1 |
+ |
/* |
2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
+ |
* |
4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
6 |
+ |
* redistribute this software in source and binary code form, provided |
7 |
+ |
* that the following conditions are met: |
8 |
+ |
* |
9 |
+ |
* 1. Redistributions of source code must retain the above copyright |
10 |
+ |
* notice, this list of conditions and the following disclaimer. |
11 |
+ |
* |
12 |
+ |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
+ |
* notice, this list of conditions and the following disclaimer in the |
14 |
+ |
* documentation and/or other materials provided with the |
15 |
+ |
* distribution. |
16 |
+ |
* |
17 |
+ |
* This software is provided "AS IS," without a warranty of any |
18 |
+ |
* kind. All express or implied conditions, representations and |
19 |
+ |
* warranties, including any implied warranty of merchantability, |
20 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
+ |
* be liable for any damages suffered by licensee as a result of |
23 |
+ |
* using, modifying or distributing the software or its |
24 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
25 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
27 |
+ |
* damages, however caused and regardless of the theory of liability, |
28 |
+ |
* arising out of the use of or inability to use software, even if the |
29 |
+ |
* University of Notre Dame has been advised of the possibility of |
30 |
+ |
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
+ |
*/ |
41 |
+ |
|
42 |
+ |
#include "primitives/GhostBend.hpp" |
43 |
+ |
#include "primitives/DirectionalAtom.hpp" |
44 |
+ |
namespace OpenMD { |
45 |
|
|
46 |
< |
#include <math.h> |
47 |
< |
#include <iostream> |
48 |
< |
#include <stdlib.h> |
46 |
> |
/**@todo still a lot left to improve*/ |
47 |
> |
void GhostBend::calcForce(RealType& angle) { |
48 |
> |
DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom2_); |
49 |
> |
|
50 |
> |
Vector3d pos1 = atom1_->getPos(); |
51 |
> |
Vector3d pos2 = ghostAtom->getPos(); |
52 |
|
|
53 |
< |
#include "simError.h" |
54 |
< |
#include "SRI.hpp" |
55 |
< |
#include "Atom.hpp" |
53 |
> |
Vector3d r21 = pos1 - pos2; |
54 |
> |
RealType d21 = r21.length(); |
55 |
> |
|
56 |
> |
RealType d21inv = 1.0 / d21; |
57 |
> |
|
58 |
> |
// we need the transpose of A to get the lab fixed vector: |
59 |
> |
Vector3d r23 = ghostAtom->getA().transpose().getColumn(2); |
60 |
> |
RealType d23 = r23.length(); |
61 |
> |
|
62 |
> |
RealType d23inv = 1.0 / d23; |
63 |
> |
|
64 |
> |
RealType cosTheta = dot(r21, r23) / (d21 * d23); |
65 |
|
|
66 |
+ |
//check roundoff |
67 |
+ |
if (cosTheta > 1.0) { |
68 |
+ |
cosTheta = 1.0; |
69 |
+ |
} else if (cosTheta < -1.0) { |
70 |
+ |
cosTheta = -1.0; |
71 |
+ |
} |
72 |
+ |
|
73 |
+ |
RealType theta = acos(cosTheta); |
74 |
|
|
