ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/primitives/RigidBody.cpp
Revision: 507
Committed: Fri Apr 15 22:04:00 2005 UTC (20 years ago) by gezelter
Original Path: trunk/src/primitives/RigidBody.cpp
File size: 14362 byte(s)
Log Message:
xemacs has been drafted to perform our indentation services

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41     #include <algorithm>
42 tim 253 #include <math.h>
43 tim 3 #include "primitives/RigidBody.hpp"
44     #include "utils/simError.h"
45 tim 374 #include "utils/NumericConstant.hpp"
46 gezelter 246 namespace oopse {
47 gezelter 2
48 gezelter 507 RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){
49 gezelter 2
50 gezelter 507 }
51 gezelter 2
52 gezelter 507 void RigidBody::setPrevA(const RotMat3x3d& a) {
53 gezelter 246 ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
54     //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
55 gezelter 2
56 gezelter 246 for (int i =0 ; i < atoms_.size(); ++i){
57 gezelter 507 if (atoms_[i]->isDirectional()) {
58     atoms_[i]->setPrevA(a * refOrients_[i]);
59     }
60 gezelter 246 }
61 gezelter 2
62 gezelter 507 }
63 gezelter 2
64 gezelter 246
65 gezelter 507 void RigidBody::setA(const RotMat3x3d& a) {
66 gezelter 246 ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
67     //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
68 gezelter 2
69 gezelter 246 for (int i =0 ; i < atoms_.size(); ++i){
70 gezelter 507 if (atoms_[i]->isDirectional()) {
71     atoms_[i]->setA(a * refOrients_[i]);
72     }
73 gezelter 246 }
74 gezelter 507 }
75 gezelter 2
76 gezelter 507 void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) {
77 gezelter 246 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
78     //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;
79 gezelter 2
80 gezelter 246 for (int i =0 ; i < atoms_.size(); ++i){
81 gezelter 507 if (atoms_[i]->isDirectional()) {
82     atoms_[i]->setA(a * refOrients_[i], snapshotNo);
83     }
84 gezelter 2 }
85    
86 gezelter 507 }
87 gezelter 2
88 gezelter 507 Mat3x3d RigidBody::getI() {
89 gezelter 246 return inertiaTensor_;
90 gezelter 507 }
91 gezelter 2
92 gezelter 507 std::vector<double> RigidBody::getGrad() {
93     std::vector<double> grad(6, 0.0);
94 gezelter 246 Vector3d force;
95     Vector3d torque;
96     Vector3d myEuler;
97     double phi, theta, psi;
98     double cphi, sphi, ctheta, stheta;
99     Vector3d ephi;
100     Vector3d etheta;
101     Vector3d epsi;
102 gezelter 2
103 gezelter 246 force = getFrc();
104     torque =getTrq();
105     myEuler = getA().toEulerAngles();
106 gezelter 2
107 gezelter 246 phi = myEuler[0];
108     theta = myEuler[1];
109     psi = myEuler[2];
110 gezelter 2
111 gezelter 246 cphi = cos(phi);
112     sphi = sin(phi);
113     ctheta = cos(theta);
114     stheta = sin(theta);
115 gezelter 2
116 gezelter 246 // get unit vectors along the phi, theta and psi rotation axes
117 gezelter 2
118 gezelter 246 ephi[0] = 0.0;
119     ephi[1] = 0.0;
120     ephi[2] = 1.0;
121 gezelter 2
122 gezelter 246 etheta[0] = cphi;
123     etheta[1] = sphi;
124     etheta[2] = 0.0;
125 gezelter 2
126 gezelter 246 epsi[0] = stheta * cphi;
127     epsi[1] = stheta * sphi;
128     epsi[2] = ctheta;
129 gezelter 2
