532 |
std::cerr << index << " is an invalid index, current rigid body contains " |
533 |
<< atoms_.size() << "atoms" << std::endl; |
534 |
return false; |
535 |
} |
536 |
|
537 |
} |
538 |
|
539 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { |
540 |
std::vector<Atom*>::iterator i; |
541 |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
542 |
if (i != atoms_.end()) { |
543 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
544 |
coor = refCoords_[i - atoms_.begin()]; |
545 |
return true; |
546 |
} else { |
547 |
std::cerr << "Atom " << atom->getGlobalIndex() |
548 |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
549 |
return false; |
550 |
} |
551 |
|
552 |
} |
553 |
|
554 |
|
555 |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
556 |
|
557 |
Vector3d coords; |
558 |
Vector3d euler; |
559 |
|
560 |
|
561 |
atoms_.push_back(at); |
562 |
|
563 |
if( !ats->havePosition() ){ |
564 |
sprintf( painCave.errMsg, |
565 |
"RigidBody error.\n" |
566 |
"\tAtom %s does not have a position specified.\n" |
567 |
"\tThis means RigidBody cannot set up reference coordinates.\n", |
568 |
ats->getType().c_str() ); |
569 |
painCave.isFatal = 1; |
570 |
simError(); |
571 |
} |
572 |
|
573 |
coords[0] = ats->getPosX(); |
574 |
coords[1] = ats->getPosY(); |
575 |
coords[2] = ats->getPosZ(); |
576 |
|
577 |
refCoords_.push_back(coords); |
578 |
|
579 |
RotMat3x3d identMat = RotMat3x3d::identity(); |
580 |
|
581 |
if (at->isDirectional()) { |
582 |
|
583 |
if( !ats->haveOrientation() ){ |
584 |
sprintf( painCave.errMsg, |
585 |
"RigidBody error.\n" |
586 |
"\tAtom %s does not have an orientation specified.\n" |
587 |
"\tThis means RigidBody cannot set up reference orientations.\n", |
588 |
ats->getType().c_str() ); |
589 |
painCave.isFatal = 1; |
590 |
simError(); |
591 |
} |
592 |
|
593 |
euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; |
594 |
euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; |
595 |
euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; |
596 |
|
597 |
RotMat3x3d Atmp(euler); |
598 |
refOrients_.push_back(Atmp); |
599 |
|
600 |
}else { |
601 |
refOrients_.push_back(identMat); |
602 |
} |
603 |
|
604 |
|
605 |
} |
606 |
|
607 |
} |
608 |
|