1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
#include <algorithm> |
42 |
tim |
253 |
#include <math.h> |
43 |
tim |
3 |
#include "primitives/RigidBody.hpp" |
44 |
|
|
#include "utils/simError.h" |
45 |
tim |
374 |
#include "utils/NumericConstant.hpp" |
46 |
gezelter |
246 |
namespace oopse { |
47 |
gezelter |
2 |
|
48 |
gezelter |
507 |
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ |
49 |
gezelter |
2 |
|
50 |
gezelter |
507 |
} |
51 |
gezelter |
2 |
|
52 |
gezelter |
507 |
void RigidBody::setPrevA(const RotMat3x3d& a) { |
53 |
gezelter |
246 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
54 |
|
|
//((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
55 |
gezelter |
2 |
|
56 |
gezelter |
246 |
for (int i =0 ; i < atoms_.size(); ++i){ |
57 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
58 |
|
|
atoms_[i]->setPrevA(a * refOrients_[i]); |
59 |
|
|
} |
60 |
gezelter |
246 |
} |
61 |
gezelter |
2 |
|
62 |
gezelter |
507 |
} |
63 |
gezelter |
2 |
|
64 |
gezelter |
246 |
|
65 |
gezelter |
507 |
void RigidBody::setA(const RotMat3x3d& a) { |
66 |
gezelter |
246 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
67 |
|
|
//((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
68 |
gezelter |
2 |
|
69 |
gezelter |
246 |
for (int i =0 ; i < atoms_.size(); ++i){ |
70 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
71 |
|
|
atoms_[i]->setA(a * refOrients_[i]); |
72 |
|
|
} |
73 |
gezelter |
246 |
} |
74 |
gezelter |
507 |
} |
75 |
gezelter |
2 |
|
76 |
gezelter |
507 |
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { |
77 |
gezelter |
246 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
78 |
|
|
//((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; |
79 |
gezelter |
2 |
|
80 |
gezelter |
246 |
for (int i =0 ; i < atoms_.size(); ++i){ |
81 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
82 |
|
|
atoms_[i]->setA(a * refOrients_[i], snapshotNo); |
83 |
|
|
} |
84 |
gezelter |
2 |
} |
85 |
|
|
|
86 |
gezelter |
507 |
} |
87 |
gezelter |
2 |
|
88 |
gezelter |
507 |
Mat3x3d RigidBody::getI() { |
89 |
gezelter |
246 |
return inertiaTensor_; |
90 |
gezelter |
507 |
} |
91 |
gezelter |
2 |
|
92 |
gezelter |
507 |
std::vector<double> RigidBody::getGrad() { |
93 |
|
|
std::vector<double> grad(6, 0.0); |
94 |
gezelter |
246 |
Vector3d force; |
95 |
|
|
Vector3d torque; |
96 |
|
|
Vector3d myEuler; |
97 |
|
|
double phi, theta, psi; |
98 |
|
|
double cphi, sphi, ctheta, stheta; |
99 |
|
|
Vector3d ephi; |
100 |
|
|
Vector3d etheta; |
101 |
|
|
Vector3d epsi; |
102 |
gezelter |
2 |
|
103 |
gezelter |
246 |
force = getFrc(); |
104 |
|
|
torque =getTrq(); |
105 |
|
|
myEuler = getA().toEulerAngles(); |
106 |
gezelter |
2 |
|
107 |
gezelter |
246 |
phi = myEuler[0]; |
108 |
|
|
theta = myEuler[1]; |
109 |
|
|
psi = myEuler[2]; |
110 |
gezelter |
2 |
|
111 |
gezelter |
246 |
cphi = cos(phi); |
112 |
|
|
sphi = sin(phi); |
113 |
|
|
ctheta = cos(theta); |
114 |
|
|
stheta = sin(theta); |
115 |
gezelter |
2 |
|
116 |
gezelter |
246 |
// get unit vectors along the phi, theta and psi rotation axes |
117 |
gezelter |
2 |
|
118 |
gezelter |
246 |
ephi[0] = 0.0; |
