ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/primitives/RigidBody.cpp
(Generate patch)

Comparing:
trunk/src/primitives/RigidBody.cpp (file contents), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/primitives/RigidBody.cpp (file contents), Revision 1794 by gezelter, Thu Sep 6 19:44:06 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include <algorithm>
43   #include <math.h>
44   #include "primitives/RigidBody.hpp"
45   #include "utils/simError.h"
46 < namespace oopse {
47 <
48 < RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){
49 <
50 < }
51 <
52 < void RigidBody::setPrevA(const RotMat3x3d& a) {
46 > #include "utils/NumericConstant.hpp"
47 > namespace OpenMD {
48 >  
49 >  RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData),
50 >                           inertiaTensor_(0.0){    
51 >  }
52 >  
53 >  void RigidBody::setPrevA(const RotMat3x3d& a) {
54      ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
55 <    //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
56 <
57 <    for (int i =0 ; i < atoms_.size(); ++i){
58 <        if (atoms_[i]->isDirectional()) {
59 <            atoms_[i]->setPrevA(a * refOrients_[i]);
58 <        }
55 >    
56 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
57 >      if (atoms_[i]->isDirectional()) {
58 >        atoms_[i]->setPrevA(refOrients_[i].transpose() * a);
59 >      }
60      }
61 <
62 < }
63 <
64 <      
65 < void RigidBody::setA(const RotMat3x3d& a) {
61 >    
62 >  }
63 >  
64 >  
65 >  void RigidBody::setA(const RotMat3x3d& a) {
66      ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
66    //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
67  
68 <    for (int i =0 ; i < atoms_.size(); ++i){
69 <        if (atoms_[i]->isDirectional()) {
70 <            atoms_[i]->setA(a * refOrients_[i]);
71 <        }
68 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
69 >      if (atoms_[i]->isDirectional()) {
70 >        atoms_[i]->setA(refOrients_[i].transpose() * a);
71 >      }
72      }
73 < }    
74 <    
75 < void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
73 >  }    
74 >  
75 >  void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
76      ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
77 <    //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;    
78 <
79 <    for (int i =0 ; i < atoms_.size(); ++i){
80 <        if (atoms_[i]->isDirectional()) {
81 <            atoms_[i]->setA(a * refOrients_[i], snapshotNo);
82 <        }
77 >        
78 >    for (unsigned int i = 0 ; i < atoms_.size(); ++i){
79 >      if (atoms_[i]->isDirectional()) {
80 >        atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo);
81 >      }
82      }
83 <
84 < }  
85 <
86 < Mat3x3d RigidBody::getI() {
83 >    
84 >  }  
85 >  
86 >  Mat3x3d RigidBody::getI() {
87      return inertiaTensor_;
88 < }    
89 <
90 < std::vector<double> RigidBody::getGrad() {
91 <     std::vector<double> grad(6, 0.0);
88 >  }    
89 >  
90 >  std::vector<RealType> RigidBody::getGrad() {
91 >    std::vector<RealType> grad(6, 0.0);
92      Vector3d force;
93      Vector3d torque;
94      Vector3d myEuler;
95 <    double phi, theta, psi;
96 <    double cphi, sphi, ctheta, stheta;
95 >    RealType phi, theta, psi;
96 >    RealType cphi, sphi, ctheta, stheta;
97      Vector3d ephi;
98      Vector3d etheta;
99      Vector3d epsi;
100 <
100 >    
101      force = getFrc();
102      torque =getTrq();
103      myEuler = getA().toEulerAngles();
104 <
104 >    
105      phi = myEuler[0];
106      theta = myEuler[1];
107      psi = myEuler[2];
108 <
108 >    
109      cphi = cos(phi);
110      sphi = sin(phi);
111      ctheta = cos(theta);
112      stheta = sin(theta);
113 <
113 >    
114      // get unit vectors along the phi, theta and psi rotation axes
115 <
115 >    
116      ephi[0] = 0.0;
117      ephi[1] = 0.0;
118      ephi[2] = 1.0;
119 <
119 >    
120 >    //etheta[0] = -sphi;
121 >    //etheta[1] =  cphi;
122 >    //etheta[2] =  0.0;
123 >    
124      etheta[0] = cphi;
125      etheta[1] = sphi;
126 <    etheta[2] = 0.0;
127 <
126 >    etheta[2] =  0.0;
127 >    
128      epsi[0] = stheta * cphi;
129      epsi[1] = stheta * sphi;
