6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "primitives/DirectionalAtom.hpp" |
44 |
+ |
#include "types/DirectionalAdapter.hpp" |
45 |
+ |
#include "types/MultipoleAdapter.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
< |
namespace oopse { |
47 |
> |
namespace OpenMD { |
48 |
|
|
49 |
< |
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
50 |
< |
: Atom(dAtomType){ |
49 |
> |
DirectionalAtom::DirectionalAtom(AtomType* dAtomType) |
50 |
> |
: Atom(dAtomType) { |
51 |
|
objType_= otDAtom; |
52 |
< |
if (dAtomType->isMultipole()) { |
53 |
< |
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
52 |
> |
|
53 |
> |
DirectionalAdapter da = DirectionalAdapter(dAtomType); |
54 |
> |
I_ = da.getI(); |
55 |
> |
|
56 |
> |
MultipoleAdapter ma = MultipoleAdapter(dAtomType); |
57 |
> |
if (ma.isDipole()) { |
58 |
> |
dipole_ = ma.getDipole(); |
59 |
|
} |
60 |
< |
|
60 |
> |
if (ma.isQuadrupole()) { |
61 |
> |
quadrupole_ = ma.getQuadrupole(); |
62 |
> |
} |
63 |
> |
|
64 |
|
// Check if one of the diagonal inertia tensor of this directional |
65 |
|
// atom is zero: |
66 |
|
int nLinearAxis = 0; |
67 |
|
Mat3x3d inertiaTensor = getI(); |
68 |
|
for (int i = 0; i < 3; i++) { |
69 |
< |
if (fabs(inertiaTensor(i, i)) < oopse::epsilon) { |
69 |
> |
if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) { |
70 |
|
linear_ = true; |
71 |
|
linearAxis_ = i; |
72 |
|
++ nLinearAxis; |
76 |
|
if (nLinearAxis > 1) { |
77 |
|
sprintf( painCave.errMsg, |
78 |
|
"Directional Atom warning.\n" |
79 |
< |
"\tOOPSE found more than one axis in this directional atom with a vanishing \n" |
79 |
> |
"\tOpenMD found more than one axis in this directional atom with a vanishing \n" |
80 |
|
"\tmoment of inertia."); |
81 |
|
painCave.isFatal = 0; |
82 |
|
simError(); |
84 |
|
} |
85 |
|
|
86 |
|
Mat3x3d DirectionalAtom::getI() { |
87 |
< |
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
87 |
> |
return I_; |
88 |
|
} |
89 |
|
|
90 |
|
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
91 |
|
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
92 |
+ |
|
93 |
|
if (atomType_->isMultipole()) { |
94 |
< |
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
94 |
> |
RotMat3x3d atrans = a.transpose(); |
95 |
> |
|
96 |
> |
if (atomType_->isDipole()) { |
97 |
> |
((snapshotMan_->getPrevSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_; |
98 |
> |
} |
99 |
> |
|
100 |
> |
if (atomType_->isQuadrupole()) { |
101 |
> |
((snapshotMan_->getPrevSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
102 |
> |
} |
103 |
|
} |
104 |
|
} |
105 |
|
|
106 |
|
|
107 |
|
void DirectionalAtom::setA(const RotMat3x3d& a) { |
108 |
|
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
109 |
< |
|
109 |
> |
|
110 |
|
if (atomType_->isMultipole()) { |
111 |
< |
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
111 |
> |
RotMat3x3d atrans = a.transpose(); |
112 |
> |
|
113 |
> |
if (atomType_->isDipole()) { |
114 |
> |
((snapshotMan_->getCurrentSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_; |
115 |
> |
} |
116 |
> |
|
117 |
> |
if (atomType_->isQuadrupole()) { |
118 |
> |
((snapshotMan_->getCurrentSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
119 |
> |
} |
120 |
|
} |
121 |
+ |
|
122 |
|
} |
123 |
|
|
124 |
|
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
125 |
|
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
126 |
< |
|
126 |
> |
|
127 |
|
if (atomType_->isMultipole()) { |
128 |
< |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
128 |
> |
RotMat3x3d atrans = a.transpose(); |
129 |
> |
|
130 |
> |
if (atomType_->isDipole()) { |
131 |
> |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).dipole[localIndex_] = atrans * dipole_; |
132 |
> |
} |
133 |
> |
|
134 |
> |
if (atomType_->isQuadrupole()) { |
135 |
> |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
136 |
> |
} |
137 |
|
} |
138 |
+ |
|
139 |
|
} |
140 |
|
|
141 |
|
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
147 |
|
Vector3d force; |
148 |
|
Vector3d torque; |
149 |
|
Vector3d myEuler; |
150 |
< |
RealType phi, theta, psi; |
150 |
> |
RealType phi, theta; |
151 |
> |
// RealType psi; |
152 |
|
RealType cphi, sphi, ctheta, stheta; |
153 |
|
Vector3d ephi; |
154 |
|
Vector3d etheta; |
160 |
|
|
161 |
|
phi = myEuler[0]; |
162 |
|
theta = myEuler[1]; |
163 |
< |
psi = myEuler[2]; |
163 |
> |
// psi = myEuler[2]; |
164 |
|
|
165 |
|
cphi = cos(phi); |
166 |
|
sphi = sin(phi); |
173 |
|
ephi[1] = 0.0; |
174 |
|
ephi[2] = 1.0; |
175 |
|
|
176 |
+ |
//etheta[0] = -sphi; |
177 |
+ |
//etheta[1] = cphi; |
178 |
+ |
//etheta[2] = 0.0; |
179 |
+ |
|
180 |
|
etheta[0] = cphi; |
181 |
|
etheta[1] = sphi; |
182 |
|
etheta[2] = 0.0; |