ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/primitives/RigidBody.cpp
(Generate patch)

Comparing trunk/src/primitives/RigidBody.cpp (file contents):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 882 by gezelter, Thu Feb 2 16:49:16 2006 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Acknowledgement of the program authors must be made in any
10 + *    publication of scientific results based in part on use of the
11 + *    program.  An acceptable form of acknowledgement is citation of
12 + *    the article in which the program was described (Matthew
13 + *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + *    Parallel Simulation Engine for Molecular Dynamics,"
16 + *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + *
18 + * 2. Redistributions of source code must retain the above copyright
19 + *    notice, this list of conditions and the following disclaimer.
20 + *
21 + * 3. Redistributions in binary form must reproduce the above copyright
22 + *    notice, this list of conditions and the following disclaimer in the
23 + *    documentation and/or other materials provided with the
24 + *    distribution.
25 + *
26 + * This software is provided "AS IS," without a warranty of any
27 + * kind. All express or implied conditions, representations and
28 + * warranties, including any implied warranty of merchantability,
29 + * fitness for a particular purpose or non-infringement, are hereby
30 + * excluded.  The University of Notre Dame and its licensors shall not
31 + * be liable for any damages suffered by licensee as a result of
32 + * using, modifying or distributing the software or its
33 + * derivatives. In no event will the University of Notre Dame or its
34 + * licensors be liable for any lost revenue, profit or data, or for
35 + * direct, indirect, special, consequential, incidental or punitive
36 + * damages, however caused and regardless of the theory of liability,
37 + * arising out of the use of or inability to use software, even if the
38 + * University of Notre Dame has been advised of the possibility of
39 + * such damages.
40 + */
41 + #include <algorithm>
42   #include <math.h>
43   #include "primitives/RigidBody.hpp"
3 #include "primitives/DirectionalAtom.hpp"
44   #include "utils/simError.h"
45 < #include "math/MatVec3.h"
45 > #include "utils/NumericConstant.hpp"
46 > namespace oopse {
47  
48 < RigidBody::RigidBody() : StuntDouble() {
8 <  objType = OT_RIGIDBODY;
9 <  is_linear = false;
10 <  linear_axis =  -1;
11 <  momIntTol = 1e-6;
12 < }
48 >  RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){
49  
50 < RigidBody::~RigidBody() {
15 < }
50 >  }
51  
52 < void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
52 >  void RigidBody::setPrevA(const RotMat3x3d& a) {
53 >    ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
54  
55 <  vec3 coords;
56 <  vec3 euler;
57 <  mat3x3 Atmp;
55 >    for (int i =0 ; i < atoms_.size(); ++i){
56 >      if (atoms_[i]->isDirectional()) {
57 >        atoms_[i]->setPrevA(refOrients_[i].transpose() * a);
58 >      }
59 >    }
60  
23  myAtoms.push_back(at);
24
25  if( !ats->havePosition() ){
26    sprintf( painCave.errMsg,
27             "RigidBody error.\n"
28             "\tAtom %s does not have a position specified.\n"
29             "\tThis means RigidBody cannot set up reference coordinates.\n",
30             ats->getType() );
31    painCave.isFatal = 1;
32    simError();
61    }
34  
35  coords[0] = ats->getPosX();
36  coords[1] = ats->getPosY();
37  coords[2] = ats->getPosZ();
62  
63 <  refCoords.push_back(coords);
64 <  
65 <  if (at->isDirectional()) {  
63 >      
64 >  void RigidBody::setA(const RotMat3x3d& a) {
65 >    ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
66  
67 <    if( !ats->haveOrientation() ){
68 <      sprintf( painCave.errMsg,
69 <               "RigidBody error.\n"
70 <               "\tAtom %s does not have an orientation specified.\n"
71 <               "\tThis means RigidBody cannot set up reference orientations.\n",
72 <               ats->getType() );
49 <      painCave.isFatal = 1;
50 <      simError();
51 <    }    
67 >    for (int i =0 ; i < atoms_.size(); ++i){
68 >      if (atoms_[i]->isDirectional()) {
69 >        atoms_[i]->setA(refOrients_[i].transpose() * a);
70 >      }
71 >    }
72 >  }    
73      
74 <    euler[0] = ats->getEulerPhi();
75 <    euler[1] = ats->getEulerTheta();
76 <    euler[2] = ats->getEulerPsi();