119 |
|
|
ephi[1] = 0.0; |
120 |
|
|
ephi[2] = 1.0; |
121 |
gezelter |
2 |
|
122 |
gezelter |
246 |
etheta[0] = cphi; |
123 |
|
|
etheta[1] = sphi; |
124 |
|
|
etheta[2] = 0.0; |
125 |
gezelter |
2 |
|
126 |
gezelter |
246 |
epsi[0] = stheta * cphi; |
127 |
|
|
epsi[1] = stheta * sphi; |
128 |
|
|
epsi[2] = ctheta; |
129 |
gezelter |
2 |
|
130 |
gezelter |
246 |
//gradient is equal to -force |
131 |
|
|
for (int j = 0 ; j<3; j++) |
132 |
gezelter |
507 |
grad[j] = -force[j]; |
133 |
gezelter |
2 |
|
134 |
gezelter |
246 |
for (int j = 0; j < 3; j++ ) { |
135 |
gezelter |
2 |
|
136 |
gezelter |
507 |
grad[3] += torque[j]*ephi[j]; |
137 |
|
|
grad[4] += torque[j]*etheta[j]; |
138 |
|
|
grad[5] += torque[j]*epsi[j]; |
139 |
gezelter |
2 |
|
140 |
gezelter |
246 |
} |
141 |
|
|
|
142 |
|
|
return grad; |
143 |
gezelter |
507 |
} |
144 |
gezelter |
2 |
|
145 |
gezelter |
507 |
void RigidBody::accept(BaseVisitor* v) { |
146 |
gezelter |
246 |
v->visit(this); |
147 |
gezelter |
507 |
} |
148 |
gezelter |
2 |
|
149 |
gezelter |
507 |
/**@todo need modification */ |
150 |
|
|
void RigidBody::calcRefCoords() { |
151 |
gezelter |
246 |
double mtmp; |
152 |
|
|
Vector3d refCOM(0.0); |
153 |
|
|
mass_ = 0.0; |
154 |
|
|
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
155 |
gezelter |
507 |
mtmp = atoms_[i]->getMass(); |
156 |
|
|
mass_ += mtmp; |
157 |
|
|
refCOM += refCoords_[i]*mtmp; |
158 |
gezelter |
246 |
} |
159 |
|
|
refCOM /= mass_; |
160 |
gezelter |
2 |
|
161 |
gezelter |
246 |
// Next, move the origin of the reference coordinate system to the COM: |
162 |
|
|
for (std::size_t i = 0; i < atoms_.size(); ++i) { |
163 |
gezelter |
507 |
refCoords_[i] -= refCOM; |
164 |
gezelter |
246 |
} |
165 |
gezelter |
2 |
|
166 |
gezelter |
507 |
// Moment of Inertia calculation |
167 |
tim |
642 |
Mat3x3d Itmp(0.0); |
168 |
gezelter |
246 |
for (std::size_t i = 0; i < atoms_.size(); i++) { |
169 |
tim |
642 |
Mat3x3d IAtom(0.0); |
170 |
gezelter |
507 |
mtmp = atoms_[i]->getMass(); |
171 |
tim |
642 |
IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; |
172 |
gezelter |
507 |
double r2 = refCoords_[i].lengthSquare(); |
173 |
tim |
642 |
IAtom(0, 0) += mtmp * r2; |
174 |
|
|
IAtom(1, 1) += mtmp * r2; |
175 |
|
|
IAtom(2, 2) += mtmp * r2; |
176 |
gezelter |
2 |
|
177 |
tim |
642 |
//project the inertial moment of directional atoms into this rigid body |
178 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
179 |
tim |
646 |
//IAtom += atoms_[i]->getI(); |
180 |
|
|
Itmp += IAtom; |
181 |
|
|
Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; |
182 |
tim |
642 |
} else { |
183 |
|
|
Itmp += IAtom; |
184 |
gezelter |
507 |
} |
185 |
tim |
273 |
} |
186 |
|
|
|
187 |
tim |
646 |
std::cout << Itmp <<std::endl; |
188 |
gezelter |
246 |
//diagonalize |
189 |
|
|
Vector3d evals; |
190 |
|
|
Mat3x3d::diagonalize(Itmp, evals, sU_); |
191 |
gezelter |
2 |
|
192 |
gezelter |
246 |
// zero out I and then fill the diagonals with the moments of inertia: |
193 |
|
|
inertiaTensor_(0, 0) = evals[0]; |
194 |
|
|
inertiaTensor_(1, 1) = evals[1]; |
195 |
|
|
inertiaTensor_(2, 2) = evals[2]; |
196 |
|
|