130      epsi[2] = ctheta;
131 <
131 >    
132      //gradient is equal to -force
133      for (int j = 0 ; j<3; j++)
134 <        grad[j] = -force[j];
135 <
134 >      grad[j] = -force[j];
135 >    
136      for (int j = 0; j < 3; j++ ) {
137 <
138 <        grad[3] += torque[j]*ephi[j];
139 <        grad[4] += torque[j]*etheta[j];
140 <        grad[5] += torque[j]*epsi[j];
141 <
137 >      
138 >      grad[3] += torque[j]*ephi[j];
139 >      grad[4] += torque[j]*etheta[j];
140 >      grad[5] += torque[j]*epsi[j];
141 >      
142      }
143      
144      return grad;
145 < }    
146 <
147 < void RigidBody::accept(BaseVisitor* v) {
145 >  }    
146 >  
147 >  void RigidBody::accept(BaseVisitor* v) {
148      v->visit(this);
149 < }    
149 >  }    
150  
151 < /**@todo need modification */
152 < void  RigidBody::calcRefCoords() {
153 <    double mtmp;
151 >  /**@todo need modification */
152 >  void  RigidBody::calcRefCoords() {
153 >    RealType mtmp;
154      Vector3d refCOM(0.0);
155      mass_ = 0.0;
156      for (std::size_t i = 0; i < atoms_.size(); ++i) {
157 <        mtmp = atoms_[i]->getMass();
158 <        mass_ += mtmp;
159 <        refCOM += refCoords_[i]*mtmp;
157 >      mtmp = atoms_[i]->getMass();
158 >      mass_ += mtmp;
159 >      refCOM += refCoords_[i]*mtmp;
160      }
161      refCOM /= mass_;
162 <
162 >    
163      // Next, move the origin of the reference coordinate system to the COM:
164      for (std::size_t i = 0; i < atoms_.size(); ++i) {
165 <        refCoords_[i] -= refCOM;
165 >      refCoords_[i] -= refCOM;
166      }
167  
168 < // Moment of Inertia calculation
169 <    Mat3x3d Itmp(0.0);
167 <  
168 >    // Moment of Inertia calculation
169 >    Mat3x3d Itmp(0.0);    
170      for (std::size_t i = 0; i < atoms_.size(); i++) {
171 <        mtmp = atoms_[i]->getMass();
172 <        Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
173 <        double r2 = refCoords_[i].lengthSquare();
174 <        Itmp(0, 0) += mtmp * r2;
175 <        Itmp(1, 1) += mtmp * r2;
176 <        Itmp(2, 2) += mtmp * r2;
171 >      Mat3x3d IAtom(0.0);  
172 >      mtmp = atoms_[i]->getMass();
173 >      IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
174 >      RealType r2 = refCoords_[i].lengthSquare();
175 >      IAtom(0, 0) += mtmp * r2;
176 >      IAtom(1, 1) += mtmp * r2;
177 >      IAtom(2, 2) += mtmp * r2;
178 >      Itmp += IAtom;
179 >      
180 >      //project the inertial moment of directional atoms into this rigid body
181 >      if (atoms_[i]->isDirectional()) {
182 >        Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i];
183 >      }
184      }
185  
186 <    //project the inertial moment of directional atoms into this rigid body
178 <    for (std::size_t i = 0; i < atoms_.size(); i++) {
179 <        if (atoms_[i]->isDirectional()) {
180 <            RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI();
181 <            Itmp(0, 0) += Iproject(0, 0);
182 <            Itmp(1, 1) += Iproject(1, 1);
183 <            Itmp(2, 2) += Iproject(2, 2);
184 <        }
185 <    }
186 >    //    std::cout << Itmp << std::endl;
187  
188      //diagonalize
189      Vector3d evals;
# Line 195 | Line 196 | void  RigidBody::calcRefCoords() {
196          
197      int nLinearAxis = 0;
198      for (int i = 0; i < 3; i++) {    
199 <        if (fabs(evals[i]) < oopse::epsilon) {
200 <            linear_ = true;
201 <            linearAxis_ = i;
202 <            ++ nLinearAxis;
203 <        }
199 >      if (fabs(evals[i]) < OpenMD::epsilon) {
200 >        linear_ = true;
201 >        linearAxis_ = i;
202 >        ++ nLinearAxis;
203 >      }
204      }
205  
206      if (nLinearAxis > 1) {
207 <        sprintf( painCave.errMsg,
208 <            "RigidBody error.\n"
209 <            "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
210 <            "\tmoment of inertia.  This can happen in one of three ways:\n"
211 <            "\t 1) Only one atom was specified, or \n"
212 <            "\t 2) All atoms were specified at the same location, or\n"
213 <            "\t 3) The programmers did something stupid.\n"
214 <            "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
