1 |
+ |
/* |
2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
+ |
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
+ |
*/ |
42 |
+ |
#include <algorithm> |
43 |
|
#include <math.h> |
44 |
< |
#include "RigidBody.hpp" |
45 |
< |
#include "DirectionalAtom.hpp" |
46 |
< |
#include "simError.h" |
47 |
< |
#include "MatVec3.h" |
48 |
< |
|
49 |
< |
RigidBody::RigidBody() : StuntDouble() { |
50 |
< |
objType = OT_RIGIDBODY; |
9 |
< |
is_linear = false; |
10 |
< |
linear_axis = -1; |
11 |
< |
momIntTol = 1e-6; |
12 |
< |
} |
13 |
< |
|
14 |
< |
RigidBody::~RigidBody() { |
15 |
< |
} |
16 |
< |
|
17 |
< |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
18 |
< |
|
19 |
< |
vec3 coords; |
20 |
< |
vec3 euler; |
21 |
< |
mat3x3 Atmp; |
22 |
< |
|
23 |
< |
myAtoms.push_back(at); |
24 |
< |
|
25 |
< |
if( !ats->havePosition() ){ |
26 |
< |
sprintf( painCave.errMsg, |
27 |
< |
"RigidBody error.\n" |
28 |
< |
"\tAtom %s does not have a position specified.\n" |
29 |
< |
"\tThis means RigidBody cannot set up reference coordinates.\n", |
30 |
< |
ats->getType() ); |
31 |
< |
painCave.isFatal = 1; |
32 |
< |
simError(); |
44 |
> |
#include "primitives/RigidBody.hpp" |
45 |
> |
#include "utils/simError.h" |
46 |
> |
#include "utils/NumericConstant.hpp" |
47 |
> |
namespace OpenMD { |
48 |
> |
|
49 |
> |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), |
50 |
> |
inertiaTensor_(0.0){ |
51 |
|
} |
52 |
|
|
53 |
< |
coords[0] = ats->getPosX(); |
54 |
< |
coords[1] = ats->getPosY(); |
37 |
< |
coords[2] = ats->getPosZ(); |
38 |
< |
|
39 |
< |
refCoords.push_back(coords); |
40 |
< |
|
41 |
< |
if (at->isDirectional()) { |
42 |
< |
|
43 |
< |
if( !ats->haveOrientation() ){ |
44 |
< |
sprintf( painCave.errMsg, |
45 |
< |
"RigidBody error.\n" |
46 |
< |
"\tAtom %s does not have an orientation specified.\n" |
47 |
< |
"\tThis means RigidBody cannot set up reference orientations.\n", |
48 |
< |
ats->getType() ); |
49 |
< |
painCave.isFatal = 1; |
50 |
< |
simError(); |
51 |
< |
} |
53 |
> |
void RigidBody::setPrevA(const RotMat3x3d& a) { |
54 |
> |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
55 |
|
|
56 |
< |
euler[0] = ats->getEulerPhi(); |
57 |
< |
euler[1] = ats->getEulerTheta(); |
58 |
< |
euler[2] = ats->getEulerPsi(); |
56 |
> |
for (int i =0 ; i < atoms_.size(); ++i){ |
57 |
> |
if (atoms_[i]->isDirectional()) { |
58 |
> |
atoms_[i]->setPrevA(refOrients_[i].transpose() * a); |
59 |
> |
} |
60 |
> |
} |
61 |
|
|
57 |
– |
doEulerToRotMat(euler, Atmp); |
58 |
– |
|
59 |
– |
refOrients.push_back(Atmp); |
60 |
– |
|
62 |
|
} |
63 |
< |
} |
63 |
> |
|
64 |
> |
|
65 |
> |
void RigidBody::setA(const RotMat3x3d& a) { |
66 |
> |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
67 |
|
|
68 |
< |
void RigidBody::getPos(double theP[3]){ |
69 |
< |
for (int i = 0; i < 3 ; i++) |
70 |
< |
theP[i] = pos[i]; |
71 |
< |
} |
72 |
< |
|
73 |
< |
void RigidBody::setPos(double theP[3]){ |
70 |
< |
for (int i = 0; i < 3 ; i++) |
71 |
< |
pos[i] = theP[i]; |
72 |
< |
} |
73 |
< |
|
74 |
< |
void RigidBody::getVel(double theV[3]){ |
75 |
< |
for (int i = 0; i < 3 ; i++) |
76 |
< |
theV[i] = vel[i]; |
77 |
< |
} |
78 |
< |
|
79 |
< |
void RigidBody::setVel(double theV[3]){ |
80 |
< |
for (int i = 0; i < 3 ; i++) |
81 |
< |
vel[i] = theV[i]; |
82 |
< |
} |
83 |
< |
|
84 |
< |
void RigidBody::getFrc(double theF[3]){ |
85 |
< |
for (int i = 0; i < 3 ; i++) |
86 |
< |
theF[i] = frc[i]; |
87 |
< |
} |
88 |
< |
|
89 |
< |
void RigidBody::addFrc(double theF[3]){ |
90 |
< |
for (int i = 0; i < 3 ; i++) |
91 |
< |
frc[i] += theF[i]; |
92 |
< |
} |
93 |
< |
|
94 |
< |
void RigidBody::zeroForces() { |
95 |
< |
|
96 |
< |
for (int i = 0; i < 3; i++) { |
97 |
< |
frc[i] = 0.0; |
98 |
< |
trq[i] = 0.0; |
99 |
< |
} |
100 |
< |
|
101 |
< |
} |
102 |
< |
|
103 |
< |
void RigidBody::setEuler( double phi, double theta, double psi ){ |
68 |
> |
for (int i =0 ; i < atoms_.size(); ++i){ |
69 |
> |
if (atoms_[i]->isDirectional()) { |
70 |
> |
atoms_[i]->setA(refOrients_[i].transpose() * a); |
71 |
> |
} |
72 |
> |
} |
73 |
> |
} |
74 |
|
|
75 |
< |
A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
76 |
< |
A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
107 |
< |
A[0][2] = sin(theta) * sin(psi); |
75 |
> |
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
76 |
> |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
77 |
|
|
78 |
< |
A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
110 |
< |
A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
111 |
< |
A[1][2] = sin(theta) * cos(psi); |
78 |
> |
//((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
79 |
|
|
80 |
< |
A[2][0] = sin(phi) * sin(theta); |
81 |
< |
A[2][1] = -cos(phi) * sin(theta); |
82 |
< |