|
197 |
|
|
int nLinearAxis = 0; |
198 |
|
|
for (int i = 0; i < 3; i++) { |
199 |
gezelter |
507 |
if (fabs(evals[i]) < oopse::epsilon) { |
200 |
|
|
linear_ = true; |
201 |
|
|
linearAxis_ = i; |
202 |
|
|
++ nLinearAxis; |
203 |
|
|
} |
204 |
gezelter |
246 |
} |
205 |
gezelter |
2 |
|
206 |
gezelter |
246 |
if (nLinearAxis > 1) { |
207 |
gezelter |
507 |
sprintf( painCave.errMsg, |
208 |
|
|
"RigidBody error.\n" |
209 |
|
|
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
210 |
|
|
"\tmoment of inertia. This can happen in one of three ways:\n" |
211 |
|
|
"\t 1) Only one atom was specified, or \n" |
212 |
|
|
"\t 2) All atoms were specified at the same location, or\n" |
213 |
|
|
"\t 3) The programmers did something stupid.\n" |
214 |
|
|
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
215 |
|
|
); |
216 |
|
|
painCave.isFatal = 1; |
217 |
|
|
simError(); |
218 |
gezelter |
246 |
} |
219 |
gezelter |
2 |
|
220 |
gezelter |
507 |
} |
221 |
gezelter |
2 |
|
222 |
gezelter |
507 |
void RigidBody::calcForcesAndTorques() { |
223 |
gezelter |
246 |
Vector3d afrc; |
224 |
|
|
Vector3d atrq; |
225 |
|
|
Vector3d apos; |
226 |
|
|
Vector3d rpos; |
227 |
|
|
Vector3d frc(0.0); |
228 |
|
|
Vector3d trq(0.0); |
229 |
|
|
Vector3d pos = this->getPos(); |
230 |
|
|
for (int i = 0; i < atoms_.size(); i++) { |
231 |
gezelter |
2 |
|
232 |
gezelter |
507 |
afrc = atoms_[i]->getFrc(); |
233 |
|
|
apos = atoms_[i]->getPos(); |
234 |
|
|
rpos = apos - pos; |
235 |
gezelter |
246 |
|
236 |
gezelter |
507 |
frc += afrc; |
237 |
gezelter |
2 |
|
238 |
gezelter |
507 |
trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; |
239 |
|
|
trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; |
240 |
|
|
trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; |
241 |
gezelter |
2 |
|
242 |
gezelter |
507 |
// If the atom has a torque associated with it, then we also need to |
243 |
|
|
// migrate the torques onto the center of mass: |
244 |
gezelter |
2 |
|
245 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
246 |
|
|
atrq = atoms_[i]->getTrq(); |
247 |
|
|
trq += atrq; |
248 |
|
|
} |
249 |
gezelter |
246 |
|
250 |
|
|
} |
251 |
|
|
|
252 |
|
|
setFrc(frc); |
253 |
|
|
setTrq(trq); |
254 |
|
|
|
255 |
gezelter |
507 |
} |
256 |
gezelter |
2 |
|
257 |
gezelter |
507 |
void RigidBody::updateAtoms() { |
258 |
gezelter |
246 |
unsigned int i; |
259 |
|
|
Vector3d ref; |
260 |
|
|
Vector3d apos; |
261 |
|
|
DirectionalAtom* dAtom; |
262 |
|
|
Vector3d pos = getPos(); |
263 |
|
|
RotMat3x3d a = getA(); |
264 |
gezelter |
2 |
|
265 |
gezelter |
246 |
for (i = 0; i < atoms_.size(); i++) { |
266 |
|
|
|
267 |
gezelter |
507 |
ref = body2Lab(refCoords_[i]); |
268 |
gezelter |
2 |
|
269 |
gezelter |
507 |
apos = pos + ref; |
270 |
gezelter |
2 |
|
271 |
gezelter |
507 |
atoms_[i]->setPos(apos); |
272 |
gezelter |
2 |
|
273 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
274 |
gezelter |
246 |
|
275 |
gezelter |
507 |
dAtom = (DirectionalAtom *) atoms_[i]; |
276 |
gezelter |
636 |
dAtom->setA(refOrients_[i] * a); |
277 |
gezelter |
507 |
} |
278 |
gezelter |
2 |
|
279 |
|
|
} |
280 |
|
|
|
281 |