215 <            );
216 <        painCave.isFatal = 1;
217 <        simError();
207 >      sprintf( painCave.errMsg,
208 >               "RigidBody error.\n"
209 >               "\tOpenMD found more than one axis in this rigid body with a vanishing \n"
210 >               "\tmoment of inertia.  This can happen in one of three ways:\n"
211 >               "\t 1) Only one atom was specified, or \n"
212 >               "\t 2) All atoms were specified at the same location, or\n"
213 >               "\t 3) The programmers did something stupid.\n"
214 >               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n"
215 >               );
216 >      painCave.isFatal = 1;
217 >      simError();
218      }
219    
220 < }
220 >  }
221  
222 < void  RigidBody::calcForcesAndTorques() {
222 >  void  RigidBody::calcForcesAndTorques() {
223      Vector3d afrc;
224      Vector3d atrq;
225      Vector3d apos;
226      Vector3d rpos;
227      Vector3d frc(0.0);
228 <    Vector3d trq(0.0);
228 >    Vector3d trq(0.0);    
229      Vector3d pos = this->getPos();
230 <    for (int i = 0; i < atoms_.size(); i++) {
230 >    for (unsigned int i = 0; i < atoms_.size(); i++) {
231  
232 <        afrc = atoms_[i]->getFrc();
233 <        apos = atoms_[i]->getPos();
234 <        rpos = apos - pos;
232 >      afrc = atoms_[i]->getFrc();
233 >      apos = atoms_[i]->getPos();
234 >      rpos = apos - pos;
235          
236 <        frc += afrc;
236 >      frc += afrc;
237  
238 <        trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
239 <        trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
240 <        trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
238 >      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
239 >      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
240 >      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
241  
242 <        // If the atom has a torque associated with it, then we also need to
243 <        // migrate the torques onto the center of mass:
242 >      // If the atom has a torque associated with it, then we also need to
243 >      // migrate the torques onto the center of mass:
244  
245 <        if (atoms_[i]->isDirectional()) {
246 <            atrq = atoms_[i]->getTrq();
247 <            trq += atrq;
248 <        }
245 >      if (atoms_[i]->isDirectional()) {
246 >        atrq = atoms_[i]->getTrq();
247 >        trq += atrq;
248 >      }      
249 >    }        
250 >    addFrc(frc);
251 >    addTrq(trq);    
252 >  }
253 >
254 >  Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() {
255 >    Vector3d afrc;
256 >    Vector3d atrq;
257 >    Vector3d apos;
258 >    Vector3d rpos;
259 >    Vector3d dfrc;
260 >    Vector3d frc(0.0);
261 >    Vector3d trq(0.0);    
262 >    Vector3d pos = this->getPos();
263 >    Mat3x3d tau_(0.0);
264 >
265 >    for (unsigned int i = 0; i < atoms_.size(); i++) {
266 >      
267 >      afrc = atoms_[i]->getFrc();
268 >      apos = atoms_[i]->getPos();
269 >      rpos = apos - pos;
270          
271 +      frc += afrc;
272 +
273 +      trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
274 +      trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
275 +      trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
276 +
277 +      // If the atom has a torque associated with it, then we also need to
278 +      // migrate the torques onto the center of mass:
279 +
280 +      if (atoms_[i]->isDirectional()) {
281 +        atrq = atoms_[i]->getTrq();
282 +        trq += atrq;
283 +      }
284 +      
285 +      tau_(0,0) -= rpos[0]*afrc[0];
286 +      tau_(0,1) -= rpos[0]*afrc[1];
287 +      tau_(0,2) -= rpos[0]*afrc[2];
288 +      tau_(1,0) -= rpos[1]*afrc[0];
289 +      tau_(1,1) -= rpos[1]*afrc[1];
290 +      tau_(1,2) -= rpos[1]*afrc[2];
291 +      tau_(2,0) -= rpos[2]*afrc[0];
292 +      tau_(2,1) -= rpos[2]*afrc[1];
293 +      tau_(2,2) -= rpos[2]*afrc[2];
294 +
295      }
296 <    
297 <    setFrc(frc);
298 <    setTrq(trq);
299 <    
254 < }
296 >    addFrc(frc);
297 >    addTrq(trq);
298 >    return tau_;
299 >  }
300  
301 < void  RigidBody::updateAtoms() {
301 >  void  RigidBody::updateAtoms() {