A[2][2] = cos(theta); |
83 |
< |
|
84 |
< |
} |
85 |
< |
|
86 |
< |
void RigidBody::getQ( double q[4] ){ |
80 |
> |
for (int i =0 ; i < atoms_.size(); ++i){ |
81 |
> |
if (atoms_[i]->isDirectional()) { |
82 |
> |
atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); |
83 |
> |
} |
84 |
> |
} |
85 |
> |
|
86 |
> |
} |
87 |
|
|
88 |
< |
double t, s; |
89 |
< |
double ad1, ad2, ad3; |
88 |
> |
Mat3x3d RigidBody::getI() { |
89 |
> |
return inertiaTensor_; |
90 |
> |
} |
91 |
> |
|
92 |
> |
std::vector<RealType> RigidBody::getGrad() { |
93 |
> |
std::vector<RealType> grad(6, 0.0); |
94 |
> |
Vector3d force; |
95 |
> |
Vector3d torque; |
96 |
> |
Vector3d myEuler; |
97 |
> |
RealType phi, theta, psi; |
98 |
> |
RealType cphi, sphi, ctheta, stheta; |
99 |
> |
Vector3d ephi; |
100 |
> |
Vector3d etheta; |
101 |
> |
Vector3d epsi; |
102 |
|
|
103 |
< |
t = A[0][0] + A[1][1] + A[2][2] + 1.0; |
104 |
< |
if( t > 0.0 ){ |
103 |
> |
force = getFrc(); |
104 |
> |
torque =getTrq(); |
105 |
> |
myEuler = getA().toEulerAngles(); |
106 |
|
|
107 |
< |
s = 0.5 / sqrt( t ); |
108 |
< |
q[0] = 0.25 / s; |
109 |
< |
q[1] = (A[1][2] - A[2][1]) * s; |
130 |
< |
q[2] = (A[2][0] - A[0][2]) * s; |
131 |
< |
q[3] = (A[0][1] - A[1][0]) * s; |
132 |
< |
} |
133 |
< |
else{ |
107 |
> |
phi = myEuler[0]; |
108 |
> |
theta = myEuler[1]; |
109 |
> |
psi = myEuler[2]; |
110 |
|
|
111 |
< |
ad1 = fabs( A[0][0] ); |
112 |
< |
ad2 = fabs( A[1][1] ); |
113 |
< |
ad3 = fabs( A[2][2] ); |
111 |
> |
cphi = cos(phi); |
112 |
> |
sphi = sin(phi); |
113 |
> |
ctheta = cos(theta); |
114 |
> |
stheta = sin(theta); |
115 |
|
|
116 |
< |
if( ad1 >= ad2 && ad1 >= ad3 ){ |
116 |
> |
// get unit vectors along the phi, theta and psi rotation axes |
117 |
> |
|
118 |
> |
ephi[0] = 0.0; |
119 |
> |
ephi[1] = 0.0; |
120 |
> |
ephi[2] = 1.0; |
121 |
> |
|
122 |
> |
//etheta[0] = -sphi; |
123 |
> |
//etheta[1] = cphi; |
124 |
> |
//etheta[2] = 0.0; |
125 |
> |
|
126 |
> |
etheta[0] = cphi; |
127 |
> |
etheta[1] = sphi; |
128 |
> |
etheta[2] = 0.0; |
129 |
> |
|
130 |
> |
epsi[0] = stheta * cphi; |
131 |
> |
epsi[1] = stheta * sphi; |
132 |
> |
epsi[2] = ctheta; |
133 |
> |
|
134 |
> |
//gradient is equal to -force |
135 |
> |
for (int j = 0 ; j<3; j++) |
136 |
> |
grad[j] = -force[j]; |
137 |
> |
|
138 |
> |
for (int j = 0; j < 3; j++ ) { |
139 |
|
|
140 |
< |
s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] ); |
141 |
< |
q[0] = (A[1][2] + A[2][1]) / s; |
142 |
< |
q[1] = 0.5 / s; |
144 |
< |
q[2] = (A[0][1] + A[1][0]) / s; |
145 |
< |
q[3] = (A[0][2] + A[2][0]) / s; |
146 |
< |
} |
147 |
< |
else if( ad2 >= ad1 && ad2 >= ad3 ){ |
140 |
> |
grad[3] += torque[j]*ephi[j]; |
141 |
> |
grad[4] += torque[j]*etheta[j]; |
142 |
> |
grad[5] += torque[j]*epsi[j]; |
143 |
|
|
149 |
– |
s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0; |
150 |
– |
q[0] = (A[0][2] + A[2][0]) / s; |
151 |
– |
q[1] = (A[0][1] + A[1][0]) / s; |
152 |
– |
q[2] = 0.5 / s; |
153 |
– |
q[3] = (A[1][2] + A[2][1]) / s; |
144 |
|
} |
145 |
< |
else{ |
145 |
> |
|
146 |
> |
return grad; |
147 |
> |
} |
148 |
> |
|
149 |
> |
void RigidBody::accept(BaseVisitor* v) { |
150 |
> |
v->visit(this); |
151 |
> |
} |
152 |
> |
|
153 |
> |
/**@todo need modification */ |
154 |
> |
void RigidBody::calcRefCoords() { |
155 |
> |
RealType mtmp; |
156 |
> |
Vector3d refCOM(0.0); |
157 |
> |
mass_ = 0.0; |
158 |
> |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
159 |
> |
mtmp = atoms_[i]->getMass(); |
160 |
> |
mass_ += mtmp; |
161 |
> |
refCOM += refCoords_[i]*mtmp; |
162 |
> |
} |
163 |
> |
refCOM /= mass_; |
164 |
> |
|
165 |
> |
// Next, move the origin of the reference coordinate system to the COM: |
166 |
> |
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
167 |
> |
refCoords_[i] -= refCOM; |
168 |
> |
} |
169 |
> |
|
170 |
> |
// Moment of Inertia calculation |
171 |
> |
Mat3x3d Itmp(0.0); |
172 |
> |
for (std::size_t i = 0; i < atoms_.size(); i++) { |
173 |
> |
Mat3x3d IAtom(0.0); |
174 |
> |
mtmp = atoms_[i]->getMass(); |
175 |
> |
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
176 |
> |
RealType r2 = refCoords_[i].lengthSquare(); |
177 |
> |
IAtom(0, 0) += mtmp * r2; |
178 |
> |
IAtom(1, 1) += mtmp * r2; |
179 |
> |
IAtom(2, 2) += mtmp * r2; |
180 |
> |
Itmp += IAtom; |
181 |
|
|
182 |
< |
s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0; |
183 |
< |
q[0] = (A[0][1] + A[1][0]) / s; |
184 |
< |
q[1] = (A[0][2] + A[2][0]) / s; |
185 |
< |
q[2] = (A[1][2] + A[2][1]) / s; |
161 |
< |
q[3] = 0.5 / s; |
182 |
> |
//project the inertial moment of directional atoms into this rigid body |
183 |
> |
if (atoms_[i]->isDirectional()) { |
184 |
> |
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
185 |
> |
} |
186 |
|
} |