56 <    
57 <    doEulerToRotMat(euler, Atmp);
58 <    
59 <    refOrients.push_back(Atmp);
60 <    
61 <  }
62 < }
74 >  void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
75 >    ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
76 >    //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;    
77  
78 < void RigidBody::getPos(double theP[3]){
79 <  for (int i = 0; i < 3 ; i++)
80 <    theP[i] = pos[i];
81 < }      
78 >    for (int i =0 ; i < atoms_.size(); ++i){
79 >      if (atoms_[i]->isDirectional()) {
80 >        atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo);
81 >      }
82 >    }
83  
84 < void RigidBody::setPos(double theP[3]){
70 <  for (int i = 0; i < 3 ; i++)
71 <    pos[i] = theP[i];
72 < }      
84 >  }  
85  
86 < void RigidBody::getVel(double theV[3]){
87 <  for (int i = 0; i < 3 ; i++)
88 <    theV[i] = vel[i];
77 < }      
86 >  Mat3x3d RigidBody::getI() {
87 >    return inertiaTensor_;
88 >  }    
89  
90 < void RigidBody::setVel(double theV[3]){
91 <  for (int i = 0; i < 3 ; i++)
92 <    vel[i] = theV[i];
93 < }      
90 >  std::vector<double> RigidBody::getGrad() {
91 >    std::vector<double> grad(6, 0.0);
92 >    Vector3d force;
93 >    Vector3d torque;
94 >    Vector3d myEuler;
95 >    double phi, theta, psi;
96 >    double cphi, sphi, ctheta, stheta;
97 >    Vector3d ephi;
98 >    Vector3d etheta;
99 >    Vector3d epsi;
100  
101 < void RigidBody::getFrc(double theF[3]){
102 <  for (int i = 0; i < 3 ; i++)
103 <    theF[i] = frc[i];
87 < }      
101 >    force = getFrc();
102 >    torque =getTrq();
103 >    myEuler = getA().toEulerAngles();
104  
105 < void RigidBody::addFrc(double theF[3]){
106 <  for (int i = 0; i < 3 ; i++)
107 <    frc[i] += theF[i];
92 < }    
105 >    phi = myEuler[0];
106 >    theta = myEuler[1];
107 >    psi = myEuler[2];
108  
109 < void RigidBody::zeroForces() {
109 >    cphi = cos(phi);
110 >    sphi = sin(phi);
111 >    ctheta = cos(theta);
112 >    stheta = sin(theta);
113  
114 <  for (int i = 0; i < 3; i++) {
97 <    frc[i] = 0.0;
98 <    trq[i] = 0.0;
99 <  }
114 >    // get unit vectors along the phi, theta and psi rotation axes
115  
116 < }
116 >    ephi[0] = 0.0;
117 >    ephi[1] = 0.0;
118 >    ephi[2] = 1.0;
119  
120 < void RigidBody::setEuler( double phi, double theta, double psi ){
121 <  
122 <    A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi));
106 <    A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi));
107 <    A[0][2] = sin(theta) * sin(psi);
108 <    
109 <    A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi));
110 <    A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi));
111 <    A[1][2] = sin(theta) * cos(psi);
112 <    
113 <    A[2][0] = sin(phi) * sin(theta);
114 <    A[2][1] = -cos(phi) * sin(theta);
115 <    A[2][2] = cos(theta);
120 >    etheta[0] = cphi;
121 >    etheta[1] = sphi;
122 >    etheta[2] = 0.0;
123  
124 < }
124 >    epsi[0] = stheta * cphi;
125 >    epsi[1] = stheta * sphi;
126 >    epsi[2] = ctheta;
127  
128 < void RigidBody::getQ( double q[4] ){
129 <  
130 <  double t, s;
122 <  double ad1, ad2, ad3;
123 <    
124 <  t = A[0][0] + A[1][1] + A[2][2] + 1.0;
125 <  if( t > 0.0 ){
126 <    
127 <    s = 0.5 / sqrt( t );
128 <    q[0] = 0.25 / s;
129 <    q[1] = (A[1][2] - A[2][1]) * s;
130 <    q[2] = (A[2][0] - A[0][2]) * s;
131 <    q[3] = (A[0][1] - A[1][0]) * s;
132 <  }
133 <  else{
134 <    
135 <    ad1 = fabs( A[0][0] );
136 <    ad2 = fabs( A[1][1] );
137 <    ad3 = fabs( A[2][2] );
138 <    
139 <    if( ad1 >= ad2 && ad1 >= ad3 ){
140 <      
141 <      s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] );
142 <      q[0] = (A[1][2] + A[2][1]) / s;
143 <      q[1] = 0.5 / s;
144 <      q[2] = (A[0][1] + A[1][0]) / s;
145 <      q[3] = (A[0][2] + A[2][0]) / s;
146 <    }
147 <    else if( ad2 >= ad1 && ad2 >= ad3 ){
148 <      
149 <      s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0;
150 <      q[0] = (A[0][2] + A[2][0]) / s;
151 <      q[1] = (A[0][1] + A[1][0]) / s;
152 <      q[2] = 0.5 / s;
153 <      q[3] = (A[1][2] + A[2][1]) / s;
154 <    }
155 <    else{
156 <      
157 <      s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0;
158 <      q[0] = (A[0][1] + A[1][0]) / s;
159 <      q[1] = (A[0][2] + A[2][0]) / s;
160 <      q[2] = (A[1][2] + A[2][1]) / s;
161 <      q[3] = 0.5 / s;
162 <    }
163 <  }
164 < }
128 >    //gradient is equal to -force