75 |
< |
|
12 |
< |
GhostBend::GhostBend( Atom &a, Atom &b ){ |
13 |
< |
|
14 |
< |
c_p_a = &a; |
15 |
< |
|
16 |
< |
if( !b.isDirectional() ){ |
75 |
> |
RealType dVdTheta; |
76 |
|
|
77 |
< |
// if atom b is not directional, then bad things will happen |
77 |
> |
bendType_->calcForce(theta, potential_, dVdTheta); |
78 |
|
|
79 |
< |
sprintf( painCave.errMsg, |
80 |
< |
" Ghost Bend error: Atom # %d of type \"%s\" is not " |
81 |
< |
"directional.\n", |
82 |
< |
b.getIndex(), |
83 |
< |
b.getType() ); |
84 |
< |
painCave.isFatal = 1; |
85 |
< |
simError(); |
86 |
< |
} |
79 |
> |
RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
80 |
> |
|
81 |
> |
if (fabs(sinTheta) < 1.0E-6) { |
82 |
> |
sinTheta = 1.0E-6; |
83 |
> |
} |
84 |
> |
|
85 |
> |
RealType commonFactor1 = dVdTheta / sinTheta * d21inv; |
86 |
> |
RealType commonFactor2 = dVdTheta / sinTheta * d23inv; |
87 |
> |
|
88 |
> |
Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); |
89 |
> |
Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); |
90 |
|
|
91 |
< |
atomB = ( DirectionalAtom* ) &b; |
30 |
< |
|
31 |
< |
c_potential_E = 0.0; |
91 |
> |
// Total force in current bend is zero |
92 |
|
|
93 |
< |
} |
93 |
> |
atom1_->addFrc(force1); |
94 |
> |
ghostAtom->addFrc(-force1); |
95 |
|
|
96 |
+ |
ghostAtom->addTrq( cross(r23, force3) ); |
97 |
|
|
98 |
< |
void GhostBend::calc_forces(){ |
99 |
< |
|
38 |
< |
double dx,dy,dz,gx,gy,gz,dx2,dy2,dz2,gx2,gy2,gz2; |
39 |
< |
double rij2, rkj2, riji2, rkji2, dot, denom, cosang, angl; |
40 |
< |
|
41 |
< |
double sina2, sinai; |
98 |
> |
atom1_->addParticlePot(potential_); |
99 |
> |
ghostAtom->addParticlePot(potential_); |
100 |
|
|
101 |
< |
double comf2, comf3, comf4; |
102 |
< |
double dcsidx, dcsidy, dcsidz, dcskdx, dcskdy, dcskdz; |
103 |
< |
// double dcsjdx, dcsjdy, dcsjdz; |
104 |
< |
double dadxi, dadyi, dadzi; |
47 |
< |
double dadxk, dadyk, dadzk;//, dadxj, dadyj, dadzj; |
48 |
< |
double daxi, dayi, dazi, daxk, dayk, dazk, daxj, dayj, dazj; |
49 |
< |
double u[3]; |
50 |
< |
|
51 |
< |
double aR[3], bR[3]; |
52 |
< |
double aF[3], bF[3], bTrq[3]; |
101 |
> |
angle = theta /M_PI * 180.0; |
102 |
> |
|
103 |
> |
} |
104 |
> |
} //end namespace OpenMD |
105 |
|
|
54 |
– |
c_p_a->getPos( aR ); |
55 |
– |
atomB->getPos( bR ); |
56 |
– |
|
57 |
– |
|
58 |
– |
dx = aR[0] - bR[0]; |
59 |
– |
dy = aR[1] - bR[1]; |
60 |
– |
dz = aR[2] - bR[2]; |
61 |
– |
|
62 |
– |
atomB->getU(u); |
63 |
– |
|
64 |
– |
gx = u[0]; |
65 |
– |
gy = u[1]; |
66 |
– |
gz = u[2]; |
67 |
– |
|
68 |
– |
dx2 = dx * dx; |
69 |
– |
dy2 = dy * dy; |
70 |
– |
dz2 = dz * dz; |
71 |
– |
|
72 |
– |
gx2 = gx * gx; |
73 |
– |
gy2 = gy * gy; |
74 |
– |
gz2 = gz * gz; |
75 |
– |
|
76 |
– |
rij2 = dx2 + dy2 + dz2; |
77 |
– |
rkj2 = gx2 + gy2 + gz2; |
78 |
– |
|
79 |
– |
riji2 = 1.0 / rij2; |
80 |
– |
rkji2 = 1.0 / rkj2; |
81 |
– |
|
82 |
– |
dot = dx * gx + dy * gy + dz * gz; |
83 |
– |
denom = sqrt((riji2 * rkji2)); |
84 |
– |
cosang = dot * denom; |
85 |
– |
|
86 |
– |
if(cosang > 1.0)cosang = 1.0; |
87 |
– |
if(cosang < -1.0) cosang = -1.0; |
88 |
– |
|
89 |
– |
angl = acos(cosang); |
90 |
– |
angl = angl * 180.0 / M_PI; |
91 |
– |
|
92 |
– |
sina2 = 1.0 - cosang*cosang; |
93 |
– |
if(fabs(sina2) < 1.0E-12 ) sina2 = 1.0E-12; |
94 |
– |
sinai = 1.0 / sqrt(sina2); |
95 |
– |
|
96 |
– |
comf2 = cosang * riji2; |
97 |
– |
comf3 = cosang * rkji2; |
98 |
– |
comf4 = bend_force(angl); |
99 |
– |
|
100 |
– |
dcsidx = gx*denom - comf2*dx; |
101 |
– |
dcsidy = gy*denom - comf2*dy; |
102 |
– |
dcsidz = gz*denom - comf2*dz; |
103 |
– |
|
104 |
– |
dcskdx = dx*denom - comf3*gx; |
105 |
– |
dcskdy = dy*denom - comf3*gy; |
106 |
– |
dcskdz = dz*denom - comf3*gz; |
107 |
– |
|
108 |
– |
// dcsjdx = -dcsidx - dcskdx; |
109 |
– |
// dcsjdy = -dcsidy - dcskdy; |
110 |
– |
// dcsjdz = -dcsidz - dcskdz; |
111 |
– |
|
112 |
– |
dadxi = -sinai*dcsidx; |
113 |
– |
dadyi = -sinai*dcsidy; |
114 |
– |
dadzi = -sinai*dcsidz; |
115 |
– |
|
116 |
– |
dadxk = -sinai*dcskdx; |
117 |
– |
dadyk = -sinai*dcskdy; |
118 |
– |
dadzk = -sinai*dcskdz; |
119 |
– |
|
120 |
– |
// dadxj = -dadxi - dadxk; |
121 |
– |
// dadyj = -dadyi - dadyk; |
122 |
– |
// dadzj = -dadzi - dadzk; |
123 |
– |
|
124 |
– |
daxi = comf4*dadxi; |
125 |
– |
dayi = comf4*dadyi; |
126 |
– |
dazi = comf4*dadzi; |
127 |
– |
|
128 |
– |
daxk = comf4*dadxk; |
129 |
– |
dayk = comf4*dadyk; |
130 |
– |
dazk = comf4*dadzk; |
131 |
– |
|
132 |
– |
daxj = -daxi - daxk; |
133 |
– |
dayj = -dayi - dayk; |
134 |
– |
dazj = -dazi - dazk; |
135 |
– |
|
136 |
– |
aF[0] = daxi; |
137 |
– |
aF[1] = dayi; |
138 |
– |
aF[2] = dazi; |
139 |
– |
|
140 |
– |
bF[0] = daxj + daxk; |
141 |
– |
bF[1] = dayj + dayk; |
142 |
– |
bF[2] = dazj + dazk; |
143 |
– |
|
144 |
– |
bTrq[0] = gy*dazk - gz*dayk; |
145 |
– |
bTrq[1] = gz*daxk - gx*dazk; |
146 |
– |
bTrq[2] = gx*dayk - gy*daxk; |
147 |
– |
|
148 |
– |
|
149 |
– |
c_p_a->addFrc( aF ); |
150 |
– |
atomB->addFrc( bF ); |
151 |
– |
atomB->addTrq( bTrq ); |
152 |
– |
|
153 |
– |
return; |
154 |
– |
} |
155 |
– |
|
156 |
– |
void GhostBend::setConstants( double the_c1, double the_c2, double the_c3, |
157 |
– |
double the_Th0 ){ |
158 |
– |
c1 = the_c1; |
159 |
– |
c2 = the_c2; |
160 |
– |
c3 = the_c3; |
161 |
– |
theta0 = the_Th0; |
162 |
– |
} |
163 |
– |
|
164 |
– |
|
165 |
– |
double GhostBend::bend_force( double theta ){ |
166 |
– |
|
167 |
– |
double dt, dt2; |
168 |
– |
double force; |
169 |
– |
|
170 |
– |
dt = ( theta - theta0 ) * M_PI / 180.0; |
171 |
– |
dt2 = dt * dt; |
172 |
– |
|
173 |
– |
c_potential_E = ( c1 * dt2 ) + ( c2 * dt ) + c3; |
174 |
– |
force = -( ( 2.0 * c1 * dt ) + c2 ); |
175 |
– |
return force; |
176 |
– |
} |