163 |
– |
} |
164 |
– |
} |
187 |
|
|
188 |
< |
void RigidBody::setQ( double the_q[4] ){ |
188 |
> |
// std::cout << Itmp << std::endl; |
189 |
|
|
190 |
< |
double q0Sqr, q1Sqr, q2Sqr, q3Sqr; |
191 |
< |
|
192 |
< |
q0Sqr = the_q[0] * the_q[0]; |
171 |
< |
q1Sqr = the_q[1] * the_q[1]; |
172 |
< |
q2Sqr = the_q[2] * the_q[2]; |
173 |
< |
q3Sqr = the_q[3] * the_q[3]; |
174 |
< |
|
175 |
< |
A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr; |
176 |
< |
A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] ); |
177 |
< |
A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] ); |
178 |
< |
|
179 |
< |
A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] ); |
180 |
< |
A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; |
181 |
< |
A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] ); |
182 |
< |
|
183 |
< |
A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); |
184 |
< |
A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); |
185 |
< |
A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; |
190 |
> |
//diagonalize |
191 |
> |
Vector3d evals; |
192 |
> |
Mat3x3d::diagonalize(Itmp, evals, sU_); |
193 |
|
|
194 |
< |
} |
194 |
> |
// zero out I and then fill the diagonals with the moments of inertia: |
195 |
> |
inertiaTensor_(0, 0) = evals[0]; |
196 |
> |
inertiaTensor_(1, 1) = evals[1]; |
197 |
> |
inertiaTensor_(2, 2) = evals[2]; |
198 |
> |
|
199 |
> |
int nLinearAxis = 0; |
200 |
> |
for (int i = 0; i < 3; i++) { |
201 |
> |
if (fabs(evals[i]) < OpenMD::epsilon) { |
202 |
> |
linear_ = true; |
203 |
> |
linearAxis_ = i; |
204 |
> |
++ nLinearAxis; |
205 |
> |
} |
206 |
> |
} |
207 |
|
|
208 |
< |
void RigidBody::getA( double the_A[3][3] ){ |
208 |
> |
if (nLinearAxis > 1) { |
209 |
> |
sprintf( painCave.errMsg, |
210 |
> |
"RigidBody error.\n" |
211 |
> |
"\tOpenMD found more than one axis in this rigid body with a vanishing \n" |
212 |
> |
"\tmoment of inertia. This can happen in one of three ways:\n" |
213 |
> |
"\t 1) Only one atom was specified, or \n" |
214 |
> |
"\t 2) All atoms were specified at the same location, or\n" |
215 |
> |
"\t 3) The programmers did something stupid.\n" |
216 |
> |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
217 |
> |
); |
218 |
> |
painCave.isFatal = 1; |
219 |
> |
simError(); |
220 |
> |
} |
221 |
|
|
222 |
< |
for (int i = 0; i < 3; i++) |
192 |
< |
for (int j = 0; j < 3; j++) |
193 |
< |
the_A[i][j] = A[i][j]; |
222 |
> |
} |
223 |
|
|
224 |
< |
} |
224 |
> |
void RigidBody::calcForcesAndTorques() { |
225 |
> |
Vector3d afrc; |
226 |
> |
Vector3d atrq; |
227 |
> |
Vector3d apos; |
228 |
> |
Vector3d rpos; |
229 |
> |
Vector3d frc(0.0); |
230 |
> |
Vector3d trq(0.0); |
231 |
> |
Vector3d pos = this->getPos(); |
232 |
> |
for (int i = 0; i < atoms_.size(); i++) { |
233 |
|
|
234 |
< |
void RigidBody::setA( double the_A[3][3] ){ |
234 |
> |
afrc = atoms_[i]->getFrc(); |
235 |
> |
apos = atoms_[i]->getPos(); |
236 |
> |
rpos = apos - pos; |
237 |
> |
|
238 |
> |
frc += afrc; |
239 |
|
|
240 |
< |
for (int i = 0; i < 3; i++) |
241 |
< |
for (int j = 0; j < 3; j++) |
242 |
< |
A[i][j] = the_A[i][j]; |
202 |
< |
|
203 |
< |
} |
240 |
> |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
241 |
> |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
242 |
> |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
243 |
|
|
244 |
< |
void RigidBody::getJ( double theJ[3] ){ |
245 |
< |
|
207 |
< |
for (int i = 0; i < 3; i++) |
208 |
< |
theJ[i] = ji[i]; |
244 |
> |
// If the atom has a torque associated with it, then we also need to |
245 |
> |
// migrate the torques onto the center of mass: |
246 |
|
|
247 |
< |
} |
247 |
> |
if (atoms_[i]->isDirectional()) { |
248 |
> |
atrq = atoms_[i]->getTrq(); |
249 |
> |
trq += atrq; |
250 |
> |
} |
251 |
> |
} |
252 |
> |
addFrc(frc); |
253 |
> |
addTrq(trq); |
254 |
> |
} |
255 |
|
|
256 |
< |
void RigidBody::setJ( double theJ[3] ){ |
257 |
< |
|
258 |
< |
for (int i = 0; i < 3; i++) |
259 |
< |
ji[i] = theJ[i]; |
256 |
> |
Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { |
257 |
> |
Vector3d afrc; |
258 |
> |
Vector3d atrq; |
259 |
> |
Vector3d apos; |
260 |
> |
Vector3d rpos; |
261 |
> |
Vector3d dfrc; |
262 |
> |
Vector3d frc(0.0); |
263 |
> |
Vector3d trq(0.0); |
264 |
> |
Vector3d pos = this->getPos(); |
265 |
> |
Mat3x3d tau_(0.0); |
266 |
|
|
267 |
< |
} |
267 |
> |
for (int i = 0; i < atoms_.size(); i++) { |
268 |
> |
|
269 |
> |
afrc = atoms_[i]->getFrc(); |
270 |
> |
apos = atoms_[i]->getPos(); |
271 |
> |
rpos = apos - pos; |
272 |
> |
|
273 |
> |
frc += afrc; |
274 |
|
|
275 |
< |
void RigidBody::getTrq(double theT[3]){ |
276 |
< |
for (int i = 0; i < 3 ; i++) |
277 |
< |
theT[i] = trq[i]; |
222 |
< |
} |
275 |