129 >    for (int j = 0 ; j<3; j++)
130 >      grad[j] = -force[j];
131  
132 < void RigidBody::setQ( double the_q[4] ){
132 >    for (int j = 0; j < 3; j++ ) {
133  
134 <  double q0Sqr, q1Sqr, q2Sqr, q3Sqr;
135 <  
136 <  q0Sqr = the_q[0] * the_q[0];
171 <  q1Sqr = the_q[1] * the_q[1];
172 <  q2Sqr = the_q[2] * the_q[2];
173 <  q3Sqr = the_q[3] * the_q[3];
174 <  
175 <  A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr;
176 <  A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] );
177 <  A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] );
178 <  
179 <  A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] );
180 <  A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr;
181 <  A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] );
182 <  
183 <  A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] );
184 <  A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] );
185 <  A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr;  
134 >      grad[3] += torque[j]*ephi[j];
135 >      grad[4] += torque[j]*etheta[j];
136 >      grad[5] += torque[j]*epsi[j];
137  
138 < }
138 >    }
139 >    
140 >    return grad;
141 >  }    
142  
143 < void RigidBody::getA( double the_A[3][3] ){
144 <  
145 <  for (int i = 0; i < 3; i++)
192 <    for (int j = 0; j < 3; j++)
193 <      the_A[i][j] = A[i][j];
143 >  void RigidBody::accept(BaseVisitor* v) {
144 >    v->visit(this);
145 >  }    
146  
147 < }
147 >  /**@todo need modification */
148 >  void  RigidBody::calcRefCoords() {
149 >    double mtmp;
150 >    Vector3d refCOM(0.0);
151 >    mass_ = 0.0;
152 >    for (std::size_t i = 0; i < atoms_.size(); ++i) {
153 >      mtmp = atoms_[i]->getMass();
154 >      mass_ += mtmp;
155 >      refCOM += refCoords_[i]*mtmp;
156 >    }
157 >    refCOM /= mass_;
158  
159 < void RigidBody::setA( double the_A[3][3] ){
159 >    // Next, move the origin of the reference coordinate system to the COM:
160 >    for (std::size_t i = 0; i < atoms_.size(); ++i) {
161 >      refCoords_[i] -= refCOM;
162 >    }
163  
164 <  for (int i = 0; i < 3; i++)
165 <    for (int j = 0; j < 3; j++)
166 <      A[i][j] = the_A[i][j];
167 <  
168 < }
164 >    // Moment of Inertia calculation
165 >    Mat3x3d Itmp(0.0);    
166 >    for (std::size_t i = 0; i < atoms_.size(); i++) {
167 >      Mat3x3d IAtom(0.0);  
168 >      mtmp = atoms_[i]->getMass();
169 >      IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
170 >      double r2 = refCoords_[i].lengthSquare();
171 >      IAtom(0, 0) += mtmp * r2;
172 >      IAtom(1, 1) += mtmp * r2;
173 >      IAtom(2, 2) += mtmp * r2;
174 >      Itmp += IAtom;
175  
176 < void RigidBody::getJ( double theJ[3] ){
177 <  
178 <  for (int i = 0; i < 3; i++)
179 <    theJ[i] = ji[i];
176 >      //project the inertial moment of directional atoms into this rigid body
177 >      if (atoms_[i]->isDirectional()) {
178 >        Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i];
179 >      }
180 >    }
181  
182 < }
182 >    //    std::cout << Itmp << std::endl;
183  
184 < void RigidBody::setJ( double theJ[3] ){
184 >    //diagonalize
185 >    Vector3d evals;
186 >    Mat3x3d::diagonalize(Itmp, evals, sU_);
187 >
188 >    // zero out I and then fill the diagonals with the moments of inertia:
189 >    inertiaTensor_(0, 0) = evals[0];
190 >    inertiaTensor_(1, 1) = evals[1];
191 >    inertiaTensor_(2, 2) = evals[2];
192 >        
193 >    int nLinearAxis = 0;
194 >    for (int i = 0; i < 3; i++) {    
195 >      if (fabs(evals[i]) < oopse::epsilon) {
196 >        linear_ = true;
197 >        linearAxis_ = i;
198 >        ++ nLinearAxis;
199 >      }
200 >    }
201 >
202 >    if (nLinearAxis > 1) {
203 >      sprintf( painCave.errMsg,
204 >               "RigidBody error.\n"
205 >               "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
206 >               "\tmoment of inertia.  This can happen in one of three ways:\n"
207 >               "\t 1) Only one atom was specified, or \n"
208 >               "\t 2) All atoms were specified at the same location, or\n"
209 >               "\t 3) The programmers did something stupid.\n"
210 >               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
211 >               );
212 >      painCave.isFatal = 1;
213 >      simError();
214 >    }
215    
216 <  for (int i = 0; i < 3; i++)
215 <    ji[i] = theJ[i];
216 >  }
217  
218 < }
218 >  void  RigidBody::calcForcesAndTorques() {
219 >    Vector3d afrc;