302      unsigned int i;
303      Vector3d ref;
304      Vector3d apos;
# Line 263 | Line 308 | void  RigidBody::updateAtoms() {
308      
309      for (i = 0; i < atoms_.size(); i++) {
310      
311 <        ref = body2Lab(refCoords_[i]);
311 >      ref = body2Lab(refCoords_[i]);
312  
313 <        apos = pos + ref;
269 <
270 <        atoms_[i]->setPos(apos);
313 >      apos = pos + ref;
314  
315 <        if (atoms_[i]->isDirectional()) {
315 >      atoms_[i]->setPos(apos);
316 >
317 >      if (atoms_[i]->isDirectional()) {
318            
319 <          dAtom = (DirectionalAtom *) atoms_[i];
320 <          dAtom->setA(a * refOrients_[i]);
321 <          //dAtom->rotateBy( A );      
277 <        }
319 >        dAtom = (DirectionalAtom *) atoms_[i];
320 >        dAtom->setA(refOrients_[i].transpose() * a);
321 >      }
322  
323      }
324    
325 < }
325 >  }
326  
327  
328 < void  RigidBody::updateAtoms(int frame) {
328 >  void  RigidBody::updateAtoms(int frame) {
329      unsigned int i;
330      Vector3d ref;
331      Vector3d apos;
# Line 291 | Line 335 | void  RigidBody::updateAtoms(int frame) {
335      
336      for (i = 0; i < atoms_.size(); i++) {
337      
338 <        ref = body2Lab(refCoords_[i], frame);
338 >      ref = body2Lab(refCoords_[i], frame);
339  
340 <        apos = pos + ref;
340 >      apos = pos + ref;
341  
342 <        atoms_[i]->setPos(apos, frame);
342 >      atoms_[i]->setPos(apos, frame);
343  
344 <        if (atoms_[i]->isDirectional()) {
344 >      if (atoms_[i]->isDirectional()) {
345            
346 <          dAtom = (DirectionalAtom *) atoms_[i];
347 <          dAtom->setA(a * refOrients_[i], frame);
348 <        }
346 >        dAtom = (DirectionalAtom *) atoms_[i];
347 >        dAtom->setA(refOrients_[i].transpose() * a, frame);
348 >      }
349  
350      }
351    
352 < }
352 >  }
353  
354 < void RigidBody::updateAtomVel() {
354 >  void RigidBody::updateAtomVel() {
355      Mat3x3d skewMat;;
356  
357      Vector3d ji = getJ();
# Line 330 | Line 374 | void RigidBody::updateAtomVel() {
374  
375  
376      Vector3d velRot;        
377 <    for (int i =0 ; i < refCoords_.size(); ++i) {
378 <        atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
377 >    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) {
378 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
379      }
380  
381 < }
381 >  }
382  
383 < void RigidBody::updateAtomVel(int frame) {
383 >  void RigidBody::updateAtomVel(int frame) {
384      Mat3x3d skewMat;;
385  
386      Vector3d ji = getJ(frame);
# Line 359 | Line 403 | void RigidBody::updateAtomVel(int frame) {
403  
404  
405      Vector3d velRot;        
406 <    for (int i =0 ; i < refCoords_.size(); ++i) {
407 <        atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
406 >    for (unsigned int i = 0 ; i < refCoords_.size(); ++i) {
407 >      atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
408      }
409  
410 < }
410 >  }
411  
412          
413  
414 < bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
414 >  bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
415      if (index < atoms_.size()) {
416  
417 <        Vector3d ref = body2Lab(refCoords_[index]);
418 <        pos = getPos() + ref;
419 <        return true;
417 >      Vector3d ref = body2Lab(refCoords_[index]);
418 >      pos = getPos() + ref;
419 >      return true;
420      } else {
421 <        std::cerr << index << " is an invalid index, current rigid body contains "
422 <                      << atoms_.size() << "atoms" << std::endl;
423 <        return false;
421 >      std::cerr << index << " is an invalid index, current rigid body contains "
422 >                << atoms_.size() << "atoms" << std::endl;
423 >      return false;
424      }    
425 < }
425 >  }
426  
427 < bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
427 >  bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
428      std::vector<Atom*>::iterator i;
429      i = std::find(atoms_.begin(), atoms_.end(), atom);
430      if (i != atoms_.end()) {
431 <        //RigidBody class makes sure refCoords_ and atoms_ match each other
