40 |
|
*/ |
41 |
|
|
42 |
|
#include "primitives/Inversion.hpp" |
43 |
– |
#include "fstream" |
43 |
|
|
44 |
|
namespace oopse { |
45 |
|
|
56 |
|
// is treated as atom *3* in a standard torsion form: |
57 |
|
|
58 |
|
Vector3d pos1 = atom2_->getPos(); |
59 |
< |
Vector3d pos2 = atom1_->getPos(); |
60 |
< |
Vector3d pos3 = atom4_->getPos(); |
61 |
< |
Vector3d pos4 = atom3_->getPos(); |
59 |
> |
Vector3d pos2 = atom3_->getPos(); |
60 |
> |
Vector3d pos3 = atom1_->getPos(); |
61 |
> |
Vector3d pos4 = atom4_->getPos(); |
62 |
|
|
63 |
< |
/*std::ofstream myfile; |
64 |
< |
myfile.open("Inversion", std::ios::app); |
65 |
< |
myfile << atom1_->getType() << " - atom1; " |
67 |
< |
<< atom2_->getType() << " - atom2; " |
68 |
< |
<< atom3_->getType() << " - atom3; " |
69 |
< |
<< atom4_->getType() << " - atom4; " |
70 |
< |
<< std::endl; |
71 |
< |
*/ |
72 |
< |
Vector3d r21 = pos1 - pos2; |
73 |
< |
Vector3d r32 = pos2 - pos3; |
74 |
< |
Vector3d r42 = pos2 - pos4; |
63 |
> |
Vector3d r31 = pos1 - pos3; |
64 |
> |
Vector3d r23 = pos3 - pos2; |
65 |
> |
Vector3d r43 = pos3 - pos4; |
66 |
|
|
67 |
|
// Calculate the cross products and distances |
68 |
< |
Vector3d A = cross(r21, r32); |
68 |
> |
Vector3d A = cross(r31, r43); |
69 |
|
RealType rA = A.length(); |
70 |
< |
Vector3d B = cross(r32, r42); |
70 |
> |
Vector3d B = cross(r43, r23); |
71 |
|
RealType rB = B.length(); |
72 |
|
//Vector3d C = cross(r23, A); |
73 |
|
//RealType rC = C.length(); |
78 |
|
|
79 |
|
// Calculate the sin and cos |
80 |
|
RealType cos_phi = dot(A, B) ; |
81 |
< |
if (cos_phi > 1.0) {cos_phi = 1.0; std::cout << "!!!! cos_phi is bigger than 1.0" |
82 |
< |
<< std::endl;} |
92 |
< |
if (cos_phi < -1.0) {cos_phi = -1.0; std::cout << "!!!! cos_phi is less than -1.0" |
93 |
< |
<< std::endl;} |
94 |
< |
//std::cout << "We actually use this inversion!!!!" << std::endl; |
81 |
> |
if (cos_phi > 1.0) cos_phi = 1.0; |
82 |
> |
if (cos_phi < -1.0) cos_phi = -1.0; |
83 |
|
|
84 |
|
RealType dVdcosPhi; |
97 |
– |
//cos_phi = 2.0*cos_phi*cos_phi - 1.0; |
85 |
|
inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
86 |
|
Vector3d f1 ; |
87 |
|
Vector3d f2 ; |
90 |
|
Vector3d dcosdA = (cos_phi * A - B) /rA; |
91 |
|
Vector3d dcosdB = (cos_phi * B - A) /rB; |
92 |
|
|
93 |
< |
f1 = dVdcosPhi * cross(r32, dcosdA); |
94 |
< |
f2 = dVdcosPhi * ( cross(r42, dcosdB) - cross(r21, dcosdA)); |
95 |
< |
f3 = dVdcosPhi * cross(dcosdB, r32); |
93 |
> |
f1 = dVdcosPhi * cross(r43, dcosdA); |
94 |
> |
f2 = dVdcosPhi * ( cross(r23, dcosdB) - cross(r31, dcosdA)); |
95 |
> |
f3 = dVdcosPhi * cross(dcosdB, r43); |
96 |
|
|
97 |
|
// In OOPSE's version of an improper torsion, the central atom |
98 |
|
// comes first. However, to get the planarity in a typical cosine |
109 |
|
atom4_->addFrc(-f2); |
110 |
|
atom3_->addFrc(-f3); |
111 |
|
|
112 |
+ |
atom1_->addParticlePot(potential_); |
113 |
+ |
atom2_->addParticlePot(potential_); |
114 |
+ |
atom3_->addParticlePot(potential_); |
115 |
+ |
atom4_->addParticlePot(potential_); |
116 |
+ |
|
117 |
|
angle = acos(cos_phi) /M_PI * 180.0; |
118 |
|
} |
119 |
|
|