220 >    Vector3d atrq;
221 >    Vector3d apos;
222 >    Vector3d rpos;
223 >    Vector3d frc(0.0);
224 >    Vector3d trq(0.0);
225 >    Vector3d pos = this->getPos();
226 >    for (int i = 0; i < atoms_.size(); i++) {
227  
228 < void RigidBody::getTrq(double theT[3]){
229 <  for (int i = 0; i < 3 ; i++)
230 <    theT[i] = trq[i];
231 < }      
228 >      afrc = atoms_[i]->getFrc();
229 >      apos = atoms_[i]->getPos();
230 >      rpos = apos - pos;
231 >        
232 >      frc += afrc;
233  
234 < void RigidBody::addTrq(double theT[3]){
235 <  for (int i = 0; i < 3 ; i++)
236 <    trq[i] += theT[i];
227 < }      
234 >      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
235 >      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
236 >      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
237  
238 < void RigidBody::getI( double the_I[3][3] ){  
238 >      // If the atom has a torque associated with it, then we also need to
239 >      // migrate the torques onto the center of mass:
240  
241 <    for (int i = 0; i < 3; i++)
242 <      for (int j = 0; j < 3; j++)
243 <        the_I[i][j] = I[i][j];
241 >      if (atoms_[i]->isDirectional()) {
242 >        atrq = atoms_[i]->getTrq();
243 >        trq += atrq;
244 >      }
245 >        
246 >    }
247 >    
248 >    setFrc(frc);
249 >    setTrq(trq);
250 >    
251 >  }
252  
253 < }
253 >  void  RigidBody::updateAtoms() {
254 >    unsigned int i;
255 >    Vector3d ref;
256 >    Vector3d apos;
257 >    DirectionalAtom* dAtom;
258 >    Vector3d pos = getPos();
259 >    RotMat3x3d a = getA();
260 >    
261 >    for (i = 0; i < atoms_.size(); i++) {
262 >    
263 >      ref = body2Lab(refCoords_[i]);
264  
265 < void RigidBody::lab2Body( double r[3] ){
265 >      apos = pos + ref;
266  
267 <  double rl[3]; // the lab frame vector
267 >      atoms_[i]->setPos(apos);
268 >
269 >      if (atoms_[i]->isDirectional()) {
270 >          
271 >        dAtom = (DirectionalAtom *) atoms_[i];
272 >        dAtom->setA(refOrients_[i].transpose() * a);
273 >      }
274 >
275 >    }
276    
277 <  rl[0] = r[0];
242 <  rl[1] = r[1];
243 <  rl[2] = r[2];
244 <  
245 <  r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]);
246 <  r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]);
247 <  r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]);
277 >  }
278  
249 }
279  
280 < void RigidBody::body2Lab( double r[3] ){
280 >  void  RigidBody::updateAtoms(int frame) {
281 >    unsigned int i;
282 >    Vector3d ref;
283 >    Vector3d apos;
284 >    DirectionalAtom* dAtom;
285 >    Vector3d pos = getPos(frame);
286 >    RotMat3x3d a = getA(frame);
287 >    
288 >    for (i = 0; i < atoms_.size(); i++) {
289 >    
290 >      ref = body2Lab(refCoords_[i], frame);
291  
292 <  double rb[3]; // the body frame vector
292 >      apos = pos + ref;
293 >
294 >      atoms_[i]->setPos(apos, frame);
295 >
296 >      if (atoms_[i]->isDirectional()) {
297 >          
298 >        dAtom = (DirectionalAtom *) atoms_[i];
299 >        dAtom->setA(refOrients_[i].transpose() * a, frame);
300 >      }
301 >
302 >    }
303    
304 <  rb[0] = r[0];
256 <  rb[1] = r[1];
257 <  rb[2] = r[2];
258 <  
259 <  r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]);
260 <  r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]);
261 <  r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]);
304 >  }
305  
306 < }
306 >  void RigidBody::updateAtomVel() {
307 >    Mat3x3d skewMat;;
308  
309 < double RigidBody::getZangle( ){
310 <    return zAngle;
267 < }
309 >    Vector3d ji = getJ();
310 >    Mat3x3d I =  getI();
311  
312 < void RigidBody::setZangle( double zAng ){
313 <    zAngle = zAng;
314 < }
312 >    skewMat(0, 0) =0;
313 >    skewMat(0, 1) = ji[2] /I(2, 2);
314 >    skewMat(0, 2) = -ji[1] /I(1, 1);
315  
316 < void RigidBody::addZangle( double zAng ){
317 <    zAngle += zAng;
318 < }
316 >    skewMat(1, 0) = -ji[2] /I(2, 2);
317 >    skewMat(1, 1) = 0;
318 >    skewMat(1, 2) = ji[0]/I(0, 0);
319  
320 < void RigidBody::calcRefCoords( ) {
320 >    skewMat(2, 0) =ji[1] /I(1, 1);
321 >    skewMat(2, 1) = -ji[0]/I(0, 0);
322 >    skewMat(2, 2) = 0;
323  
324 <  int i,j,k, it, n_linear_coords;
325 <  double mtmp;
281 <  vec3 apos;
282 <  double refCOM[3];
283 <  vec3 ptmp;
284 <  double Itmp[3][3];
285 <  double evals[3];
286 <  double evects[3][3];
287 <  double r, r2, len;
324 >    Mat3x3d mat = (getA() * skewMat).transpose();