130 gezelter 246 //gradient is equal to -force
131     for (int j = 0 ; j<3; j++)
132 gezelter 507 grad[j] = -force[j];
133 gezelter 2
134 gezelter 246 for (int j = 0; j < 3; j++ ) {
135 gezelter 2
136 gezelter 507 grad[3] += torque[j]*ephi[j];
137     grad[4] += torque[j]*etheta[j];
138     grad[5] += torque[j]*epsi[j];
139 gezelter 2
140 gezelter 246 }
141    
142     return grad;
143 gezelter 507 }
144 gezelter 2
145 gezelter 507 void RigidBody::accept(BaseVisitor* v) {
146 gezelter 246 v->visit(this);
147 gezelter 507 }
148 gezelter 2
149 gezelter 507 /**@todo need modification */
150     void RigidBody::calcRefCoords() {
151 gezelter 246 double mtmp;
152     Vector3d refCOM(0.0);
153     mass_ = 0.0;
154     for (std::size_t i = 0; i < atoms_.size(); ++i) {
155 gezelter 507 mtmp = atoms_[i]->getMass();
156     mass_ += mtmp;
157     refCOM += refCoords_[i]*mtmp;
158 gezelter 246 }
159     refCOM /= mass_;
160 gezelter 2
161 gezelter 246 // Next, move the origin of the reference coordinate system to the COM:
162     for (std::size_t i = 0; i < atoms_.size(); ++i) {
163 gezelter 507 refCoords_[i] -= refCOM;
164 gezelter 246 }
165 gezelter 2
166 gezelter 507 // Moment of Inertia calculation
167 gezelter 246 Mat3x3d Itmp(0.0);
168 gezelter 2
169 gezelter 246 for (std::size_t i = 0; i < atoms_.size(); i++) {
170 gezelter 507 mtmp = atoms_[i]->getMass();
171     Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp;
172     double r2 = refCoords_[i].lengthSquare();
173     Itmp(0, 0) += mtmp * r2;
174     Itmp(1, 1) += mtmp * r2;
175     Itmp(2, 2) += mtmp * r2;
176 gezelter 246 }
177 gezelter 2
178 tim 273 //project the inertial moment of directional atoms into this rigid body
179     for (std::size_t i = 0; i < atoms_.size(); i++) {
180 gezelter 507 if (atoms_[i]->isDirectional()) {
181     RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI();
182     Itmp(0, 0) += Iproject(0, 0);
183     Itmp(1, 1) += Iproject(1, 1);
184     Itmp(2, 2) += Iproject(2, 2);
185     }
186 tim 273 }
187    
188 gezelter 246 //diagonalize
189     Vector3d evals;
190     Mat3x3d::diagonalize(Itmp, evals, sU_);
191 gezelter 2
192 gezelter 246 // zero out I and then fill the diagonals with the moments of inertia:
193     inertiaTensor_(0, 0) = evals[0];
194     inertiaTensor_(1, 1) = evals[1];
195     inertiaTensor_(2, 2) = evals[2];
196    
197     int nLinearAxis = 0;
198     for (int i = 0; i < 3; i++) {
199 gezelter 507 if (fabs(evals[i]) < oopse::epsilon) {
200     linear_ = true;
201     linearAxis_ = i;
202     ++ nLinearAxis;
203     }
204 gezelter 246 }
205 gezelter 2
206 gezelter 246 if (nLinearAxis > 1) {
207 gezelter 507 sprintf( painCave.errMsg,
208     "RigidBody error.\n"
209     "\tOOPSE found more than one axis in this rigid body with a vanishing \n"
210     "\tmoment of inertia. This can happen in one of three ways:\n"
211     "\t 1) Only one atom was specified, or \n"
212     "\t 2) All atoms were specified at the same location, or\n"
213     "\t 3) The programmers did something stupid.\n"
214     "\tIt is silly to use a rigid body to describe this situation. Be smarter.\n"
215     );
216     painCave.isFatal = 1;
217     simError();
218 gezelter 246 }
219 gezelter 2
220 gezelter 507 }
221 gezelter 2