gezelter |
507 |
} |
282 |
gezelter |
2 |
|
283 |
|
|
|
284 |
gezelter |
507 |
void RigidBody::updateAtoms(int frame) { |
285 |
tim |
318 |
unsigned int i; |
286 |
|
|
Vector3d ref; |
287 |
|
|
Vector3d apos; |
288 |
|
|
DirectionalAtom* dAtom; |
289 |
|
|
Vector3d pos = getPos(frame); |
290 |
|
|
RotMat3x3d a = getA(frame); |
291 |
|
|
|
292 |
|
|
for (i = 0; i < atoms_.size(); i++) { |
293 |
|
|
|
294 |
gezelter |
507 |
ref = body2Lab(refCoords_[i], frame); |
295 |
tim |
318 |
|
296 |
gezelter |
507 |
apos = pos + ref; |
297 |
tim |
318 |
|
298 |
gezelter |
507 |
atoms_[i]->setPos(apos, frame); |
299 |
tim |
318 |
|
300 |
gezelter |
507 |
if (atoms_[i]->isDirectional()) { |
301 |
tim |
318 |
|
302 |
gezelter |
507 |
dAtom = (DirectionalAtom *) atoms_[i]; |
303 |
gezelter |
636 |
dAtom->setA(refOrients_[i] * a, frame); |
304 |
gezelter |
507 |
} |
305 |
tim |
318 |
|
306 |
|
|
} |
307 |
|
|
|
308 |
gezelter |
507 |
} |
309 |
tim |
318 |
|
310 |
gezelter |
507 |
void RigidBody::updateAtomVel() { |
311 |
tim |
318 |
Mat3x3d skewMat;; |
312 |
|
|
|
313 |
|
|
Vector3d ji = getJ(); |
314 |
|
|
Mat3x3d I = getI(); |
315 |
|
|
|
316 |
|
|
skewMat(0, 0) =0; |
317 |
|
|
skewMat(0, 1) = ji[2] /I(2, 2); |
318 |
|
|
skewMat(0, 2) = -ji[1] /I(1, 1); |
319 |
|
|
|
320 |
|
|
skewMat(1, 0) = -ji[2] /I(2, 2); |
321 |
|
|
skewMat(1, 1) = 0; |
322 |
|
|
skewMat(1, 2) = ji[0]/I(0, 0); |
323 |
|
|
|
324 |
|
|
skewMat(2, 0) =ji[1] /I(1, 1); |
325 |
|
|
skewMat(2, 1) = -ji[0]/I(0, 0); |
326 |
|
|
skewMat(2, 2) = 0; |
327 |
|
|
|
328 |
|
|
Mat3x3d mat = (getA() * skewMat).transpose(); |
329 |
|
|
Vector3d rbVel = getVel(); |
330 |
|
|
|
331 |
|
|
|
332 |
|
|
Vector3d velRot; |
333 |
|
|
for (int i =0 ; i < refCoords_.size(); ++i) { |
334 |
gezelter |
507 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i]); |
335 |
tim |
318 |
} |
336 |
|
|
|
337 |
gezelter |
507 |
} |
338 |
tim |
318 |
|
339 |
gezelter |
507 |
void RigidBody::updateAtomVel(int frame) { |
340 |
tim |
318 |
Mat3x3d skewMat;; |
341 |
|
|
|
342 |
|
|
Vector3d ji = getJ(frame); |
343 |
|
|
Mat3x3d I = getI(); |
344 |
|
|
|
345 |
|
|
skewMat(0, 0) =0; |
346 |
|
|
skewMat(0, 1) = ji[2] /I(2, 2); |
347 |
|
|
skewMat(0, 2) = -ji[1] /I(1, 1); |
348 |
|
|
|
349 |
|
|
skewMat(1, 0) = -ji[2] /I(2, 2); |
350 |
|
|
skewMat(1, 1) = 0; |
351 |
|
|
skewMat(1, 2) = ji[0]/I(0, 0); |
352 |
|
|
|
353 |
|
|
skewMat(2, 0) =ji[1] /I(1, 1); |
354 |
|
|
skewMat(2, 1) = -ji[0]/I(0, 0); |
355 |
|
|
skewMat(2, 2) = 0; |
356 |
|
|
|
357 |
|
|
Mat3x3d mat = (getA(frame) * skewMat).transpose(); |
358 |
|
|
Vector3d rbVel = getVel(frame); |
359 |
|
|
|
360 |
|
|
|
361 |
|
|
Vector3d velRot; |
362 |
|
|
for (int i =0 ; i < refCoords_.size(); ++i) { |
363 |
gezelter |
507 |
atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); |
364 |
tim |
318 |
} |
365 |
|
|
|
366 |
gezelter |
507 |
} |
367 |
tim |
318 |
|
368 |
|
|
|
369 |
|
|
|
370 |
gezelter |
507 |
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { |
371 |
gezelter |
246 |
if (index < atoms_.size()) { |
372 |
gezelter |
2 |
|
373 |
gezelter |
507 |
Vector3d ref = body2Lab(refCoords_[index]); |
374 |
|
|