> |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
276 |
> |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
277 |
> |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
278 |
|
|
279 |
< |
void RigidBody::addTrq(double theT[3]){ |
280 |
< |
for (int i = 0; i < 3 ; i++) |
226 |
< |
trq[i] += theT[i]; |
227 |
< |
} |
279 |
> |
// If the atom has a torque associated with it, then we also need to |
280 |
> |
// migrate the torques onto the center of mass: |
281 |
|
|
282 |
< |
void RigidBody::getI( double the_I[3][3] ){ |
282 |
> |
if (atoms_[i]->isDirectional()) { |
283 |
> |
atrq = atoms_[i]->getTrq(); |
284 |
> |
trq += atrq; |
285 |
> |
} |
286 |
> |
|
287 |
> |
tau_(0,0) -= rpos[0]*afrc[0]; |
288 |
> |
tau_(0,1) -= rpos[0]*afrc[1]; |
289 |
> |
tau_(0,2) -= rpos[0]*afrc[2]; |
290 |
> |
tau_(1,0) -= rpos[1]*afrc[0]; |
291 |
> |
tau_(1,1) -= rpos[1]*afrc[1]; |
292 |
> |
tau_(1,2) -= rpos[1]*afrc[2]; |
293 |
> |
tau_(2,0) -= rpos[2]*afrc[0]; |
294 |
> |
tau_(2,1) -= rpos[2]*afrc[1]; |
295 |
> |
tau_(2,2) -= rpos[2]*afrc[2]; |
296 |
|
|
297 |
< |
for (int i = 0; i < 3; i++) |
298 |
< |
for (int j = 0; j < 3; j++) |
299 |
< |
the_I[i][j] = I[i][j]; |
297 |
> |
} |
298 |
> |
addFrc(frc); |
299 |
> |
addTrq(trq); |
300 |
> |
return tau_; |
301 |
> |
} |
302 |
|
|
303 |
< |
} |
303 |
> |
void RigidBody::updateAtoms() { |
304 |
> |
unsigned int i; |
305 |
> |
Vector3d ref; |
306 |
> |
Vector3d apos; |
307 |
> |
DirectionalAtom* dAtom; |
308 |
> |
Vector3d pos = getPos(); |
309 |
> |
RotMat3x3d a = getA(); |
310 |
> |
|
311 |
> |
for (i = 0; i < atoms_.size(); i++) { |
312 |
> |
|
313 |
> |
ref = body2Lab(refCoords_[i]); |
314 |
|
|
315 |
< |
void RigidBody::lab2Body( double r[3] ){ |
315 |
> |
apos = pos + ref; |
316 |
|
|
317 |
< |
double rl[3]; // the lab frame vector |
317 |
> |
atoms_[i]->setPos(apos); |
318 |
> |
|
319 |
> |
if (atoms_[i]->isDirectional()) { |
320 |
> |
|
321 |
> |
dAtom = (DirectionalAtom *) atoms_[i]; |
322 |
> |
dAtom->setA(refOrients_[i].transpose() * a); |
323 |
> |
} |
324 |
> |
|
325 |
> |
} |
326 |
|
|
327 |
< |
rl[0] = r[0]; |
242 |
< |
rl[1] = r[1]; |
243 |
< |
rl[2] = r[2]; |
244 |
< |
|
245 |
< |
r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]); |
246 |
< |
r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]); |
247 |
< |
r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]); |
327 |
> |
} |
328 |
|
|
249 |
– |
} |
329 |
|
|
330 |
< |
void RigidBody::body2Lab( double r[3] ){ |
330 |
> |
void RigidBody::updateAtoms(int frame) { |
331 |
> |
unsigned int i; |
332 |
> |
Vector3d ref; |
333 |
> |
Vector3d apos; |
334 |
> |
DirectionalAtom* dAtom; |
335 |
> |
Vector3d pos = getPos(frame); |
336 |
> |
RotMat3x3d a = getA(frame); |
337 |
> |
|
338 |
> |
for (i = 0; i < atoms_.size(); i++) { |
339 |
> |
|
340 |
> |
ref = body2Lab(refCoords_[i], frame); |
341 |
|
|
342 |
< |
double rb[3]; // the body frame vector |
342 |
> |
apos = pos + ref; |
343 |
> |
|
344 |
> |
atoms_[i]->setPos(apos, frame); |
345 |
> |
|
346 |
> |
if (atoms_[i]->isDirectional()) { |
347 |
> |
|
348 |
> |
dAtom = (DirectionalAtom *) atoms_[i]; |
349 |
> |
dAtom->setA(refOrients_[i].transpose() * a, frame); |
350 |
> |
} |
351 |
> |
|
352 |
> |
} |
353 |
|
|
354 |
< |
rb[0] = r[0]; |
256 |
< |
rb[1] = r[1]; |
257 |
< |
rb[2] = r[2]; |
258 |
< |
|
259 |
< |
r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]); |
260 |
< |
r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]); |
261 |
< |
r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]); |
354 |
> |
} |
355 |
|
|
356 |
< |
} |
356 |
> |
void RigidBody::updateAtomVel() { |
357 |
> |
Mat3x3d skewMat;; |
358 |
|
|
359 |
< |
double RigidBody::getZangle( ){ |
360 |
< |
return zAngle; |
267 |
< |
} |
359 |
> |
Vector3d ji = getJ(); |
360 |
> |
Mat3x3d I = getI(); |
361 |
|
|
362 |
< |
void RigidBody::setZangle( double zAng ){ |
363 |
< |
zAngle = zAng; |
364 |
< |
} |
362 |
> |
skewMat(0, 0) =0; |
363 |
> |
skewMat(0, 1) = ji[2] /I(2, 2); |
364 |
> |
skewMat(0, 2) = -ji[1] /I(1, 1); |
365 |
|
|
366 |
< |
void RigidBody::addZangle( double zAng ){ |
367 |
< |
zAngle += zAng; |
368 |
< |
} |
366 |
> |
skewMat(1, 0) = -ji[2] /I(2, 2); |
367 |
> |
skewMat(1, 1) = 0; |
368 |
> |
skewMat(1, 2) = ji[0]/I(0, 0); |
369 |
|
|
370 |
< |
void RigidBody::calcRefCoords( ) { |
370 |
> |
skewMat(2, 0) =ji[1] /I(1, 1); |
371 |
> |
skewMat(2, 1) = -ji[0]/I(0, 0); |
372 |
> |
skewMat(2, 2) = 0; |
373 |
|
|
374 |
< |
int i,j,k, it, n_linear_coords; |
375 |
< |
double mtmp; |
281 |
< |
vec3 apos; |
282 |
< |
double refCOM[3]; |
283 |
< |
vec3 ptmp; |
284 |
< |
double Itmp[3][3]; |
285 |
< |
double evals[3]; |
286 |
< |
double evects[3][3]; |
287 |
< |
double r, r2, len; |
374 |
> |
Mat3x3d mat = (getA() * skewMat).transpose(); |