325 >    Vector3d rbVel = getVel();
326  
327 <  // First, find the center of mass:
328 <  
329 <  mass = 0.0;
330 <  for (j=0; j<3; j++)
331 <    refCOM[j] = 0.0;
332 <  
333 <  for (i = 0; i < myAtoms.size(); i++) {
334 <    mtmp = myAtoms[i]->getMass();
335 <    mass += mtmp;
327 >
328 >    Vector3d velRot;        
329 >    for (int i =0 ; i < refCoords_.size(); ++i) {
330 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
331 >    }
332 >
333 >  }
334 >
335 >  void RigidBody::updateAtomVel(int frame) {
336 >    Mat3x3d skewMat;;
337 >
338 >    Vector3d ji = getJ(frame);
339 >    Mat3x3d I =  getI();
340 >
341 >    skewMat(0, 0) =0;
342 >    skewMat(0, 1) = ji[2] /I(2, 2);
343 >    skewMat(0, 2) = -ji[1] /I(1, 1);
344 >
345 >    skewMat(1, 0) = -ji[2] /I(2, 2);
346 >    skewMat(1, 1) = 0;
347 >    skewMat(1, 2) = ji[0]/I(0, 0);
348 >
349 >    skewMat(2, 0) =ji[1] /I(1, 1);
350 >    skewMat(2, 1) = -ji[0]/I(0, 0);
351 >    skewMat(2, 2) = 0;
352 >
353 >    Mat3x3d mat = (getA(frame) * skewMat).transpose();
354 >    Vector3d rbVel = getVel(frame);
355 >
356 >
357 >    Vector3d velRot;        
358 >    for (int i =0 ; i < refCoords_.size(); ++i) {
359 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
360 >    }
361 >
362 >  }
363  
364 <    apos = refCoords[i];
365 <    
366 <    for(j = 0; j < 3; j++) {
367 <      refCOM[j] += apos[j]*mtmp;    
364 >        
365 >
366 >  bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
367 >    if (index < atoms_.size()) {
368 >
369 >      Vector3d ref = body2Lab(refCoords_[index]);
370 >      pos = getPos() + ref;
371 >      return true;
372 >    } else {
373 >      std::cerr << index << " is an invalid index, current rigid body contains "
374 >                << atoms_.size() << "atoms" << std::endl;
375 >      return false;
376      }    
377    }
305  
306  for(j = 0; j < 3; j++)
307    refCOM[j] /= mass;
378  
379 < // Next, move the origin of the reference coordinate system to the COM:
380 <
381 <  for (i = 0; i < myAtoms.size(); i++) {
382 <    apos = refCoords[i];
383 <    for (j=0; j < 3; j++) {
384 <      apos[j] = apos[j] - refCOM[j];
379 >  bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
380 >    std::vector<Atom*>::iterator i;
381 >    i = std::find(atoms_.begin(), atoms_.end(), atom);
382 >    if (i != atoms_.end()) {
383 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
384 >      Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
385 >      pos = getPos() + ref;
386 >      return true;
387 >    } else {
388 >      std::cerr << "Atom " << atom->getGlobalIndex()
389 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
390 >      return false;
391      }
316    refCoords[i] = apos;
392    }
393 +  bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
394  
395 < // Moment of Inertia calculation
395 >    //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
396  
397 <  for (i = 0; i < 3; i++)
322 <    for (j = 0; j < 3; j++)
323 <      Itmp[i][j] = 0.0;  
324 <  
325 <  for (it = 0; it < myAtoms.size(); it++) {
397 >    if (index < atoms_.size()) {
398  
399 <    mtmp = myAtoms[it]->getMass();
400 <    ptmp = refCoords[it];
401 <    r= norm3(ptmp.vec);
402 <    r2 = r*r;
403 <    
332 <    for (i = 0; i < 3; i++) {
333 <      for (j = 0; j < 3; j++) {
334 <        
335 <        if (i==j) Itmp[i][j] += mtmp * r2;
399 >      Vector3d velRot;
400 >      Mat3x3d skewMat;;
401 >      Vector3d ref = refCoords_[index];
402 >      Vector3d ji = getJ();
403 >      Mat3x3d I =  getI();
404  
405 <        Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j];
406 <      }
407 <    }
340 <  }
341 <  
342 <  diagonalize3x3(Itmp, evals, sU);
343 <  
344 <  // zero out I and then fill the diagonals with the moments of inertia:
405 >      skewMat(0, 0) =0;
406 >      skewMat(0, 1) = ji[2] /I(2, 2);
407 >      skewMat(0, 2) = -ji[1] /I(1, 1);
408  
409 <  n_linear_coords = 0;
409 >      skewMat(1, 0) = -ji[2] /I(2, 2);
410 >      skewMat(1, 1) = 0;
411 >      skewMat(1, 2) = ji[0]/I(0, 0);
412  
413 <  for (i = 0; i < 3; i++) {
414 <    for (j = 0; j < 3; j++) {
415 <      I[i][j] = 0.0;  
351 <    }
352 <    I[i][i] = evals[i];
413 >      skewMat(2, 0) =ji[1] /I(1, 1);
414 >      skewMat(2, 1) = -ji[0]/I(0, 0);
415 >      skewMat(2, 2) = 0;
416  
417 <    if (fabs(evals[i]) < momIntTol) {
355 <      is_linear = true;
356 <      n_linear_coords++;
357 <      linear_axis = i;
358 <    }
359 <  }
417 >      velRot = (getA() * skewMat).transpose() * ref;
418  
419 <  if (n_linear_coords > 1) {
420 <          sprintf( painCave.errMsg,
421 <               "RigidBody error.\n"
422 <               "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
423 <               "\tmoment of inertia.  This can happen in one of three ways:\n"
424 <               "\t 1) Only one atom was specified, or \n"
425 <               "\t 2) All atoms were specified at the same location, or\n"
368 <               "\t 3) The programmers did something stupid.\n"
369 <               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
370 <               );
371 <      painCave.isFatal = 1;
372 <      simError();
373 <  }
374 <  
375 <  // renormalize column vectors:
376 <  
377 <  for (i=0; i < 3; i++) {
378 <    len = 0.0;
379 <    for (j = 0; j < 3; j++) {
380 <      len += sU[i][j]*sU[i][j];
419 >      vel =getVel() + velRot;
420 >      return true;
421 >        
422 >    } else {
423 >      std::cerr << index << " is an invalid index, current rigid body contains "
424 >                << atoms_.size() << "atoms" << std::endl;
425 >      return false;
426      }
382    len = sqrt(len);
383    for (j = 0; j < 3; j++) {
384      sU[i][j] /= len;
385    }
427    }
387 }
428  
429 < void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){
429 >  bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
430  
431 <  double phi, theta, psi;
432 <  
433 <  phi = euler[0];
434 <  theta = euler[1];
435 <  psi = euler[2];
436 <  
437 <  myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi));
438 <  myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi));
439 <  myA[0][2] = sin(theta) * sin(psi);
440 <  
401 <  myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi));
402 <  myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi));
403 <  myA[1][2] = sin(theta) * cos(psi);
404 <  
405 <  myA[2][0] = sin(phi) * sin(theta);
406 <  myA[2][1] = -cos(phi) * sin(theta);
407 <  myA[2][2] = cos(theta);
431 >    std::vector<Atom*>::iterator i;
432 >    i = std::find(atoms_.begin(), atoms_.end(), atom);
433 >    if (i != atoms_.end()) {
434 >      return getAtomVel(vel, i - atoms_.begin());
435 >    } else {
436 >      std::cerr << "Atom " << atom->getGlobalIndex()
437 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
438 >      return false;
439 >    }    
440 >  }
441  
442 < }
442 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
443 >    if (index < atoms_.size()) {
444  
445 < void RigidBody::calcForcesAndTorques() {
446 <
447 <  // Convert Atomic forces and torques to total forces and torques:
448 <  int i, j;
449 <  double apos[3];
450 <  double afrc[3];
417 <  double atrq[3];
418 <  double rpos[3];
419 <
420 <  zeroForces();
421 <  
422 <  for (i = 0; i < myAtoms.size(); i++) {
423 <
424 <    myAtoms[i]->getPos(apos);
425 <    myAtoms[i]->getFrc(afrc);
426 <
427 <    for (j=0; j<3; j++) {
428 <      rpos[j] = apos[j] - pos[j];
429 <      frc[j] += afrc[j];
445 >      coor = refCoords_[index];
446 >      return true;
447 >    } else {
448 >      std::cerr << index << " is an invalid index, current rigid body contains "
449 >                << atoms_.size() << "atoms" << std::endl;
450 >      return false;
451      }
431    
432    trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
433    trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
434    trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
452  
453 <    // If the atom has a torque associated with it, then we also need to
437 <    // migrate the torques onto the center of mass:
453 >  }
454  
455 <    if (myAtoms[i]->isDirectional()) {
456 <
457 <      myAtoms[i]->getTrq(atrq);
458 <      
459 <      for (j=0; j<3; j++)
460 <        trq[j] += atrq[j];
455 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
456 >    std::vector<Atom*>::iterator i;
457 >    i = std::find(atoms_.begin(), atoms_.end(), atom);
458 >    if (i != atoms_.end()) {
459 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
460 >      coor = refCoords_[i - atoms_.begin()];
461 >      return true;
462 >    } else {
463 >      std::cerr << "Atom " << atom->getGlobalIndex()
464 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
465 >      return false;
466      }
467 +
468    }
469  
448  // Convert Torque to Body-fixed coordinates:
449  // (Actually, on second thought, don't.  Integrator does this now.)