pos = getPos() + ref; |
375 |
|
|
return true; |
376 |
gezelter |
246 |
} else { |
377 |
gezelter |
507 |
std::cerr << index << " is an invalid index, current rigid body contains " |
378 |
|
|
<< atoms_.size() << "atoms" << std::endl; |
379 |
|
|
return false; |
380 |
gezelter |
246 |
} |
381 |
gezelter |
507 |
} |
382 |
gezelter |
2 |
|
383 |
gezelter |
507 |
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { |
384 |
gezelter |
246 |
std::vector<Atom*>::iterator i; |
385 |
|
|
i = std::find(atoms_.begin(), atoms_.end(), atom); |
386 |
|
|
if (i != atoms_.end()) { |
387 |
gezelter |
507 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
388 |
|
|
Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); |
389 |
|
|
pos = getPos() + ref; |
390 |
|
|
return true; |
391 |
gezelter |
246 |
} else { |
392 |
gezelter |
507 |
std::cerr << "Atom " << atom->getGlobalIndex() |
393 |
|
|
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
394 |
|
|
return false; |
395 |
gezelter |
2 |
} |
396 |
gezelter |
507 |
} |
397 |
|
|
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { |
398 |
gezelter |
2 |
|
399 |
gezelter |
246 |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
400 |
gezelter |
2 |
|
401 |
gezelter |
246 |
if (index < atoms_.size()) { |
402 |
gezelter |
2 |
|
403 |
gezelter |
507 |
Vector3d velRot; |
404 |
|
|
Mat3x3d skewMat;; |
405 |
|
|
Vector3d ref = refCoords_[index]; |
406 |
|
|
Vector3d ji = getJ(); |
407 |
|
|
Mat3x3d I = getI(); |
408 |
gezelter |
2 |
|
409 |
gezelter |
507 |
skewMat(0, 0) =0; |
410 |
|
|
skewMat(0, 1) = ji[2] /I(2, 2); |
411 |
|
|
skewMat(0, 2) = -ji[1] /I(1, 1); |
412 |
gezelter |
2 |
|
413 |
gezelter |
507 |
skewMat(1, 0) = -ji[2] /I(2, 2); |
414 |
|
|
skewMat(1, 1) = 0; |
415 |
|
|
skewMat(1, 2) = ji[0]/I(0, 0); |
416 |
gezelter |
2 |
|
417 |
gezelter |
507 |
skewMat(2, 0) =ji[1] /I(1, 1); |
418 |
|
|
skewMat(2, 1) = -ji[0]/I(0, 0); |
419 |
|
|
skewMat(2, 2) = 0; |
420 |
gezelter |
2 |
|
421 |
gezelter |
507 |
velRot = (getA() * skewMat).transpose() * ref; |
422 |
gezelter |
2 |
|
423 |
gezelter |
507 |
vel =getVel() + velRot; |
424 |
|
|
return true; |
425 |
gezelter |
246 |
|
426 |
|
|
} else { |
427 |
gezelter |
507 |
std::cerr << index << " is an invalid index, current rigid body contains " |
428 |
|
|
<< atoms_.size() << "atoms" << std::endl; |
429 |
|
|
return false; |
430 |
gezelter |
2 |
} |
431 |
gezelter |
507 |
} |
432 |
gezelter |
2 |
|
433 |
gezelter |
507 |
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { |
434 |
gezelter |
2 |
|
435 |
gezelter |
246 |
std::vector<Atom*>::iterator i; |
436 |
|
|
i = std::find(atoms_.begin(), atoms_.end(), atom); |
437 |
|
|
if (i != atoms_.end()) { |
438 |
gezelter |
507 |
return getAtomVel(vel, i - atoms_.begin()); |
439 |
gezelter |
246 |
} else { |
440 |
gezelter |
507 |
std::cerr << "Atom " << atom->getGlobalIndex() |
441 |
|
|
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
442 |
|
|
return false; |
443 |
gezelter |
246 |
} |
444 |
gezelter |
507 |
} |
445 |
gezelter |
2 |
|
446 |
gezelter |
507 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { |
447 |
gezelter |
246 |
if (index < atoms_.size()) { |