375 |
> |
Vector3d rbVel = getVel(); |
376 |
|
|
289 |
– |
// First, find the center of mass: |
290 |
– |
|
291 |
– |
mass = 0.0; |
292 |
– |
for (j=0; j<3; j++) |
293 |
– |
refCOM[j] = 0.0; |
294 |
– |
|
295 |
– |
for (i = 0; i < myAtoms.size(); i++) { |
296 |
– |
mtmp = myAtoms[i]->getMass(); |
297 |
– |
mass += mtmp; |
377 |
|
|
378 |
< |
apos = refCoords[i]; |
379 |
< |
|
380 |
< |
for(j = 0; j < 3; j++) { |
381 |
< |
refCOM[j] += apos[j]*mtmp; |
382 |
< |
} |
378 |
> |
Vector3d velRot; |
379 |
> |
for (int i =0 ; i < refCoords_.size(); ++i) { |
380 |
> |
atoms_[i]->setVel(rbVel + mat * refCoords_[i]); |
381 |
> |
} |
382 |
> |
|
383 |
|
} |
305 |
– |
|
306 |
– |
for(j = 0; j < 3; j++) |
307 |
– |
refCOM[j] /= mass; |
384 |
|
|
385 |
< |
// Next, move the origin of the reference coordinate system to the COM: |
385 |
> |
void RigidBody::updateAtomVel(int frame) { |
386 |
> |
Mat3x3d skewMat;; |
387 |
|
|
388 |
< |
for (i = 0; i < myAtoms.size(); i++) { |
389 |
< |
apos = refCoords[i]; |
313 |
< |
for (j=0; j < 3; j++) { |
314 |
< |
apos[j] = apos[j] - refCOM[j]; |
315 |
< |
} |
316 |
< |
refCoords[i] = apos; |
317 |
< |
} |
388 |
> |
Vector3d ji = getJ(frame); |
389 |
> |
Mat3x3d I = getI(); |
390 |
|
|
391 |
< |
// Moment of Inertia calculation |
391 |
> |
skewMat(0, 0) =0; |
392 |
> |
skewMat(0, 1) = ji[2] /I(2, 2); |
393 |
> |
skewMat(0, 2) = -ji[1] /I(1, 1); |
394 |
|
|
395 |
< |
for (i = 0; i < 3; i++) |
396 |
< |
for (j = 0; j < 3; j++) |
397 |
< |
Itmp[i][j] = 0.0; |
324 |
< |
|
325 |
< |
for (it = 0; it < myAtoms.size(); it++) { |
395 |
> |
skewMat(1, 0) = -ji[2] /I(2, 2); |
396 |
> |
skewMat(1, 1) = 0; |
397 |
> |
skewMat(1, 2) = ji[0]/I(0, 0); |
398 |
|
|
399 |
< |
mtmp = myAtoms[it]->getMass(); |
400 |
< |
ptmp = refCoords[it]; |
401 |
< |
r= norm3(ptmp.vec); |
330 |
< |
r2 = r*r; |
331 |
< |
|
332 |
< |
for (i = 0; i < 3; i++) { |
333 |
< |
for (j = 0; j < 3; j++) { |
334 |
< |
|
335 |
< |
if (i==j) Itmp[i][j] += mtmp * r2; |
399 |
> |
skewMat(2, 0) =ji[1] /I(1, 1); |
400 |
> |
skewMat(2, 1) = -ji[0]/I(0, 0); |
401 |
> |
skewMat(2, 2) = 0; |
402 |
|
|
403 |
< |
Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; |
404 |
< |
} |
339 |
< |
} |
340 |
< |
} |
341 |
< |
|
342 |
< |
diagonalize3x3(Itmp, evals, sU); |
343 |
< |
|
344 |
< |
// zero out I and then fill the diagonals with the moments of inertia: |
403 |
> |
Mat3x3d mat = (getA(frame) * skewMat).transpose(); |
404 |
> |
Vector3d rbVel = getVel(frame); |
405 |
|
|
346 |
– |
n_linear_coords = 0; |
406 |
|
|
407 |
< |
for (i = 0; i < 3; i++) { |
408 |
< |
for (j = 0; j < 3; j++) { |
409 |
< |
I[i][j] = 0.0; |
407 |
> |
Vector3d velRot; |
408 |
> |
for (int i =0 ; i < refCoords_.size(); ++i) { |
409 |
> |
atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); |
410 |
|
} |
352 |
– |
I[i][i] = evals[i]; |
411 |
|
|
354 |
– |
if (fabs(evals[i]) < momIntTol) { |
355 |
– |
is_linear = true; |
356 |
– |
n_linear_coords++; |
357 |
– |
linear_axis = i; |
358 |
– |
} |
412 |
|
} |
413 |
|
|
414 |
< |
if (n_linear_coords > 1) { |
415 |
< |
sprintf( painCave.errMsg, |
416 |
< |
"RigidBody error.\n" |
417 |
< |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
418 |
< |
"\tmoment of inertia. This can happen in one of three ways:\n" |
419 |
< |
"\t 1) Only one atom was specified, or \n" |
420 |
< |
"\t 2) All atoms were specified at the same location, or\n" |
421 |
< |
"\t 3) The programmers did something stupid.\n" |
422 |
< |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
423 |
< |
); |
424 |
< |
painCave.isFatal = 1; |
425 |
< |
simError(); |
414 |
> |
|
415 |
> |
|
416 |
> |
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { |
417 |
> |
if (index < atoms_.size()) { |
418 |
> |
|
419 |
> |
Vector3d ref = body2Lab(refCoords_[index]); |
420 |
> |
pos = getPos() + ref; |
421 |
> |
return true; |
422 |
> |
} else { |
423 |
> |
std::cerr << index << " is an invalid index, current rigid body contains " |
424 |
> |
<< atoms_.size() << "atoms" << std::endl; |
425 |
> |
return false; |
426 |
> |
} |
427 |
|
} |
428 |
< |
|
429 |
< |
// renormalize column vectors: |
430 |
< |
|
431 |
< |
for (i=0; i < 3; i++) { |
432 |
< |
len = 0.0; |
433 |
< |
for (j = 0; j < 3; j++) { |
434 |
< |
len += sU[i][j]*sU[i][j]; |
428 |
> |
|
429 |
> |
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { |
430 |
> |
std::vector<Atom*>::iterator i; |
431 |
> |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
432 |
> |
if (i != atoms_.end()) { |
433 |
> |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
434 |
> |
Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); |
435 |
> |
pos = getPos() + ref; |
436 |
> |
return true; |
437 |
> |
} else { |
438 |
> |
std::cerr << "Atom " << atom->getGlobalIndex() |