222 gezelter 507 void RigidBody::calcForcesAndTorques() {
223 gezelter 246 Vector3d afrc;
224     Vector3d atrq;
225     Vector3d apos;
226     Vector3d rpos;
227     Vector3d frc(0.0);
228     Vector3d trq(0.0);
229     Vector3d pos = this->getPos();
230     for (int i = 0; i < atoms_.size(); i++) {
231 gezelter 2
232 gezelter 507 afrc = atoms_[i]->getFrc();
233     apos = atoms_[i]->getPos();
234     rpos = apos - pos;
235 gezelter 246
236 gezelter 507 frc += afrc;
237 gezelter 2
238 gezelter 507 trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1];
239     trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2];
240     trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0];
241 gezelter 2
242 gezelter 507 // If the atom has a torque associated with it, then we also need to
243     // migrate the torques onto the center of mass:
244 gezelter 2
245 gezelter 507 if (atoms_[i]->isDirectional()) {
246     atrq = atoms_[i]->getTrq();
247     trq += atrq;
248     }
249 gezelter 246
250     }
251    
252     setFrc(frc);
253     setTrq(trq);
254    
255 gezelter 507 }
256 gezelter 2
257 gezelter 507 void RigidBody::updateAtoms() {
258 gezelter 246 unsigned int i;
259     Vector3d ref;
260     Vector3d apos;
261     DirectionalAtom* dAtom;
262     Vector3d pos = getPos();
263     RotMat3x3d a = getA();
264 gezelter 2
265 gezelter 246 for (i = 0; i < atoms_.size(); i++) {
266    
267 gezelter 507 ref = body2Lab(refCoords_[i]);
268 gezelter 2
269 gezelter 507 apos = pos + ref;
270 gezelter 2
271 gezelter 507 atoms_[i]->setPos(apos);
272 gezelter 2
273 gezelter 507 if (atoms_[i]->isDirectional()) {
274 gezelter 246
275 gezelter 507 dAtom = (DirectionalAtom *) atoms_[i];
276     dAtom->setA(a * refOrients_[i]);
277     //dAtom->rotateBy( A );
278     }
279 gezelter 2
280     }
281    
282 gezelter 507 }
283 gezelter 2
284    
285 gezelter 507 void RigidBody::updateAtoms(int frame) {
286 tim 318 unsigned int i;
287     Vector3d ref;
288     Vector3d apos;
289     DirectionalAtom* dAtom;
290     Vector3d pos = getPos(frame);
291     RotMat3x3d a = getA(frame);
292    
293     for (i = 0; i < atoms_.size(); i++) {
294    
295 gezelter 507 ref = body2Lab(refCoords_[i], frame);
296 tim 318
297 gezelter 507 apos = pos + ref;
298 tim 318
299 gezelter 507 atoms_[i]->setPos(apos, frame);
300 tim 318
301 gezelter 507 if (atoms_[i]->isDirectional()) {
302 tim 318
303 gezelter 507 dAtom = (DirectionalAtom *) atoms_[i];
304     dAtom->setA(a * refOrients_[i], frame);
305     }
306 tim 318
307     }
308    
309 gezelter 507 }
310 tim 318
311 gezelter 507 void RigidBody::updateAtomVel() {
312 tim 318 Mat3x3d skewMat;;
313    
314     Vector3d ji = getJ();
315     Mat3x3d I = getI();
316    
317     skewMat(0, 0) =0;
318     skewMat(0, 1) = ji[2] /I(2, 2);
319     skewMat(0, 2) = -ji[1] /I(1, 1);
320    
321     skewMat(1, 0) = -ji[2] /I(2, 2);
322     skewMat(1, 1) = 0;
323     skewMat(1, 2) = ji[0]/I(0, 0);
324    
325     skewMat(2, 0) =ji[1] /I(1, 1);
326     skewMat(2, 1) = -ji[0]/I(0, 0);
327     skewMat(2, 2) = 0;
328    
329     Mat3x3d mat = (getA() * skewMat).transpose();
330     Vector3d rbVel = getVel();
331    
332    
333     Vector3d velRot;
334     for (int i =0 ; i < refCoords_.size(); ++i) {
335 gezelter 507 atoms_[i]->setVel(rbVel + mat * refCoords_[i]);