448 |
|
|
|
449 |
gezelter |
507 |
coor = refCoords_[index]; |
450 |
|
|
return true; |
451 |
gezelter |
246 |
} else { |
452 |
gezelter |
507 |
std::cerr << index << " is an invalid index, current rigid body contains " |
453 |
|
|
<< atoms_.size() << "atoms" << std::endl; |
454 |
|
|
return false; |
455 |
gezelter |
2 |
} |
456 |
|
|
|
457 |
gezelter |
507 |
} |
458 |
gezelter |
2 |
|
459 |
gezelter |
507 |
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { |
460 |
gezelter |
246 |
std::vector<Atom*>::iterator i; |
461 |
|
|
i = std::find(atoms_.begin(), atoms_.end(), atom); |
462 |
|
|
if (i != atoms_.end()) { |
463 |
gezelter |
507 |
//RigidBody class makes sure refCoords_ and atoms_ match each other |
464 |
|
|
coor = refCoords_[i - atoms_.begin()]; |
465 |
|
|
return true; |
466 |
gezelter |
246 |
} else { |
467 |
gezelter |
507 |
std::cerr << "Atom " << atom->getGlobalIndex() |
468 |
|
|
<<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; |
469 |
|
|
return false; |
470 |
gezelter |
246 |
} |
471 |
gezelter |
2 |
|
472 |
gezelter |
507 |
} |
473 |
gezelter |
2 |
|
474 |
|
|
|
475 |
gezelter |
507 |
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { |
476 |
gezelter |
2 |
|
477 |
gezelter |
507 |
Vector3d coords; |
478 |
|
|
Vector3d euler; |
479 |
gezelter |
2 |
|
480 |
|
|
|
481 |
gezelter |
507 |
atoms_.push_back(at); |
482 |
gezelter |
246 |
|
483 |
gezelter |
507 |
if( !ats->havePosition() ){ |
484 |
|
|
sprintf( painCave.errMsg, |
485 |
|
|
"RigidBody error.\n" |
486 |
|
|
"\tAtom %s does not have a position specified.\n" |
487 |
|
|
"\tThis means RigidBody cannot set up reference coordinates.\n", |
488 |
|
|
ats->getType() ); |
489 |
|
|
painCave.isFatal = 1; |
490 |
|
|
simError(); |
491 |
|
|
} |
492 |
gezelter |
2 |
|
493 |
gezelter |
507 |
coords[0] = ats->getPosX(); |
494 |
|
|
coords[1] = ats->getPosY(); |
495 |
|
|
coords[2] = ats->getPosZ(); |
496 |
gezelter |
2 |
|
497 |
gezelter |
507 |
refCoords_.push_back(coords); |
498 |
gezelter |
2 |
|
499 |
gezelter |
507 |
RotMat3x3d identMat = RotMat3x3d::identity(); |
500 |
gezelter |
2 |
|
501 |
gezelter |
507 |
if (at->isDirectional()) { |
502 |
gezelter |
2 |
|
503 |
gezelter |
507 |
if( !ats->haveOrientation() ){ |
504 |
|
|
sprintf( painCave.errMsg, |
505 |
|
|
"RigidBody error.\n" |
506 |
|
|
"\tAtom %s does not have an orientation specified.\n" |
507 |
|
|
"\tThis means RigidBody cannot set up reference orientations.\n", |
508 |
|
|
ats->getType() ); |
509 |
|
|
painCave.isFatal = 1; |
510 |
|
|
simError(); |
511 |
|
|
} |
512 |
gezelter |
246 |
|
513 |
gezelter |
507 |
euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; |
514 |
|
|
euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; |
515 |
|
|
euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; |
516 |
gezelter |
2 |
|
517 |
gezelter |
507 |
RotMat3x3d Atmp(euler); |
518 |
|
|
refOrients_.push_back(Atmp); |
519 |
gezelter |
2 |
|
520 |
gezelter |
507 |
}else { |
521 |
|
|
refOrients_.push_back(identMat); |
522 |
|
|
} |
523 |
gezelter |
2 |
|
524 |
|
|
|
525 |
gezelter |
507 |
} |
526 |
gezelter |
2 |
|
527 |
|
|
} |
528 |
|
|
|