439 |
> |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
440 |
> |
return false; |
441 |
|
} |
382 |
– |
len = sqrt(len); |
383 |
– |
for (j = 0; j < 3; j++) { |
384 |
– |
sU[i][j] /= len; |
385 |
– |
} |
442 |
|
} |
443 |
< |
} |
443 |
> |
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { |
444 |
|
|
445 |
< |
void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){ |
445 |
> |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
446 |
|
|
447 |
< |
double phi, theta, psi; |
392 |
< |
|
393 |
< |
phi = euler[0]; |
394 |
< |
theta = euler[1]; |
395 |
< |
psi = euler[2]; |
396 |
< |
|
397 |
< |
myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
398 |
< |
myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
399 |
< |
myA[0][2] = sin(theta) * sin(psi); |
400 |
< |
|
401 |
< |
myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
402 |
< |
myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
403 |
< |
myA[1][2] = sin(theta) * cos(psi); |
404 |
< |
|
405 |
< |
myA[2][0] = sin(phi) * sin(theta); |
406 |
< |
myA[2][1] = -cos(phi) * sin(theta); |
407 |
< |
myA[2][2] = cos(theta); |
447 |
> |
if (index < atoms_.size()) { |
448 |
|
|
449 |
< |
} |
449 |
> |
Vector3d velRot; |
450 |
> |
Mat3x3d skewMat;; |
451 |
> |
Vector3d ref = refCoords_[index]; |
452 |
> |
Vector3d ji = getJ(); |
453 |
> |
Mat3x3d I = getI(); |
454 |
|
|
455 |
< |
void RigidBody::calcForcesAndTorques() { |
455 |
> |
skewMat(0, 0) =0; |
456 |
> |
skewMat(0, 1) = ji[2] /I(2, 2); |
457 |
> |
skewMat(0, 2) = -ji[1] /I(1, 1); |
458 |
|
|
459 |
< |
// Convert Atomic forces and torques to total forces and torques: |
460 |
< |
int i, j; |
461 |
< |
double apos[3]; |
416 |
< |
double afrc[3]; |
417 |
< |
double atrq[3]; |
418 |
< |
double rpos[3]; |
459 |
> |
skewMat(1, 0) = -ji[2] /I(2, 2); |
460 |
> |
skewMat(1, 1) = 0; |
461 |
> |
skewMat(1, 2) = ji[0]/I(0, 0); |
462 |
|
|
463 |
< |
zeroForces(); |
464 |
< |
|
465 |
< |
for (i = 0; i < myAtoms.size(); i++) { |
463 |
> |
skewMat(2, 0) =ji[1] /I(1, 1); |
464 |
> |
skewMat(2, 1) = -ji[0]/I(0, 0); |
465 |
> |
skewMat(2, 2) = 0; |
466 |
|
|
467 |
< |
myAtoms[i]->getPos(apos); |
425 |
< |
myAtoms[i]->getFrc(afrc); |
467 |
> |
velRot = (getA() * skewMat).transpose() * ref; |
468 |
|
|
469 |
< |
for (j=0; j<3; j++) { |
470 |
< |
rpos[j] = apos[j] - pos[j]; |
471 |
< |
frc[j] += afrc[j]; |
469 |
> |
vel =getVel() + velRot; |
470 |
> |
return true; |
471 |
> |
|
472 |
> |
} else { |
473 |
> |
std::cerr << index << " is an invalid index, current rigid body contains " |
474 |
> |
<< atoms_.size() << "atoms" << std::endl; |
475 |
> |
return false; |
476 |
|
} |
477 |
< |
|
432 |
< |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
433 |
< |
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
434 |
< |
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
477 |
> |
} |
478 |
|
|
479 |
< |
// If the atom has a torque associated with it, then we also need to |
437 |
< |
// migrate the torques onto the center of mass: |
479 |
> |
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { |
480 |
|
|
481 |
< |
if (myAtoms[i]->isDirectional()) { |
482 |
< |
|
483 |
< |
myAtoms[i]->getTrq(atrq); |
484 |
< |
|
485 |
< |
for (j=0; j<3; j++) |
486 |
< |
trq[j] += atrq[j]; |
487 |
< |
} |
481 |
> |
std::vector<Atom*>::iterator i; |
482 |
> |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
483 |
> |
if (i != atoms_.end()) { |
484 |
> |
return getAtomVel(vel, i - atoms_.begin()); |
485 |
> |
} else { |
486 |
> |
std::cerr << "Atom " << atom->getGlobalIndex() |
487 |
> |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
488 |
> |
return false; |
489 |
> |
} |
490 |
|
} |
491 |
|
|
492 |
< |
// Convert Torque to Body-fixed coordinates: |
493 |
< |
// (Actually, on second thought, don't. Integrator does this now.) |
450 |
< |
// lab2Body(trq); |
492 |
> |
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { |
493 |
> |
if (index < atoms_.size()) { |
494 |
|
|
495 |
< |
} |
495 |
> |
coor = refCoords_[index]; |
496 |
> |
return true; |
497 |
> |
} else { |
498 |
> |
std::cerr << index << " is an invalid index, current rigid body contains " |
499 |
> |
<< atoms_.size() << "atoms" << std::endl; |
500 |
> |
return false; |
501 |
> |
} |
502 |
|
|
503 |
< |
void RigidBody::updateAtoms() { |
455 |
< |
int i, j; |
456 |
< |
vec3 ref; |
457 |
< |
double apos[3]; |
458 |
< |
DirectionalAtom* dAtom; |
459 |
< |
|
460 |
< |
for (i = 0; i < myAtoms.size(); i++) { |
461 |
< |
|
462 |
< |
ref = refCoords[i]; |
503 |
> |
} |
504 |
|
|
505 |
< |
body2Lab(ref.vec); |
506 |
< |
|
507 |
< |
for (j = 0; j<3; j++) |
508 |
< |
apos[j] = pos[j] + ref.vec[j]; |
509 |
< |
|
510 |
< |
myAtoms[i]->setPos(apos); |
511 |
< |
|
512 |
< |