336 tim 318 }
337    
338 gezelter 507 }
339 tim 318
340 gezelter 507 void RigidBody::updateAtomVel(int frame) {
341 tim 318 Mat3x3d skewMat;;
342    
343     Vector3d ji = getJ(frame);
344     Mat3x3d I = getI();
345    
346     skewMat(0, 0) =0;
347     skewMat(0, 1) = ji[2] /I(2, 2);
348     skewMat(0, 2) = -ji[1] /I(1, 1);
349    
350     skewMat(1, 0) = -ji[2] /I(2, 2);
351     skewMat(1, 1) = 0;
352     skewMat(1, 2) = ji[0]/I(0, 0);
353    
354     skewMat(2, 0) =ji[1] /I(1, 1);
355     skewMat(2, 1) = -ji[0]/I(0, 0);
356     skewMat(2, 2) = 0;
357    
358     Mat3x3d mat = (getA(frame) * skewMat).transpose();
359     Vector3d rbVel = getVel(frame);
360    
361    
362     Vector3d velRot;
363     for (int i =0 ; i < refCoords_.size(); ++i) {
364 gezelter 507 atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame);
365 tim 318 }
366    
367 gezelter 507 }
368 tim 318
369    
370    
371 gezelter 507 bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) {
372 gezelter 246 if (index < atoms_.size()) {
373 gezelter 2
374 gezelter 507 Vector3d ref = body2Lab(refCoords_[index]);
375     pos = getPos() + ref;
376     return true;
377 gezelter 246 } else {
378 gezelter 507 std::cerr << index << " is an invalid index, current rigid body contains "
379     << atoms_.size() << "atoms" << std::endl;
380     return false;
381 gezelter 246 }
382 gezelter 507 }
383 gezelter 2
384 gezelter 507 bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) {
385 gezelter 246 std::vector<Atom*>::iterator i;
386     i = std::find(atoms_.begin(), atoms_.end(), atom);
387     if (i != atoms_.end()) {
388 gezelter 507 //RigidBody class makes sure refCoords_ and atoms_ match each other
389     Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]);
390     pos = getPos() + ref;
391     return true;
392 gezelter 246 } else {
393 gezelter 507 std::cerr << "Atom " << atom->getGlobalIndex()
394     <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
395     return false;
396 gezelter 2 }
397 gezelter 507 }
398     bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) {
399 gezelter 2
400 gezelter 246 //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$
401 gezelter 2
402 gezelter 246 if (index < atoms_.size()) {
403 gezelter 2
404 gezelter 507 Vector3d velRot;
405     Mat3x3d skewMat;;
406     Vector3d ref = refCoords_[index];
407     Vector3d ji = getJ();
408     Mat3x3d I = getI();
409 gezelter 2
410 gezelter 507 skewMat(0, 0) =0;
411     skewMat(0, 1) = ji[2] /I(2, 2);
412     skewMat(0, 2) = -ji[1] /I(1, 1);
413 gezelter 2
414 gezelter 507 skewMat(1, 0) = -ji[2] /I(2, 2);
415     skewMat(1, 1) = 0;
416     skewMat(1, 2) = ji[0]/I(0, 0);
417 gezelter 2
418 gezelter 507 skewMat(2, 0) =ji[1] /I(1, 1);
419     skewMat(2, 1) = -ji[0]/I(0, 0);
420     skewMat(2, 2) = 0;
421 gezelter 2
422 gezelter 507 velRot = (getA() * skewMat).transpose() * ref;
423 gezelter 2
424 gezelter 507 vel =getVel() + velRot;
425     return true;
426 gezelter 246
427     } else {
428 gezelter 507 std::cerr << index << " is an invalid index, current rigid body contains "
429     << atoms_.size() << "atoms" << std::endl;
430     return false;
431 gezelter 2 }
432 gezelter 507 }
433 gezelter 2