432 <        Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
433 <        pos = getPos() + ref;
434 <        return true;
431 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
432 >      Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
433 >      pos = getPos() + ref;
434 >      return true;
435      } else {
436 <        std::cerr << "Atom " << atom->getGlobalIndex()
437 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
438 <        return false;
436 >      std::cerr << "Atom " << atom->getGlobalIndex()
437 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
438 >      return false;
439      }
440 < }
441 < bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
440 >  }
441 >  bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
442  
443      //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
444  
445      if (index < atoms_.size()) {
446  
447 <        Vector3d velRot;
448 <        Mat3x3d skewMat;;
449 <        Vector3d ref = refCoords_[index];
450 <        Vector3d ji = getJ();
451 <        Mat3x3d I =  getI();
447 >      Vector3d velRot;
448 >      Mat3x3d skewMat;;
449 >      Vector3d ref = refCoords_[index];
450 >      Vector3d ji = getJ();
451 >      Mat3x3d I =  getI();
452  
453 <        skewMat(0, 0) =0;
454 <        skewMat(0, 1) = ji[2] /I(2, 2);
455 <        skewMat(0, 2) = -ji[1] /I(1, 1);
453 >      skewMat(0, 0) =0;
454 >      skewMat(0, 1) = ji[2] /I(2, 2);
455 >      skewMat(0, 2) = -ji[1] /I(1, 1);
456  
457 <        skewMat(1, 0) = -ji[2] /I(2, 2);
458 <        skewMat(1, 1) = 0;
459 <        skewMat(1, 2) = ji[0]/I(0, 0);
457 >      skewMat(1, 0) = -ji[2] /I(2, 2);
458 >      skewMat(1, 1) = 0;
459 >      skewMat(1, 2) = ji[0]/I(0, 0);
460  
461 <        skewMat(2, 0) =ji[1] /I(1, 1);
462 <        skewMat(2, 1) = -ji[0]/I(0, 0);
463 <        skewMat(2, 2) = 0;
461 >      skewMat(2, 0) =ji[1] /I(1, 1);
462 >      skewMat(2, 1) = -ji[0]/I(0, 0);
463 >      skewMat(2, 2) = 0;
464  
465 <        velRot = (getA() * skewMat).transpose() * ref;
465 >      velRot = (getA() * skewMat).transpose() * ref;
466  
467 <        vel =getVel() + velRot;
468 <        return true;
467 >      vel =getVel() + velRot;
468 >      return true;
469          
470      } else {
471 <        std::cerr << index << " is an invalid index, current rigid body contains "
472 <                      << atoms_.size() << "atoms" << std::endl;
473 <        return false;
471 >      std::cerr << index << " is an invalid index, current rigid body contains "
472 >                << atoms_.size() << "atoms" << std::endl;
473 >      return false;
474      }
475 < }
475 >  }
476  
477 < bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
477 >  bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
478  
479      std::vector<Atom*>::iterator i;
480      i = std::find(atoms_.begin(), atoms_.end(), atom);
481      if (i != atoms_.end()) {
482 <        return getAtomVel(vel, i - atoms_.begin());
482 >      return getAtomVel(vel, i - atoms_.begin());
483      } else {
484 <        std::cerr << "Atom " << atom->getGlobalIndex()
485 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
486 <        return false;
484 >      std::cerr << "Atom " << atom->getGlobalIndex()
485 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
486 >      return false;
487      }    
488 < }
488 >  }
489  
490 < bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
490 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
491      if (index < atoms_.size()) {
492  
493 <        coor = refCoords_[index];
494 <        return true;
493 >      coor = refCoords_[index];
494 >      return true;
495      } else {
496 <        std::cerr << index << " is an invalid index, current rigid body contains "
497 <                      << atoms_.size() << "atoms" << std::endl;
498 <        return false;
496 >      std::cerr << index << " is an invalid index, current rigid body contains "
497 >                << atoms_.size() << "atoms" << std::endl;
498 >      return false;
499      }
500  
501 < }
501 >  }
502  
503 < bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
503 >  bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