if (myAtoms[i]->isDirectional()) { |
513 |
< |
|
514 |
< |
dAtom = (DirectionalAtom *) myAtoms[i]; |
515 |
< |
dAtom->rotateBy( A ); |
475 |
< |
|
505 |
> |
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { |
506 |
> |
std::vector<Atom*>::iterator i; |
507 |
> |
i = std::find(atoms_.begin(), atoms_.end(), atom); |
508 |
> |
if (i != atoms_.end()) { |
509 |
> |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
510 |
> |
coor = refCoords_[i - atoms_.begin()]; |
511 |
> |
return true; |
512 |
> |
} else { |
513 |
> |
std::cerr << "Atom " << atom->getGlobalIndex() |
514 |
> |
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
515 |
> |
return false; |
516 |
|
} |
477 |
– |
} |
478 |
– |
} |
517 |
|
|
518 |
< |
void RigidBody::getGrad( double grad[6] ) { |
518 |
> |
} |
519 |
|
|
482 |
– |
double myEuler[3]; |
483 |
– |
double phi, theta, psi; |
484 |
– |
double cphi, sphi, ctheta, stheta; |
485 |
– |
double ephi[3]; |
486 |
– |
double etheta[3]; |
487 |
– |
double epsi[3]; |
488 |
– |
|
489 |
– |
this->getEulerAngles(myEuler); |
520 |
|
|
521 |
< |
phi = myEuler[0]; |
492 |
< |
theta = myEuler[1]; |
493 |
< |
psi = myEuler[2]; |
521 |
> |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
522 |
|
|
523 |
< |
cphi = cos(phi); |
524 |
< |
sphi = sin(phi); |
497 |
< |
ctheta = cos(theta); |
498 |
< |
stheta = sin(theta); |
499 |
< |
|
500 |
< |
// get unit vectors along the phi, theta and psi rotation axes |
501 |
< |
|
502 |
< |
ephi[0] = 0.0; |
503 |
< |
ephi[1] = 0.0; |
504 |
< |
ephi[2] = 1.0; |
505 |
< |
|
506 |
< |
etheta[0] = cphi; |
507 |
< |
etheta[1] = sphi; |
508 |
< |
etheta[2] = 0.0; |
523 |
> |
Vector3d coords; |
524 |
> |
Vector3d euler; |
525 |
|
|
510 |
– |
epsi[0] = stheta * cphi; |
511 |
– |
epsi[1] = stheta * sphi; |
512 |
– |
epsi[2] = ctheta; |
513 |
– |
|
514 |
– |
for (int j = 0 ; j<3; j++) |
515 |
– |
grad[j] = frc[j]; |
526 |
|
|
527 |
< |
grad[3] = 0.0; |
528 |
< |
grad[4] = 0.0; |
529 |
< |
grad[5] = 0.0; |
527 |
> |
atoms_.push_back(at); |
528 |
> |
|
529 |
> |
if( !ats->havePosition() ){ |
530 |
> |
sprintf( painCave.errMsg, |
531 |
> |
"RigidBody error.\n" |
532 |
> |
"\tAtom %s does not have a position specified.\n" |
533 |
> |
"\tThis means RigidBody cannot set up reference coordinates.\n", |
534 |
> |
ats->getType().c_str() ); |
535 |
> |
painCave.isFatal = 1; |
536 |
> |
simError(); |
537 |
> |
} |
538 |
|
|
539 |
< |
for (int j = 0; j < 3; j++ ) { |
540 |
< |
|
541 |
< |
grad[3] += trq[j]*ephi[j]; |
524 |
< |
grad[4] += trq[j]*etheta[j]; |
525 |
< |
grad[5] += trq[j]*epsi[j]; |
526 |
< |
|
527 |
< |
} |
528 |
< |
|
529 |
< |
} |
539 |
> |
coords[0] = ats->getPosX(); |
540 |
> |
coords[1] = ats->getPosY(); |
541 |
> |
coords[2] = ats->getPosZ(); |
542 |
|
|
543 |
< |
/** |
532 |
< |
* getEulerAngles computes a set of Euler angle values consistent |
533 |
< |
* with an input rotation matrix. They are returned in the following |
534 |
< |
* order: |
535 |
< |
* myEuler[0] = phi; |
536 |
< |
* myEuler[1] = theta; |
537 |
< |
* myEuler[2] = psi; |
538 |
< |
*/ |
539 |
< |
void RigidBody::getEulerAngles(double myEuler[3]) { |
543 |
> |
refCoords_.push_back(coords); |
544 |
|
|
545 |
< |
// We use so-called "x-convention", which is the most common |
542 |
< |
// definition. In this convention, the rotation given by Euler |
543 |
< |
// angles (phi, theta, psi), where the first rotation is by an angle |
544 |
< |
// phi about the z-axis, the second is by an angle theta (0 <= theta |
545 |
< |
// <= 180) about the x-axis, and the third is by an angle psi about |
546 |
< |
// the z-axis (again). |
545 |
> |
RotMat3x3d identMat = RotMat3x3d::identity(); |
546 |
|
|
547 |
< |
|
549 |
< |
double phi,theta,psi,eps; |
550 |
< |
double pi; |
551 |
< |
double cphi,ctheta,cpsi; |
552 |
< |
double sphi,stheta,spsi; |
553 |
< |
double b[3]; |
554 |
< |
int flip[3]; |
555 |
< |
|
556 |
< |
// set the tolerance for Euler angles and rotation elements |
557 |
< |
|
558 |
< |
eps = 1.0e-8; |
547 |
> |
if (at->isDirectional()) { |
548 |
|
|
549 |
< |
theta = acos(min(1.0,max(-1.0,A[2][2]))); |
550 |
< |
ctheta = A[2][2]; |
551 |
< |
stheta = sqrt(1.0 - ctheta * ctheta); |
549 |
> |
if( !ats->haveOrientation() ){ |
550 |
> |
sprintf( painCave.errMsg, |
551 |
> |
"RigidBody error.\n" |
552 |
> |
"\tAtom %s does not have an orientation specified.\n" |
553 |
> |
"\tThis means RigidBody cannot set up reference orientations.\n", |
554 |
> |
ats->getType().c_str() ); |
555 |
> |
painCave.isFatal = 1; |
556 |
> |
simError(); |
557 |
> |
} |
558 |
> |
|
559 |
> |
euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; |
560 |
> |
euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; |
561 |
> |
euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; |
