ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/primitives/DirectionalAtom.cpp
Revision: 1787
Committed: Wed Aug 29 18:13:11 2012 UTC (12 years, 8 months ago) by gezelter
File size: 6422 byte(s)
Log Message:
Massive multipole rewrite

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "primitives/DirectionalAtom.hpp"
44 #include "types/DirectionalAdapter.hpp"
45 #include "types/MultipoleAdapter.hpp"
46 #include "utils/simError.h"
47 namespace OpenMD {
48
49 DirectionalAtom::DirectionalAtom(AtomType* dAtomType)
50 : Atom(dAtomType) {
51 objType_= otDAtom;
52
53 DirectionalAdapter da = DirectionalAdapter(dAtomType);
54 I_ = da.getI();
55
56 MultipoleAdapter ma = MultipoleAdapter(dAtomType);
57 if (ma.isDipole()) {
58 dipole_ = ma.getDipole();
59 }
60 if (ma.isQuadrupole()) {
61 quadrupole_ = ma.getQuadrupole();
62 }
63
64 // Check if one of the diagonal inertia tensor of this directional
65 // atom is zero:
66 int nLinearAxis = 0;
67 Mat3x3d inertiaTensor = getI();
68 for (int i = 0; i < 3; i++) {
69 if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) {
70 linear_ = true;
71 linearAxis_ = i;
72 ++ nLinearAxis;
73 }
74 }
75
76 if (nLinearAxis > 1) {
77 sprintf( painCave.errMsg,
78 "Directional Atom warning.\n"
79 "\tOpenMD found more than one axis in this directional atom with a vanishing \n"
80 "\tmoment of inertia.");
81 painCave.isFatal = 0;
82 simError();
83 }
84 }
85
86 Mat3x3d DirectionalAtom::getI() {
87 return I_;
88 }
89
90 void DirectionalAtom::setPrevA(const RotMat3x3d& a) {
91 ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a;
92
93 if (atomType_->isMultipole()) {
94 RotMat3x3d atrans = a.transpose();
95
96 if (atomType_->isDipole()) {
97 ((snapshotMan_->getPrevSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_;
98 }
99
100 if (atomType_->isQuadrupole()) {
101 ((snapshotMan_->getPrevSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a;
102 }
103 }
104 }
105
106
107 void DirectionalAtom::setA(const RotMat3x3d& a) {
108 ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a;
109
110 if (atomType_->isMultipole()) {
111 RotMat3x3d atrans = a.transpose();
112
113 if (atomType_->isDipole()) {
114 ((snapshotMan_->getCurrentSnapshot())->*storage_).dipole[localIndex_] = atrans * dipole_;
115 }
116
117 if (atomType_->isQuadrupole()) {
118 ((snapshotMan_->getCurrentSnapshot())->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a;
119 }
120 }
121
122 }
123
124 void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) {
125 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a;
126
127 if (atomType_->isMultipole()) {
128 RotMat3x3d atrans = a.transpose();
129
130 if (atomType_->isDipole()) {
131 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).dipole[localIndex_] = atrans * dipole_;
132 }
133
134 if (atomType_->isQuadrupole()) {
135 ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).quadrupole[localIndex_] = atrans * quadrupole_ * a;
136 }
137 }
138
139 }
140
141 void DirectionalAtom::rotateBy(const RotMat3x3d& m) {
142 setA(m *getA());
143 }
144
145 std::vector<RealType> DirectionalAtom::getGrad() {
146 std::vector<RealType> grad(6, 0.0);
147 Vector3d force;
148 Vector3d torque;
149 Vector3d myEuler;
150 RealType phi, theta, psi;
151 RealType cphi, sphi, ctheta, stheta;
152 Vector3d ephi;
153 Vector3d etheta;
154 Vector3d epsi;
155
156 force = getFrc();
157 torque =getTrq();
158 myEuler = getA().toEulerAngles();
159
160 phi = myEuler[0];
161 theta = myEuler[1];
162 psi = myEuler[2];
163
164 cphi = cos(phi);
165 sphi = sin(phi);
166 ctheta = cos(theta);
167 stheta = sin(theta);
168
169 // get unit vectors along the phi, theta and psi rotation axes
170
171 ephi[0] = 0.0;
172 ephi[1] = 0.0;
173 ephi[2] = 1.0;
174
175 //etheta[0] = -sphi;
176 //etheta[1] = cphi;
177 //etheta[2] = 0.0;
178
179 etheta[0] = cphi;
180 etheta[1] = sphi;
181 etheta[2] = 0.0;
182
183 epsi[0] = stheta * cphi;
184 epsi[1] = stheta * sphi;
185 epsi[2] = ctheta;
186
187 //gradient is equal to -force
188 for (int j = 0 ; j<3; j++)
189 grad[j] = -force[j];
190
191 for (int j = 0; j < 3; j++ ) {
192 grad[3] -= torque[j]*ephi[j];
193 grad[4] -= torque[j]*etheta[j];
194 grad[5] -= torque[j]*epsi[j];
195 }
196
197 return grad;
198 }
199
200 void DirectionalAtom::accept(BaseVisitor* v) {
201 v->visit(this);
202 }
203 }
204

Properties

Name Value
svn:keywords Author Id Revision Date