6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "primitives/DirectionalAtom.hpp" |
43 |
|
#include "utils/simError.h" |
44 |
< |
namespace oopse { |
45 |
< |
|
44 |
> |
namespace OpenMD { |
45 |
> |
|
46 |
|
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
47 |
|
: Atom(dAtomType){ |
48 |
< |
objType_= otDAtom; |
49 |
< |
if (dAtomType->isMultipole()) { |
50 |
< |
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
48 |
> |
objType_= otDAtom; |
49 |
> |
if (dAtomType->isMultipole()) { |
50 |
> |
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
51 |
> |
} |
52 |
> |
|
53 |
> |
// Check if one of the diagonal inertia tensor of this directional |
54 |
> |
// atom is zero: |
55 |
> |
int nLinearAxis = 0; |
56 |
> |
Mat3x3d inertiaTensor = getI(); |
57 |
> |
for (int i = 0; i < 3; i++) { |
58 |
> |
if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) { |
59 |
> |
linear_ = true; |
60 |
> |
linearAxis_ = i; |
61 |
> |
++ nLinearAxis; |
62 |
|
} |
52 |
– |
|
53 |
– |
//check if one of the diagonal inertia tensor of this directional atom is zero |
54 |
– |
int nLinearAxis = 0; |
55 |
– |
Mat3x3d inertiaTensor = getI(); |
56 |
– |
for (int i = 0; i < 3; i++) { |
57 |
– |
if (fabs(inertiaTensor(i, i)) < oopse::epsilon) { |
58 |
– |
linear_ = true; |
59 |
– |
linearAxis_ = i; |
60 |
– |
++ nLinearAxis; |
61 |
– |
} |
62 |
– |
} |
63 |
– |
|
64 |
– |
if (nLinearAxis > 1) { |
65 |
– |
sprintf( painCave.errMsg, |
66 |
– |
"Directional Atom error.\n" |
67 |
– |
"\tOOPSE found more than one axis in this directional atom with a vanishing \n" |
68 |
– |
"\tmoment of inertia."); |
69 |
– |
painCave.isFatal = 1; |
70 |
– |
simError(); |
71 |
– |
} |
72 |
– |
|
63 |
|
} |
64 |
|
|
65 |
+ |
if (nLinearAxis > 1) { |
66 |
+ |
sprintf( painCave.errMsg, |
67 |
+ |
"Directional Atom warning.\n" |
68 |
+ |
"\tOpenMD found more than one axis in this directional atom with a vanishing \n" |
69 |
+ |
"\tmoment of inertia."); |
70 |
+ |
painCave.isFatal = 0; |
71 |
+ |
simError(); |
72 |
+ |
} |
73 |
+ |
} |
74 |
+ |
|
75 |
|
Mat3x3d DirectionalAtom::getI() { |
76 |
|
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
77 |
|
} |
78 |
< |
|
78 |
> |
|
79 |
|
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
80 |
|
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
81 |
|
if (atomType_->isMultipole()) { |
82 |
|
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
83 |
|
} |
84 |
|
} |
85 |
< |
|
86 |
< |
|
85 |
> |
|
86 |
> |
|
87 |
|
void DirectionalAtom::setA(const RotMat3x3d& a) { |
88 |
|
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
89 |
< |
|
89 |
> |
|
90 |
|
if (atomType_->isMultipole()) { |
91 |
|
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
92 |
|
} |
93 |
|
} |
94 |
< |
|
94 |
> |
|
95 |
|
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
96 |
|
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
97 |
< |
|
97 |
> |
|
98 |
|
if (atomType_->isMultipole()) { |
99 |
|
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
100 |
|
} |
101 |
|
} |
102 |
< |
|
102 |
> |
|
103 |
|
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
104 |
|
setA(m *getA()); |
105 |
|
} |
106 |
< |
|
107 |
< |
std::vector<double> DirectionalAtom::getGrad() { |
108 |
< |
std::vector<double> grad(6, 0.0); |
106 |
> |
|
107 |
> |
std::vector<RealType> DirectionalAtom::getGrad() { |
108 |
> |
std::vector<RealType> grad(6, 0.0); |
109 |
|
Vector3d force; |
110 |
|
Vector3d torque; |
111 |
|
Vector3d myEuler; |
112 |
< |
double phi, theta, psi; |
113 |
< |
double cphi, sphi, ctheta, stheta; |
112 |
> |
RealType phi, theta, psi; |
113 |
> |
RealType cphi, sphi, ctheta, stheta; |
114 |
|
Vector3d ephi; |
115 |
|
Vector3d etheta; |
116 |
|
Vector3d epsi; |
117 |
< |
|
117 |
> |
|
118 |
|
force = getFrc(); |
119 |
|
torque =getTrq(); |
120 |
|
myEuler = getA().toEulerAngles(); |
121 |
< |
|
121 |
> |
|
122 |
|
phi = myEuler[0]; |
123 |
|
theta = myEuler[1]; |
124 |
|
psi = myEuler[2]; |
125 |
< |
|
125 |
> |
|
126 |
|
cphi = cos(phi); |
127 |
|
sphi = sin(phi); |
128 |
|
ctheta = cos(theta); |
129 |
|
stheta = sin(theta); |
130 |
< |
|
130 |
> |
|
131 |
|
// get unit vectors along the phi, theta and psi rotation axes |
132 |
< |
|
132 |
> |
|
133 |
|
ephi[0] = 0.0; |
134 |
|
ephi[1] = 0.0; |
135 |
|
ephi[2] = 1.0; |
136 |
< |
|
137 |
< |
etheta[0] = cphi; |
138 |
< |
etheta[1] = sphi; |
139 |
< |
etheta[2] = 0.0; |
140 |
< |
|
136 |
> |
|
137 |
> |
etheta[0] = -sphi; |
138 |
> |
etheta[1] = cphi; |
139 |
> |
etheta[2] = 0.0; |
140 |
> |
|
141 |
|
epsi[0] = stheta * cphi; |
142 |
|
epsi[1] = stheta * sphi; |
143 |
|
epsi[2] = ctheta; |
144 |
< |
|
144 |
> |
|
145 |
|
//gradient is equal to -force |
146 |
|
for (int j = 0 ; j<3; j++) |
147 |
|
grad[j] = -force[j]; |
148 |
< |
|
149 |
< |
for (int j = 0; j < 3; j++ ) { |
150 |
< |
|
148 |
> |
|
149 |
> |
for (int j = 0; j < 3; j++ ) { |
150 |
|
grad[3] -= torque[j]*ephi[j]; |
151 |
|
grad[4] -= torque[j]*etheta[j]; |
152 |
< |
grad[5] -= torque[j]*epsi[j]; |
154 |
< |
|
152 |
> |
grad[5] -= torque[j]*epsi[j]; |
153 |
|
} |
154 |
|
|
155 |
|
return grad; |
156 |
|
} |
157 |
< |
|
157 |
> |
|
158 |
|
void DirectionalAtom::accept(BaseVisitor* v) { |
159 |
|
v->visit(this); |
160 |
< |
} |
163 |
< |
|
160 |
> |
} |
161 |
|
} |
162 |
|
|