504      std::vector<Atom*>::iterator i;
505      i = std::find(atoms_.begin(), atoms_.end(), atom);
506      if (i != atoms_.end()) {
507 <        //RigidBody class makes sure refCoords_ and atoms_ match each other
508 <        coor = refCoords_[i - atoms_.begin()];
509 <        return true;
507 >      //RigidBody class makes sure refCoords_ and atoms_ match each other
508 >      coor = refCoords_[i - atoms_.begin()];
509 >      return true;
510      } else {
511 <        std::cerr << "Atom " << atom->getGlobalIndex()
512 <                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
513 <        return false;
511 >      std::cerr << "Atom " << atom->getGlobalIndex()
512 >                <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;    
513 >      return false;
514      }
515  
516 < }
516 >  }
517  
518  
519 < void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
519 >  void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
520  
521 <  Vector3d coords;
522 <  Vector3d euler;
521 >    Vector3d coords;
522 >    Vector3d euler;
523    
524  
525 <  atoms_.push_back(at);
525 >    atoms_.push_back(at);
526  
527 <  if( !ats->havePosition() ){
528 <    sprintf( painCave.errMsg,
529 <             "RigidBody error.\n"
530 <             "\tAtom %s does not have a position specified.\n"
531 <             "\tThis means RigidBody cannot set up reference coordinates.\n",
532 <             ats->getType() );
533 <    painCave.isFatal = 1;
534 <    simError();
535 <  }
527 >    if( !ats->havePosition() ){
528 >      sprintf( painCave.errMsg,
529 >               "RigidBody error.\n"
530 >               "\tAtom %s does not have a position specified.\n"
531 >               "\tThis means RigidBody cannot set up reference coordinates.\n",
532 >               ats->getType().c_str() );
533 >      painCave.isFatal = 1;
534 >      simError();
535 >    }
536    
537 <  coords[0] = ats->getPosX();
538 <  coords[1] = ats->getPosY();
539 <  coords[2] = ats->getPosZ();
537 >    coords[0] = ats->getPosX();
538 >    coords[1] = ats->getPosY();
539 >    coords[2] = ats->getPosZ();
540  
541 <  refCoords_.push_back(coords);
541 >    refCoords_.push_back(coords);
542  
543 <  RotMat3x3d identMat = RotMat3x3d::identity();
543 >    RotMat3x3d identMat = RotMat3x3d::identity();
544    
545 <  if (at->isDirectional()) {  
545 >    if (at->isDirectional()) {  
546  
547 <    if( !ats->haveOrientation() ){
548 <      sprintf( painCave.errMsg,
549 <               "RigidBody error.\n"
550 <               "\tAtom %s does not have an orientation specified.\n"
551 <               "\tThis means RigidBody cannot set up reference orientations.\n",
552 <               ats->getType() );
553 <      painCave.isFatal = 1;
554 <      simError();
555 <    }    
547 >      if( !ats->haveOrientation() ){
548 >        sprintf( painCave.errMsg,
549 >                 "RigidBody error.\n"
550 >                 "\tAtom %s does not have an orientation specified.\n"
551 >                 "\tThis means RigidBody cannot set up reference orientations.\n",
552 >                 ats->getType().c_str() );
553 >        painCave.isFatal = 1;
554 >        simError();
555 >      }    
556      
557 <    euler[0] = ats->getEulerPhi();
558 <    euler[1] = ats->getEulerTheta();
559 <    euler[2] = ats->getEulerPsi();
557 >      euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0;
558 >      euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0;
559 >      euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0;
560  
561 <    RotMat3x3d Atmp(euler);
562 <    refOrients_.push_back(Atmp);
561 >      RotMat3x3d Atmp(euler);
562 >      refOrients_.push_back(Atmp);
563      
564 <  }else {
565 <    refOrients_.push_back(identMat);
566 <  }
564 >    }else {
565 >      refOrients_.push_back(identMat);
566 >    }
567    
568    
569 < }
569 >  }
570  
571   }
572  

Comparing:
trunk/src/primitives/RigidBody.cpp (property svn:keywords), Revision 334 by tim, Mon Feb 14 17:57:01 2005 UTC vs.
branches/development/src/primitives/RigidBody.cpp (property svn:keywords), Revision 1794 by gezelter, Thu Sep 6 19:44:06 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines