6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include <algorithm> |
43 |
|
#include <math.h> |
44 |
|
#include "primitives/RigidBody.hpp" |
45 |
|
#include "utils/simError.h" |
46 |
|
#include "utils/NumericConstant.hpp" |
47 |
< |
namespace oopse { |
48 |
< |
|
49 |
< |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ |
50 |
< |
|
47 |
> |
namespace OpenMD { |
48 |
> |
|
49 |
> |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), |
50 |
> |
inertiaTensor_(0.0){ |
51 |
|
} |
52 |
< |
|
52 |
> |
|
53 |
|
void RigidBody::setPrevA(const RotMat3x3d& a) { |
54 |
|
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
55 |
< |
//((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
55 |
< |
|
55 |
> |
|
56 |
|
for (int i =0 ; i < atoms_.size(); ++i){ |
57 |
|
if (atoms_[i]->isDirectional()) { |
58 |
< |
atoms_[i]->setPrevA(a * refOrients_[i]); |
58 |
> |
atoms_[i]->setPrevA(refOrients_[i].transpose() * a); |
59 |
|
} |
60 |
|
} |
61 |
< |
|
61 |
> |
|
62 |
|
} |
63 |
< |
|
64 |
< |
|
63 |
> |
|
64 |
> |
|
65 |
|
void RigidBody::setA(const RotMat3x3d& a) { |
66 |
|
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
67 |
– |
//((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
67 |
|
|
68 |
|
for (int i =0 ; i < atoms_.size(); ++i){ |
69 |
|
if (atoms_[i]->isDirectional()) { |
70 |
< |
atoms_[i]->setA(a * refOrients_[i]); |
70 |
> |
atoms_[i]->setA(refOrients_[i].transpose() * a); |
71 |
|
} |
72 |
|
} |
73 |
|
} |
74 |
< |
|
74 |
> |
|
75 |
|
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
76 |
|
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
77 |
+ |
|
78 |
|
//((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
79 |
< |
|
79 |
> |
|
80 |
|
for (int i =0 ; i < atoms_.size(); ++i){ |
81 |
|
if (atoms_[i]->isDirectional()) { |
82 |
< |
atoms_[i]->setA(a * refOrients_[i], snapshotNo); |
82 |
> |
atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); |
83 |
|
} |
84 |
|
} |
85 |
< |
|
85 |
> |
|
86 |
|
} |
87 |
< |
|
87 |
> |
|
88 |
|
Mat3x3d RigidBody::getI() { |
89 |
|
return inertiaTensor_; |
90 |
|
} |
91 |
< |
|
92 |
< |
std::vector<double> RigidBody::getGrad() { |
93 |
< |
std::vector<double> grad(6, 0.0); |
91 |
> |
|
92 |
> |
std::vector<RealType> RigidBody::getGrad() { |
93 |
> |
std::vector<RealType> grad(6, 0.0); |
94 |
|
Vector3d force; |
95 |
|
Vector3d torque; |
96 |
|
Vector3d myEuler; |
97 |
< |
double phi, theta, psi; |
98 |
< |
double cphi, sphi, ctheta, stheta; |
97 |
> |
RealType phi, theta, psi; |
98 |
> |
RealType cphi, sphi, ctheta, stheta; |
99 |
|
Vector3d ephi; |
100 |
|
Vector3d etheta; |
101 |
|
Vector3d epsi; |
102 |
< |
|
102 |
> |
|
103 |
|
force = getFrc(); |
104 |
|
torque =getTrq(); |
105 |
|
myEuler = getA().toEulerAngles(); |
106 |
< |
|
106 |
> |
|
107 |
|
phi = myEuler[0]; |
108 |
|
theta = myEuler[1]; |
109 |
|
psi = myEuler[2]; |
110 |
< |
|
110 |
> |
|
111 |
|
cphi = cos(phi); |
112 |
|
sphi = sin(phi); |
113 |
|
ctheta = cos(theta); |
114 |
|
stheta = sin(theta); |
115 |
< |
|
115 |
> |
|
116 |
|