562 |
|
|
563 |
< |
// when sin(theta) is close to 0, we need to consider the |
564 |
< |
// possibility of a singularity. In this case, we can assign an |
566 |
< |
// arbitary value to phi (or psi), and then determine the psi (or |
567 |
< |
// phi) or vice-versa. We'll assume that phi always gets the |
568 |
< |
// rotation, and psi is 0 in cases of singularity. we use atan2 |
569 |
< |
// instead of atan, since atan2 will give us -Pi to Pi. Since 0 <= |
570 |
< |
// theta <= 180, sin(theta) will be always non-negative. Therefore, |
571 |
< |
// it never changes the sign of both of the parameters passed to |
572 |
< |
// atan2. |
573 |
< |
|
574 |
< |
if (fabs(stheta) <= eps){ |
575 |
< |
psi = 0.0; |
576 |
< |
phi = atan2(-A[1][0], A[0][0]); |
577 |
< |
} |
578 |
< |
// we only have one unique solution |
579 |
< |
else{ |
580 |
< |
phi = atan2(A[2][0], -A[2][1]); |
581 |
< |
psi = atan2(A[0][2], A[1][2]); |
582 |
< |
} |
583 |
< |
|
584 |
< |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
585 |
< |
//if (phi < 0) |
586 |
< |
// phi += M_PI; |
587 |
< |
|
588 |
< |
//if (psi < 0) |
589 |
< |
// psi += M_PI; |
590 |
< |
|
591 |
< |
myEuler[0] = phi; |
592 |
< |
myEuler[1] = theta; |
593 |
< |
myEuler[2] = psi; |
594 |
< |
|
595 |
< |
return; |
596 |
< |
} |
597 |
< |
|
598 |
< |
double RigidBody::max(double x, double y) { |
599 |
< |
return (x > y) ? x : y; |
600 |
< |
} |
601 |
< |
|
602 |
< |
double RigidBody::min(double x, double y) { |
603 |
< |
return (x > y) ? y : x; |
604 |
< |
} |
605 |
< |
|
606 |
< |
void RigidBody::findCOM() { |
607 |
< |
|
608 |
< |
size_t i; |
609 |
< |
int j; |
610 |
< |
double mtmp; |
611 |
< |
double ptmp[3]; |
612 |
< |
double vtmp[3]; |
613 |
< |
|
614 |
< |
for(j = 0; j < 3; j++) { |
615 |
< |
pos[j] = 0.0; |
616 |
< |
vel[j] = 0.0; |
617 |
< |
} |
618 |
< |
mass = 0.0; |
619 |
< |
|
620 |
< |
for (i = 0; i < myAtoms.size(); i++) { |
563 |
> |
RotMat3x3d Atmp(euler); |
564 |
> |
refOrients_.push_back(Atmp); |
565 |
|
|
566 |
< |
mtmp = myAtoms[i]->getMass(); |
567 |
< |
myAtoms[i]->getPos(ptmp); |
624 |
< |
myAtoms[i]->getVel(vtmp); |
625 |
< |
|
626 |
< |
mass += mtmp; |
627 |
< |
|
628 |
< |
for(j = 0; j < 3; j++) { |
629 |
< |
pos[j] += ptmp[j]*mtmp; |
630 |
< |
vel[j] += vtmp[j]*mtmp; |
566 |
> |
}else { |
567 |
> |
refOrients_.push_back(identMat); |
568 |
|
} |
632 |
– |
|
633 |
– |
} |
569 |
|
|
570 |
< |
for(j = 0; j < 3; j++) { |
636 |
< |
pos[j] /= mass; |
637 |
< |
vel[j] /= mass; |
570 |
> |
|
571 |
|
} |
572 |
|
|
573 |
|
} |
574 |
|
|
642 |
– |
void RigidBody::accept(BaseVisitor* v){ |
643 |
– |
vector<Atom*>::iterator atomIter; |
644 |
– |
v->visit(this); |
645 |
– |
|
646 |
– |
//for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) |
647 |
– |
// (*atomIter)->accept(v); |
648 |
– |
} |
649 |
– |
void RigidBody::getAtomRefCoor(double pos[3], int index){ |
650 |
– |
vec3 ref; |
651 |
– |
|
652 |
– |
ref = refCoords[index]; |
653 |
– |
pos[0] = ref[0]; |
654 |
– |
pos[1] = ref[1]; |
655 |
– |
pos[2] = ref[2]; |
656 |
– |
|
657 |
– |
} |
658 |
– |
|
659 |
– |
|
660 |
– |
void RigidBody::getAtomPos(double theP[3], int index){ |
661 |
– |
vec3 ref; |
662 |
– |
|
663 |
– |
if (index >= myAtoms.size()) |
664 |
– |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
665 |
– |
|
666 |
– |
ref = refCoords[index]; |
667 |
– |
body2Lab(ref.vec); |
668 |
– |
|
669 |
– |
theP[0] = pos[0] + ref[0]; |
670 |
– |
theP[1] = pos[1] + ref[1]; |
671 |
– |
theP[2] = pos[2] + ref[2]; |
672 |
– |
} |
673 |
– |
|
674 |
– |
|
675 |
– |
void RigidBody::getAtomVel(double theV[3], int index){ |
676 |
– |
vec3 ref; |
677 |
– |
double velRot[3]; |
678 |
– |
double skewMat[3][3]; |
679 |
– |
double aSkewMat[3][3]; |
680 |
– |
double aSkewTransMat[3][3]; |
681 |
– |
|
682 |
– |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
683 |
– |
|
684 |
– |
if (index >= myAtoms.size()) |
685 |
– |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
686 |
– |
|
687 |
– |
ref = refCoords[index]; |
688 |
– |
|
689 |
– |
skewMat[0][0] =0; |
690 |
– |
skewMat[0][1] = ji[2] /I[2][2]; |
691 |
– |
skewMat[0][2] = -ji[1] /I[1][1]; |
692 |
– |
|
693 |
– |
skewMat[1][0] = -ji[2] /I[2][2]; |
694 |
– |
skewMat[1][1] = 0; |
695 |
– |
skewMat[1][2] = ji[0]/I[0][0]; |
696 |
– |
|
697 |
– |
skewMat[2][0] =ji[1] /I[1][1]; |
698 |
– |
skewMat[2][1] = -ji[0]/I[0][0]; |
699 |
– |
skewMat[2][2] = 0; |
700 |
– |
|
701 |
– |
matMul3(A, skewMat, aSkewMat); |
702 |
– |
|
703 |
– |
transposeMat3(aSkewMat, aSkewTransMat); |
704 |
– |
|
705 |
– |
matVecMul3(aSkewTransMat, ref.vec, velRot); |
706 |
– |
theV[0] = vel[0] + velRot[0]; |
707 |
– |
theV[1] = vel[1] + velRot[1]; |
708 |
– |
theV[2] = vel[2] + velRot[2]; |
709 |
– |
} |
710 |
– |
|
711 |
– |
|