1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "primitives/DirectionalAtom.hpp" |
44 |
#include "types/DirectionalAdapter.hpp" |
45 |
#include "types/MultipoleAdapter.hpp" |
46 |
#include "utils/simError.h" |
47 |
namespace OpenMD { |
48 |
|
49 |
DirectionalAtom::DirectionalAtom(AtomType* dAtomType) |
50 |
: Atom(dAtomType) { |
51 |
objType_= otDAtom; |
52 |
|
53 |
DirectionalAdapter da = DirectionalAdapter(dAtomType); |
54 |
I_ = da.getI(); |
55 |
|
56 |
MultipoleAdapter ma = MultipoleAdapter(dAtomType); |
57 |
if (ma.isDipole()) { |
58 |
dipole_ = ma.getDipole(); |
59 |
} |
60 |
if (ma.isQuadrupole()) { |
61 |
quadrupole_ = ma.getQuadrupole(); |
62 |
} |
63 |
|
64 |
// Check if one of the diagonal inertia tensor of this directional |
65 |
// atom is zero: |
66 |
int nLinearAxis = 0; |
67 |
Mat3x3d inertiaTensor = getI(); |
68 |
for (int i = 0; i < 3; i++) { |
69 |
if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) { |
70 |
linear_ = true; |
71 |
linearAxis_ = i; |
72 |
++ nLinearAxis; |
73 |
} |
74 |
} |
75 |
|
76 |
if (nLinearAxis > 1) { |
77 |
sprintf( painCave.errMsg, |
78 |
"Directional Atom warning.\n" |
79 |
"\tOpenMD found more than one axis in this directional atom with a vanishing \n" |
80 |
"\tmoment of inertia."); |
81 |
painCave.isFatal = 0; |
82 |
simError(); |
83 |
} |
84 |
} |
85 |
|
86 |
Mat3x3d DirectionalAtom::getI() { |
87 |
return I_; |
88 |
} |
89 |
|
90 |
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
91 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
92 |
|
93 |
if (atomType_->isMultipole()) { |
94 |
RotMat3x3d atrans = a.transpose(); |
95 |
|
96 |
if (atomType_->isDipole()) { |
97 |
((snapshotMan_->getPrevSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_; |
98 |
} |
99 |
|
100 |
if (atomType_->isQuadrupole()) { |
101 |
((snapshotMan_->getPrevSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
102 |
} |
103 |
} |
104 |
} |
105 |
|
106 |
|
107 |
void DirectionalAtom::setA(const RotMat3x3d& a) { |
108 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
109 |
|
110 |
if (atomType_->isMultipole()) { |
111 |
RotMat3x3d atrans = a.transpose(); |
112 |
|
113 |
if (atomType_->isDipole()) { |
114 |
((snapshotMan_->getCurrentSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_; |
115 |
} |
116 |
|
117 |
if (atomType_->isQuadrupole()) { |
118 |
((snapshotMan_->getCurrentSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
119 |
} |
120 |
} |
121 |
|
122 |
} |
123 |
|
124 |
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
125 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
126 |
|
127 |
if (atomType_->isMultipole()) { |
128 |
RotMat3x3d atrans = a.transpose(); |
129 |
|
130 |
if (atomType_->isDipole()) { |
131 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).dipole[localIndex_] = atrans * dipole_; |
132 |
} |
133 |
|
134 |
if (atomType_->isQuadrupole()) { |
135 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a; |
136 |
} |
137 |
} |
138 |
|
139 |
} |
140 |
|
141 |
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
142 |
setA(m *getA()); |
143 |
} |
144 |
|
145 |
std::vector<RealType> DirectionalAtom::getGrad() { |
146 |
std::vector<RealType> grad(6, 0.0); |
147 |
Vector3d force; |
148 |
Vector3d torque; |
149 |
Vector3d myEuler; |
150 |
RealType phi, theta; |
151 |
// RealType psi; |
152 |
RealType cphi, sphi, ctheta, stheta; |
153 |
Vector3d ephi; |
154 |
Vector3d etheta; |
155 |
Vector3d epsi; |
156 |
|
157 |
force = getFrc(); |
158 |
torque =getTrq(); |
159 |
myEuler = getA().toEulerAngles(); |
160 |
|
161 |
phi = myEuler[0]; |
162 |
theta = myEuler[1]; |
163 |
// psi = myEuler[2]; |
164 |
|
165 |
cphi = cos(phi); |
166 |
sphi = sin(phi); |
167 |
ctheta = cos(theta); |
168 |
stheta = sin(theta); |
169 |
|
170 |
// get unit vectors along the phi, theta and psi rotation axes |
171 |
|
172 |
ephi[0] = 0.0; |
173 |
ephi[1] = 0.0; |
174 |
ephi[2] = 1.0; |
175 |
|
176 |
//etheta[0] = -sphi; |
177 |
//etheta[1] = cphi; |
178 |
//etheta[2] = 0.0; |
179 |
|
180 |
etheta[0] = cphi; |
181 |
etheta[1] = sphi; |
182 |
etheta[2] = 0.0; |
183 |
|
184 |
epsi[0] = stheta * cphi; |
185 |
epsi[1] = stheta * sphi; |
186 |
epsi[2] = ctheta; |
187 |
|
188 |
//gradient is equal to -force |
189 |
for (int j = 0 ; j<3; j++) |
190 |
grad[j] = -force[j]; |
191 |
|
192 |
for (int j = 0; j < 3; j++ ) { |
193 |
grad[3] -= torque[j]*ephi[j]; |
194 |
grad[4] -= torque[j]*etheta[j]; |
195 |
grad[5] -= torque[j]*epsi[j]; |
196 |
} |
197 |
|
198 |
return grad; |
199 |
} |
200 |
|
201 |
void DirectionalAtom::accept(BaseVisitor* v) { |
202 |
v->visit(this); |
203 |
} |
204 |
} |
205 |
|