// get unit vectors along the phi, theta and psi rotation axes |
117 |
< |
|
117 |
> |
|
118 |
|
ephi[0] = 0.0; |
119 |
|
ephi[1] = 0.0; |
120 |
|
ephi[2] = 1.0; |
121 |
< |
|
121 |
> |
|
122 |
> |
//etheta[0] = -sphi; |
123 |
> |
//etheta[1] = cphi; |
124 |
> |
//etheta[2] = 0.0; |
125 |
> |
|
126 |
|
etheta[0] = cphi; |
127 |
|
etheta[1] = sphi; |
128 |
< |
etheta[2] = 0.0; |
129 |
< |
|
128 |
> |
etheta[2] = 0.0; |
129 |
> |
|
130 |
|
epsi[0] = stheta * cphi; |
131 |
|
epsi[1] = stheta * sphi; |
132 |
|
epsi[2] = ctheta; |
133 |
< |
|
133 |
> |
|
134 |
|
//gradient is equal to -force |
135 |
|
for (int j = 0 ; j<3; j++) |
136 |
|
grad[j] = -force[j]; |
137 |
< |
|
137 |
> |
|
138 |
|
for (int j = 0; j < 3; j++ ) { |
139 |
< |
|
139 |
> |
|
140 |
|
grad[3] += torque[j]*ephi[j]; |
141 |
|
grad[4] += torque[j]*etheta[j]; |
142 |
|
grad[5] += torque[j]*epsi[j]; |
143 |
< |
|
143 |
> |
|
144 |
|
} |
145 |
|
|
146 |
|
return grad; |
147 |
|
} |
148 |
< |
|
148 |
> |
|
149 |
|
void RigidBody::accept(BaseVisitor* v) { |
150 |
|
v->visit(this); |
151 |
|
} |
152 |
|
|
153 |
|
/**@todo need modification */ |
154 |
|
void RigidBody::calcRefCoords() { |
155 |
< |
double mtmp; |
155 |
> |
RealType mtmp; |
156 |
|
Vector3d refCOM(0.0); |
157 |
|
mass_ = 0.0; |
158 |
|
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
161 |
|
refCOM += refCoords_[i]*mtmp; |
162 |
|
} |
163 |
|
refCOM /= mass_; |
164 |
< |
|
164 |
> |
|
165 |
|
// Next, move the origin of the reference coordinate system to the COM: |
166 |
|
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
167 |
|
refCoords_[i] -= refCOM; |
173 |
|
Mat3x3d IAtom(0.0); |
174 |
|
mtmp = atoms_[i]->getMass(); |
175 |
|
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
176 |
< |
double r2 = refCoords_[i].lengthSquare(); |
176 |
> |
RealType r2 = refCoords_[i].lengthSquare(); |
177 |
|
IAtom(0, 0) += mtmp * r2; |
178 |
|
IAtom(1, 1) += mtmp * r2; |
179 |
|
IAtom(2, 2) += mtmp * r2; |
180 |
|
Itmp += IAtom; |
181 |
< |
|
181 |
> |
|
182 |
|
//project the inertial moment of directional atoms into this rigid body |
183 |
|
if (atoms_[i]->isDirectional()) { |
184 |
|
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
198 |
|
|
199 |
|
int nLinearAxis = 0; |
200 |
|
for (int i = 0; i < 3; i++) { |
201 |
< |
if (fabs(evals[i]) < oopse::epsilon) { |
201 |
> |
if (fabs(evals[i]) < OpenMD::epsilon) { |
202 |
|
linear_ = true; |
203 |
|
linearAxis_ = i; |
204 |
|
++ nLinearAxis; |
208 |
|
if (nLinearAxis > 1) { |
209 |
|
sprintf( painCave.errMsg, |
210 |
|
"RigidBody error.\n" |
211 |
< |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
211 |
> |
"\tOpenMD found more than one axis in this rigid body with a vanishing \n" |
212 |
|
"\tmoment of inertia. This can happen in one of three ways:\n" |
213 |
|
"\t 1) Only one atom was specified, or \n" |
214 |
|
"\t 2) All atoms were specified at the same location, or\n" |
227 |
|
Vector3d apos; |
228 |
|
Vector3d rpos; |
229 |
|
Vector3d frc(0.0); |
230 |
< |
Vector3d trq(0.0); |
230 |
> |
Vector3d trq(0.0); |
231 |
|
Vector3d pos = this->getPos(); |