434 gezelter 507 bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) {
435 gezelter 2
436 gezelter 246 std::vector<Atom*>::iterator i;
437     i = std::find(atoms_.begin(), atoms_.end(), atom);
438     if (i != atoms_.end()) {
439 gezelter 507 return getAtomVel(vel, i - atoms_.begin());
440 gezelter 246 } else {
441 gezelter 507 std::cerr << "Atom " << atom->getGlobalIndex()
442     <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
443     return false;
444 gezelter 246 }
445 gezelter 507 }
446 gezelter 2
447 gezelter 507 bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) {
448 gezelter 246 if (index < atoms_.size()) {
449    
450 gezelter 507 coor = refCoords_[index];
451     return true;
452 gezelter 246 } else {
453 gezelter 507 std::cerr << index << " is an invalid index, current rigid body contains "
454     << atoms_.size() << "atoms" << std::endl;
455     return false;
456 gezelter 2 }
457    
458 gezelter 507 }
459 gezelter 2
460 gezelter 507 bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) {
461 gezelter 246 std::vector<Atom*>::iterator i;
462     i = std::find(atoms_.begin(), atoms_.end(), atom);
463     if (i != atoms_.end()) {
464 gezelter 507 //RigidBody class makes sure refCoords_ and atoms_ match each other
465     coor = refCoords_[i - atoms_.begin()];
466     return true;
467 gezelter 246 } else {
468 gezelter 507 std::cerr << "Atom " << atom->getGlobalIndex()
469     <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;
470     return false;
471 gezelter 246 }
472 gezelter 2
473 gezelter 507 }
474 gezelter 2
475    
476 gezelter 507 void RigidBody::addAtom(Atom* at, AtomStamp* ats) {
477 gezelter 2
478 gezelter 507 Vector3d coords;
479     Vector3d euler;
480 gezelter 2
481    
482 gezelter 507 atoms_.push_back(at);
483 gezelter 246
484 gezelter 507 if( !ats->havePosition() ){
485     sprintf( painCave.errMsg,
486     "RigidBody error.\n"
487     "\tAtom %s does not have a position specified.\n"
488     "\tThis means RigidBody cannot set up reference coordinates.\n",
489     ats->getType() );
490     painCave.isFatal = 1;
491     simError();
492     }
493 gezelter 2
494 gezelter 507 coords[0] = ats->getPosX();
495     coords[1] = ats->getPosY();
496     coords[2] = ats->getPosZ();
497 gezelter 2
498 gezelter 507 refCoords_.push_back(coords);
499 gezelter 2
500 gezelter 507 RotMat3x3d identMat = RotMat3x3d::identity();
501 gezelter 2
502 gezelter 507 if (at->isDirectional()) {
503 gezelter 2
504 gezelter 507 if( !ats->haveOrientation() ){
505     sprintf( painCave.errMsg,
506     "RigidBody error.\n"
507     "\tAtom %s does not have an orientation specified.\n"
508     "\tThis means RigidBody cannot set up reference orientations.\n",
509     ats->getType() );
510     painCave.isFatal = 1;
511     simError();
512     }
513 gezelter 246
514 gezelter 507 euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0;
515     euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0;
516     euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0;
517 gezelter 2
518 gezelter 507 RotMat3x3d Atmp(euler);
519     refOrients_.push_back(Atmp);
520 gezelter 2
521 gezelter 507 }else {
522     refOrients_.push_back(identMat);
523     }
524 gezelter 2
525    
526 gezelter 507 }
527 gezelter 2
528     }
529