450  // lab2Body(trq);
470  
471 < }
471 >  void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
472  
473 < void RigidBody::updateAtoms() {
474 <  int i, j;
456 <  vec3 ref;
457 <  double apos[3];
458 <  DirectionalAtom* dAtom;
473 >    Vector3d coords;
474 >    Vector3d euler;
475    
460  for (i = 0; i < myAtoms.size(); i++) {
461    
462    ref = refCoords[i];
476  
477 <    body2Lab(ref.vec);
478 <    
479 <    for (j = 0; j<3; j++)
480 <      apos[j] = pos[j] + ref.vec[j];
481 <    
482 <    myAtoms[i]->setPos(apos);
483 <    
484 <    if (myAtoms[i]->isDirectional()) {
485 <      
486 <      dAtom = (DirectionalAtom *) myAtoms[i];
474 <      dAtom->rotateBy( A );
475 <      
477 >    atoms_.push_back(at);
478 >
479 >    if( !ats->havePosition() ){
480 >      sprintf( painCave.errMsg,
481 >               "RigidBody error.\n"
482 >               "\tAtom %s does not have a position specified.\n"
483 >               "\tThis means RigidBody cannot set up reference coordinates.\n",
484 >               ats->getType().c_str() );
485 >      painCave.isFatal = 1;
486 >      simError();
487      }
488 <  }  
489 < }
488 >  
489 >    coords[0] = ats->getPosX();
490 >    coords[1] = ats->getPosY();
491 >    coords[2] = ats->getPosZ();
492  
493 < void RigidBody::getGrad( double grad[6] ) {
493 >    refCoords_.push_back(coords);
494  
495 <  double myEuler[3];
483 <  double phi, theta, psi;
484 <  double cphi, sphi, ctheta, stheta;
485 <  double ephi[3];
486 <  double etheta[3];
487 <  double epsi[3];
495 >    RotMat3x3d identMat = RotMat3x3d::identity();
496    
497 <  this->getEulerAngles(myEuler);
497 >    if (at->isDirectional()) {  
498  
499 <  phi = myEuler[0];
500 <  theta = myEuler[1];
501 <  psi = myEuler[2];
502 <
503 <  cphi = cos(phi);
504 <  sphi = sin(phi);
505 <  ctheta = cos(theta);
506 <  stheta = sin(theta);
507 <
500 <  // get unit vectors along the phi, theta and psi rotation axes
501 <
502 <  ephi[0] = 0.0;
503 <  ephi[1] = 0.0;
504 <  ephi[2] = 1.0;
505 <
506 <  etheta[0] = cphi;
507 <  etheta[1] = sphi;
508 <  etheta[2] = 0.0;
509 <  
510 <  epsi[0] = stheta * cphi;
511 <  epsi[1] = stheta * sphi;
512 <  epsi[2] = ctheta;
513 <  
514 <  for (int j = 0 ; j<3; j++)
515 <    grad[j] = frc[j];
516 <
517 <  grad[3] = 0.0;
518 <  grad[4] = 0.0;
519 <  grad[5] = 0.0;
520 <  
521 <  for (int j = 0; j < 3; j++ ) {
499 >      if( !ats->haveOrientation() ){
500 >        sprintf( painCave.errMsg,
501 >                 "RigidBody error.\n"
502 >                 "\tAtom %s does not have an orientation specified.\n"
503 >                 "\tThis means RigidBody cannot set up reference orientations.\n",
504 >                 ats->getType().c_str() );
505 >        painCave.isFatal = 1;
506 >        simError();
507 >      }    
508      
509 <    grad[3] += trq[j]*ephi[j];
510 <    grad[4] += trq[j]*etheta[j];
511 <    grad[5] += trq[j]*epsi[j];
526 <    
527 <  }
528 <  
529 < }
509 >      euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0;
510 >      euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0;
511 >      euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0;
512  
513 < /**
514 <  * getEulerAngles computes a set of Euler angle values consistent
533 <  * with an input rotation matrix.  They are returned in the following
534 <  * order:
535 <  *  myEuler[0] = phi;
536 <  *  myEuler[1] = theta;
537 <  *  myEuler[2] = psi;
538 < */
539 < void RigidBody::getEulerAngles(double myEuler[3]) {
540 <
541 <  // We use so-called "x-convention", which is the most common
542 <  // definition.  In this convention, the rotation given by Euler
543 <  // angles (phi, theta, psi), where the first rotation is by an angle
544 <  // phi about the z-axis, the second is by an angle theta (0 <= theta
545 <  // <= 180) about the x-axis, and the third is by an angle psi about
546 <  // the z-axis (again).