232 |
|
for (int i = 0; i < atoms_.size(); i++) { |
233 |
|
|
247 |
|
if (atoms_[i]->isDirectional()) { |
248 |
|
atrq = atoms_[i]->getTrq(); |
249 |
|
trq += atrq; |
250 |
< |
} |
250 |
> |
} |
251 |
> |
} |
252 |
> |
addFrc(frc); |
253 |
> |
addTrq(trq); |
254 |
> |
} |
255 |
> |
|
256 |
> |
Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { |
257 |
> |
Vector3d afrc; |
258 |
> |
Vector3d atrq; |
259 |
> |
Vector3d apos; |
260 |
> |
Vector3d rpos; |
261 |
> |
Vector3d dfrc; |
262 |
> |
Vector3d frc(0.0); |
263 |
> |
Vector3d trq(0.0); |
264 |
> |
Vector3d pos = this->getPos(); |
265 |
> |
Mat3x3d tau_(0.0); |
266 |
> |
|
267 |
> |
for (int i = 0; i < atoms_.size(); i++) { |
268 |
> |
|
269 |
> |
afrc = atoms_[i]->getFrc(); |
270 |
> |
apos = atoms_[i]->getPos(); |
271 |
> |
rpos = apos - pos; |
272 |
|
|
273 |
+ |
frc += afrc; |
274 |
+ |
|
275 |
+ |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
276 |
+ |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
277 |
+ |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
278 |
+ |
|
279 |
+ |
// If the atom has a torque associated with it, then we also need to |
280 |
+ |
// migrate the torques onto the center of mass: |
281 |
+ |
|
282 |
+ |
if (atoms_[i]->isDirectional()) { |
283 |
+ |
atrq = atoms_[i]->getTrq(); |
284 |
+ |
trq += atrq; |
285 |
+ |
} |
286 |
+ |
|
287 |
+ |
tau_(0,0) -= rpos[0]*afrc[0]; |
288 |
+ |
tau_(0,1) -= rpos[0]*afrc[1]; |
289 |
+ |
tau_(0,2) -= rpos[0]*afrc[2]; |
290 |
+ |
tau_(1,0) -= rpos[1]*afrc[0]; |
291 |
+ |
tau_(1,1) -= rpos[1]*afrc[1]; |
292 |
+ |
tau_(1,2) -= rpos[1]*afrc[2]; |
293 |
+ |
tau_(2,0) -= rpos[2]*afrc[0]; |
294 |
+ |
tau_(2,1) -= rpos[2]*afrc[1]; |
295 |
+ |
tau_(2,2) -= rpos[2]*afrc[2]; |
296 |
+ |
|
297 |
|
} |
298 |
< |
|
299 |
< |
setFrc(frc); |
300 |
< |
setTrq(trq); |
252 |
< |
|
298 |
> |
addFrc(frc); |
299 |
> |
addTrq(trq); |
300 |
> |
return tau_; |
301 |
|
} |
302 |
|
|
303 |
|
void RigidBody::updateAtoms() { |
319 |
|
if (atoms_[i]->isDirectional()) { |
320 |
|
|
321 |
|
dAtom = (DirectionalAtom *) atoms_[i]; |
322 |
< |
dAtom->setA(refOrients_[i] * a); |
322 |
> |
dAtom->setA(refOrients_[i].transpose() * a); |
323 |
|
} |
324 |
|
|
325 |
|
} |
346 |
|
if (atoms_[i]->isDirectional()) { |
347 |
|
|
348 |
|
dAtom = (DirectionalAtom *) atoms_[i]; |
349 |
< |
dAtom->setA(refOrients_[i] * a, frame); |
349 |
> |
dAtom->setA(refOrients_[i].transpose() * a, frame); |
350 |
|
} |
351 |
|
|
352 |
|
} |
531 |
|
"RigidBody error.\n" |
532 |
|
"\tAtom %s does not have a position specified.\n" |
533 |
|
"\tThis means RigidBody cannot set up reference coordinates.\n", |
534 |
< |
ats->getType() ); |
534 |
> |
ats->getType().c_str() ); |
535 |
|
painCave.isFatal = 1; |
536 |
|
simError(); |
537 |
|
} |
551 |
|
"RigidBody error.\n" |
552 |
|
"\tAtom %s does not have an orientation specified.\n" |
553 |
|
"\tThis means RigidBody cannot set up reference orientations.\n", |
554 |
< |
ats->getType() ); |
554 |
> |
ats->getType().c_str() ); |
555 |
|
painCave.isFatal = 1; |
556 |
|
simError(); |
557 |
|
} |