547 <  
548 <  
549 <  double phi,theta,psi,eps;
550 <  double pi;
551 <  double cphi,ctheta,cpsi;
552 <  double sphi,stheta,spsi;
553 <  double b[3];
554 <  int flip[3];
555 <  
556 <  // set the tolerance for Euler angles and rotation elements
557 <  
558 <  eps = 1.0e-8;
559 <
560 <  theta = acos(min(1.0,max(-1.0,A[2][2])));
561 <  ctheta = A[2][2];
562 <  stheta = sqrt(1.0 - ctheta * ctheta);
563 <
564 <  // when sin(theta) is close to 0, we need to consider the
565 <  // possibility of a singularity. In this case, we can assign an
566 <  // arbitary value to phi (or psi), and then determine the psi (or
567 <  // phi) or vice-versa.  We'll assume that phi always gets the
568 <  // rotation, and psi is 0 in cases of singularity.  we use atan2
569 <  // instead of atan, since atan2 will give us -Pi to Pi.  Since 0 <=
570 <  // theta <= 180, sin(theta) will be always non-negative. Therefore,
571 <  // it never changes the sign of both of the parameters passed to
572 <  // atan2.
573 <  
574 <  if (fabs(stheta) <= eps){
575 <    psi = 0.0;
576 <    phi = atan2(-A[1][0], A[0][0]);  
577 <  }
578 <  // we only have one unique solution
579 <  else{    
580 <    phi = atan2(A[2][0], -A[2][1]);
581 <    psi = atan2(A[0][2], A[1][2]);
582 <  }
583 <  
584 <  //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
585 <  //if (phi < 0)
586 <  //  phi += M_PI;
587 <  
588 <  //if (psi < 0)
589 <  //  psi += M_PI;
590 <  
591 <  myEuler[0] = phi;
592 <  myEuler[1] = theta;
593 <  myEuler[2] = psi;
594 <  
595 <  return;
596 < }
597 <
598 < double RigidBody::max(double x, double  y) {  
599 <  return (x > y) ? x : y;
600 < }
601 <
602 < double RigidBody::min(double x, double  y) {  
603 <  return (x > y) ? y : x;
604 < }
605 <
606 < void RigidBody::findCOM() {
607 <  
608 <  size_t i;
609 <  int j;
610 <  double mtmp;
611 <  double ptmp[3];
612 <  double vtmp[3];
613 <  
614 <  for(j = 0; j < 3; j++) {
615 <    pos[j] = 0.0;
616 <    vel[j] = 0.0;
617 <  }
618 <  mass = 0.0;
619 <  
620 <  for (i = 0; i < myAtoms.size(); i++) {
513 >      RotMat3x3d Atmp(euler);
514 >      refOrients_.push_back(Atmp);
515      
516 <    mtmp = myAtoms[i]->getMass();    
517 <    myAtoms[i]->getPos(ptmp);
624 <    myAtoms[i]->getVel(vtmp);
625 <    
626 <    mass += mtmp;
627 <    
628 <    for(j = 0; j < 3; j++) {
629 <      pos[j] += ptmp[j]*mtmp;
630 <      vel[j] += vtmp[j]*mtmp;
516 >    }else {
517 >      refOrients_.push_back(identMat);
518      }
632    
633  }
519    
520 <  for(j = 0; j < 3; j++) {
636 <    pos[j] /= mass;
637 <    vel[j] /= mass;
520 >  
521    }
522  
523   }
524  
642 void RigidBody::accept(BaseVisitor* v){
643  vector<Atom*>::iterator atomIter;
644  v->visit(this);
645
646  //for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter)
647  //  (*atomIter)->accept(v);
648 }
649 void RigidBody::getAtomRefCoor(double pos[3], int index){
650  vec3 ref;
651
652  ref = refCoords[index];
653  pos[0] = ref[0];
654  pos[1] = ref[1];
655  pos[2] = ref[2];
656  
657 }
658
659
660 void RigidBody::getAtomPos(double theP[3], int index){
661  vec3 ref;
662
663  if (index >= myAtoms.size())
664    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl;
665
666  ref = refCoords[index];
667  body2Lab(ref.vec);
668  
669  theP[0] = pos[0] + ref[0];
670  theP[1] = pos[1] + ref[1];
671  theP[2] = pos[2] + ref[2];
672 }
673
674
675 void RigidBody::getAtomVel(double theV[3], int index){
676  vec3 ref;
677  double velRot[3];
678  double skewMat[3][3];
679  double aSkewMat[3][3];
680  double aSkewTransMat[3][3];
681  
682  //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
683
684  if (index >= myAtoms.size())
685    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl;
686
687  ref = refCoords[index];
688
689  skewMat[0][0] =0;
690  skewMat[0][1] = ji[2] /I[2][2];
691  skewMat[0][2] = -ji[1] /I[1][1];
692
693  skewMat[1][0] = -ji[2] /I[2][2];
694  skewMat[1][1] = 0;
695  skewMat[1][2] = ji[0]/I[0][0];
696
697  skewMat[2][0] =ji[1] /I[1][1];
698  skewMat[2][1] = -ji[0]/I[0][0];
699  skewMat[2][2] = 0;
700  
701  matMul3(A, skewMat, aSkewMat);
702
703  transposeMat3(aSkewMat, aSkewTransMat);
704
705  matVecMul3(aSkewTransMat, ref.vec, velRot);
706  theV[0] = vel[0] + velRot[0];
707  theV[1] = vel[1] + velRot[1];
708  theV[2] = vel[2] + velRot[2];
709 }
710
711

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines