1 |
< |
#include <math.h> |
2 |
< |
|
3 |
< |
#include "primitives/Atom.hpp" |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
|
#include "primitives/DirectionalAtom.hpp" |
43 |
|
#include "utils/simError.h" |
44 |
< |
#include "math/MatVec3.h" |
45 |
< |
|
46 |
< |
void DirectionalAtom::zeroForces() { |
47 |
< |
if( hasCoords ){ |
48 |
< |
|
49 |
< |
Atom::zeroForces(); |
44 |
> |
namespace oopse { |
45 |
> |
|
46 |
> |
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
47 |
> |
: Atom(dAtomType){ |
48 |
> |
objType_= otDAtom; |
49 |
> |
if (dAtomType->isMultipole()) { |
50 |
> |
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
51 |
> |
} |
52 |
|
|
53 |
< |
trq[offsetX] = 0.0; |
54 |
< |
trq[offsetY] = 0.0; |
55 |
< |
trq[offsetZ] = 0.0; |
56 |
< |
} |
57 |
< |
else{ |
58 |
< |
|
59 |
< |
sprintf( painCave.errMsg, |
60 |
< |
"Attempt to zero frc and trq for atom %d before coords set.\n", |
61 |
< |
index ); |
62 |
< |
painCave.isFatal = 1; |
63 |
< |
simError(); |
24 |
< |
} |
25 |
< |
} |
53 |
> |
// Check if one of the diagonal inertia tensor of this directional |
54 |
> |
// atom is zero: |
55 |
> |
int nLinearAxis = 0; |
56 |
> |
Mat3x3d inertiaTensor = getI(); |
57 |
> |
for (int i = 0; i < 3; i++) { |
58 |
> |
if (fabs(inertiaTensor(i, i)) < oopse::epsilon) { |
59 |
> |
linear_ = true; |
60 |
> |
linearAxis_ = i; |
61 |
> |
++ nLinearAxis; |
62 |
> |
} |
63 |
> |
} |
64 |
|
|
65 |
< |
void DirectionalAtom::setCoords(void){ |
66 |
< |
|
67 |
< |
if( myConfig->isAllocated() ){ |
68 |
< |
|
69 |
< |
myConfig->getAtomPointers( index, |
70 |
< |
&pos, |
71 |
< |
&vel, |
72 |
< |
&frc, |
35 |
< |
&trq, |
36 |
< |
&Amat, |
37 |
< |
&mu, |
38 |
< |
&ul); |
65 |
> |
if (nLinearAxis > 1) { |
66 |
> |
sprintf( painCave.errMsg, |
67 |
> |
"Directional Atom warning.\n" |
68 |
> |
"\tOOPSE found more than one axis in this directional atom with a vanishing \n" |
69 |
> |
"\tmoment of inertia."); |
70 |
> |
painCave.isFatal = 0; |
71 |
> |
simError(); |
72 |
> |
} |
73 |
|
} |
40 |
– |
else{ |
41 |
– |
sprintf( painCave.errMsg, |
42 |
– |
"Attempted to set Atom %d coordinates with an unallocated " |
43 |
– |
"SimState object.\n", index ); |
44 |
– |
painCave.isFatal = 1; |
45 |
– |
simError(); |
46 |
– |
} |
47 |
– |
|
48 |
– |
hasCoords = true; |
49 |
– |
|
50 |
– |
} |
51 |
– |
|
52 |
– |
void DirectionalAtom::setA( double the_A[3][3] ){ |
53 |
– |
|
54 |
– |
if( hasCoords ){ |
55 |
– |
Amat[Axx] = the_A[0][0]; Amat[Axy] = the_A[0][1]; Amat[Axz] = the_A[0][2]; |
56 |
– |
Amat[Ayx] = the_A[1][0]; Amat[Ayy] = the_A[1][1]; Amat[Ayz] = the_A[1][2]; |
57 |
– |
Amat[Azx] = the_A[2][0]; Amat[Azy] = the_A[2][1]; Amat[Azz] = the_A[2][2]; |
58 |
– |
|
59 |
– |
this->updateU(); |
60 |
– |
} |
61 |
– |
else{ |
62 |
– |
|
63 |
– |
sprintf( painCave.errMsg, |
64 |
– |
"Attempt to set Amat for atom %d before coords set.\n", |
65 |
– |
index ); |
66 |
– |
painCave.isFatal = 1; |
67 |
– |
simError(); |
68 |
– |
} |
69 |
– |
} |
70 |
– |
|
71 |
– |
void DirectionalAtom::setI( double the_I[3][3] ){ |
72 |
– |
|
73 |
– |
int n_linear_coords, i, j; |
74 |
|
|
75 |
< |
Ixx = the_I[0][0]; Ixy = the_I[0][1]; Ixz = the_I[0][2]; |
76 |
< |
Iyx = the_I[1][0]; Iyy = the_I[1][1]; Iyz = the_I[1][2]; |
77 |
< |
Izx = the_I[2][0]; Izy = the_I[2][1]; Izz = the_I[2][2]; |
75 |
> |
Mat3x3d DirectionalAtom::getI() { |
76 |
> |
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
77 |
> |
} |
78 |
|
|
79 |
< |
n_linear_coords = 0; |
80 |
< |
|
81 |
< |
for (i = 0; i<3; i++) { |
82 |
< |
if (fabs(the_I[i][i]) < momIntTol) { |
83 |
< |
is_linear = true; |
84 |
< |
n_linear_coords++; |
85 |
< |
linear_axis = i; |
79 |
> |
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
80 |
> |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
81 |
> |
if (atomType_->isMultipole()) { |
82 |
> |
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
83 |
|
} |
84 |
|
} |
85 |
|
|
86 |
< |
if (n_linear_coords > 1) { |
87 |
< |
sprintf( painCave.errMsg, |
88 |
< |
"DirectionalAtom error.\n" |
92 |
< |
"\tOOPSE was told to set more than one axis in this\n" |
93 |
< |
"\tDirectionalAtom to a vanishing moment of inertia.\n" |
94 |
< |
"\tThis should not be a DirectionalAtom. Use an Atom.\n" |
95 |
< |
); |
96 |
< |
painCave.isFatal = 1; |
97 |
< |
simError(); |
98 |
< |
} |
99 |
< |
|
100 |
< |
|
101 |
< |
} |
102 |
< |
|
103 |
< |
void DirectionalAtom::setQ( double the_q[4] ){ |
104 |
< |
|
105 |
< |
double q0Sqr, q1Sqr, q2Sqr, q3Sqr; |
106 |
< |
|
107 |
< |
if( hasCoords ){ |
108 |
< |
q0Sqr = the_q[0] * the_q[0]; |
109 |
< |
q1Sqr = the_q[1] * the_q[1]; |
110 |
< |
q2Sqr = the_q[2] * the_q[2]; |
111 |
< |
q3Sqr = the_q[3] * the_q[3]; |
86 |
> |
|
87 |
> |
void DirectionalAtom::setA(const RotMat3x3d& a) { |
88 |
> |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
89 |
|
|
90 |
+ |
if (atomType_->isMultipole()) { |
91 |
+ |
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
92 |
+ |
} |
93 |
+ |
} |
94 |
+ |
|
95 |
+ |
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
96 |
+ |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
97 |
|
|
98 |
< |
Amat[Axx] = q0Sqr + q1Sqr - q2Sqr - q3Sqr; |
99 |
< |
Amat[Axy] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] ); |
100 |
< |
Amat[Axz] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] ); |
98 |
> |
if (atomType_->isMultipole()) { |
99 |
> |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
100 |
> |
} |
101 |
> |
} |
102 |
> |
|
103 |
> |
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
104 |
> |
setA(m *getA()); |
105 |
> |
} |
106 |
> |
|
107 |
> |
std::vector<RealType> DirectionalAtom::getGrad() { |
108 |
> |
std::vector<RealType> grad(6, 0.0); |
109 |
> |
Vector3d force; |
110 |
> |
Vector3d torque; |
111 |
> |
Vector3d myEuler; |
112 |
> |
RealType phi, theta, psi; |
113 |
> |
RealType cphi, sphi, ctheta, stheta; |
114 |
> |
Vector3d ephi; |
115 |
> |
Vector3d etheta; |
116 |
> |
Vector3d epsi; |
117 |
|
|
118 |
< |
Amat[Ayx] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] ); |
119 |
< |
Amat[Ayy] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; |
120 |
< |
Amat[Ayz] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] ); |
118 |
> |
force = getFrc(); |
119 |
> |
torque =getTrq(); |
120 |
> |
myEuler = getA().toEulerAngles(); |
121 |
|
|
122 |
< |
Amat[Azx] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); |
123 |
< |
Amat[Azy] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); |
124 |
< |
Amat[Azz] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; |
122 |
> |
phi = myEuler[0]; |
123 |
> |
theta = myEuler[1]; |
124 |
> |
psi = myEuler[2]; |
125 |
|
|
126 |
< |
this->updateU(); |
127 |
< |
} |
128 |
< |
else{ |
126 |
> |
cphi = cos(phi); |
127 |
> |
sphi = sin(phi); |
128 |
> |
ctheta = cos(theta); |
129 |
> |
stheta = sin(theta); |
130 |
|
|
131 |
< |
sprintf( painCave.errMsg, |
131 |
< |
"Attempt to set Q for atom %d before coords set.\n", |
132 |
< |
index ); |
133 |
< |
painCave.isFatal = 1; |
134 |
< |
simError(); |
135 |
< |
} |
136 |
< |
|
137 |
< |
} |
138 |
< |
|
139 |
< |
void DirectionalAtom::getA( double the_A[3][3] ){ |
140 |
< |
|
141 |
< |
if( hasCoords ){ |
142 |
< |
the_A[0][0] = Amat[Axx]; |
143 |
< |
the_A[0][1] = Amat[Axy]; |
144 |
< |
the_A[0][2] = Amat[Axz]; |
131 |
> |
// get unit vectors along the phi, theta and psi rotation axes |
132 |
|
|
133 |
< |
the_A[1][0] = Amat[Ayx]; |
134 |
< |
the_A[1][1] = Amat[Ayy]; |
135 |
< |
the_A[1][2] = Amat[Ayz]; |
133 |
> |
ephi[0] = 0.0; |
134 |
> |
ephi[1] = 0.0; |
135 |
> |
ephi[2] = 1.0; |
136 |
|
|
137 |
< |
the_A[2][0] = Amat[Azx]; |
138 |
< |
the_A[2][1] = Amat[Azy]; |
139 |
< |
the_A[2][2] = Amat[Azz]; |
153 |
< |
} |
154 |
< |
else{ |
137 |
> |
etheta[0] = cphi; |
138 |
> |
etheta[1] = sphi; |
139 |
> |
etheta[2] = 0.0; |
140 |
|
|
141 |
< |
sprintf( painCave.errMsg, |
142 |
< |
"Attempt to get Amat for atom %d before coords set.\n", |
143 |
< |
index ); |
159 |
< |
painCave.isFatal = 1; |
160 |
< |
simError(); |
161 |
< |
} |
162 |
< |
|
163 |
< |
} |
164 |
< |
|
165 |
< |
void DirectionalAtom::printAmatIndex( void ){ |
166 |
< |
|
167 |
< |
if( hasCoords ){ |
168 |
< |
std::cerr << "Atom[" << index << "] index =>\n" |
169 |
< |
<< "[ " << Axx << ", " << Axy << ", " << Axz << " ]\n" |
170 |
< |
<< "[ " << Ayx << ", " << Ayy << ", " << Ayz << " ]\n" |
171 |
< |
<< "[ " << Azx << ", " << Azy << ", " << Azz << " ]\n"; |
172 |
< |
} |
173 |
< |
else{ |
141 |
> |
epsi[0] = stheta * cphi; |
142 |
> |
epsi[1] = stheta * sphi; |
143 |
> |
epsi[2] = ctheta; |
144 |
|
|
145 |
< |
sprintf( painCave.errMsg, |
146 |
< |
"Attempt to print Amat indices for atom %d before coords set.\n", |
147 |
< |
index ); |
178 |
< |
painCave.isFatal = 1; |
179 |
< |
simError(); |
180 |
< |
} |
181 |
< |
} |
182 |
< |
|
183 |
< |
|
184 |
< |
void DirectionalAtom::getU( double the_u[3] ){ |
185 |
< |
|
186 |
< |
the_u[0] = sU[2][0]; |
187 |
< |
the_u[1] = sU[2][1]; |
188 |
< |
the_u[2] = sU[2][2]; |
189 |
< |
|
190 |
< |
this->body2Lab( the_u ); |
191 |
< |
} |
192 |
< |
|
193 |
< |
void DirectionalAtom::getQ( double q[4] ){ |
194 |
< |
|
195 |
< |
double t, s; |
196 |
< |
double ad1, ad2, ad3; |
197 |
< |
|
198 |
< |
if( hasCoords ){ |
145 |
> |
//gradient is equal to -force |
146 |
> |
for (int j = 0 ; j<3; j++) |
147 |
> |
grad[j] = -force[j]; |
148 |
|
|
149 |
< |
t = Amat[Axx] + Amat[Ayy] + Amat[Azz] + 1.0; |
150 |
< |
if( t > 0.0 ){ |
151 |
< |
|
152 |
< |
s = 0.5 / sqrt( t ); |
204 |
< |
q[0] = 0.25 / s; |
205 |
< |
q[1] = (Amat[Ayz] - Amat[Azy]) * s; |
206 |
< |
q[2] = (Amat[Azx] - Amat[Axz]) * s; |
207 |
< |
q[3] = (Amat[Axy] - Amat[Ayx]) * s; |
149 |
> |
for (int j = 0; j < 3; j++ ) { |
150 |
> |
grad[3] -= torque[j]*ephi[j]; |
151 |
> |
grad[4] -= torque[j]*etheta[j]; |
152 |
> |
grad[5] -= torque[j]*epsi[j]; |
153 |
|
} |
209 |
– |
else{ |
210 |
– |
|
211 |
– |
ad1 = fabs( Amat[Axx] ); |
212 |
– |
ad2 = fabs( Amat[Ayy] ); |
213 |
– |
ad3 = fabs( Amat[Azz] ); |
214 |
– |
|
215 |
– |
if( ad1 >= ad2 && ad1 >= ad3 ){ |
216 |
– |
|
217 |
– |
s = 2.0 * sqrt( 1.0 + Amat[Axx] - Amat[Ayy] - Amat[Azz] ); |
218 |
– |
q[0] = (Amat[Ayz] + Amat[Azy]) / s; |
219 |
– |
q[1] = 0.5 / s; |
220 |
– |
q[2] = (Amat[Axy] + Amat[Ayx]) / s; |
221 |
– |
q[3] = (Amat[Axz] + Amat[Azx]) / s; |
222 |
– |
} |
223 |
– |
else if( ad2 >= ad1 && ad2 >= ad3 ){ |
224 |
– |
|
225 |
– |
s = sqrt( 1.0 + Amat[Ayy] - Amat[Axx] - Amat[Azz] ) * 2.0; |
226 |
– |
q[0] = (Amat[Axz] + Amat[Azx]) / s; |
227 |
– |
q[1] = (Amat[Axy] + Amat[Ayx]) / s; |
228 |
– |
q[2] = 0.5 / s; |
229 |
– |
q[3] = (Amat[Ayz] + Amat[Azy]) / s; |
230 |
– |
} |
231 |
– |
else{ |
232 |
– |
|
233 |
– |
s = sqrt( 1.0 + Amat[Azz] - Amat[Axx] - Amat[Ayy] ) * 2.0; |
234 |
– |
q[0] = (Amat[Axy] + Amat[Ayx]) / s; |
235 |
– |
q[1] = (Amat[Axz] + Amat[Azx]) / s; |
236 |
– |
q[2] = (Amat[Ayz] + Amat[Azy]) / s; |
237 |
– |
q[3] = 0.5 / s; |
238 |
– |
} |
239 |
– |
} |
240 |
– |
} |
241 |
– |
else{ |
154 |
|
|
155 |
< |
sprintf( painCave.errMsg, |
156 |
< |
"Attempt to get Q for atom %d before coords set.\n", |
245 |
< |
index ); |
246 |
< |
painCave.isFatal = 1; |
247 |
< |
simError(); |
248 |
< |
} |
249 |
< |
} |
250 |
< |
|
251 |
< |
void DirectionalAtom::setUnitFrameFromEuler(double phi, |
252 |
< |
double theta, |
253 |
< |
double psi) { |
254 |
< |
|
255 |
< |
double myA[3][3]; |
256 |
< |
double uFrame[3][3]; |
257 |
< |
double len; |
258 |
< |
int i, j; |
155 |
> |
return grad; |
156 |
> |
} |
157 |
|
|
158 |
< |
myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
159 |
< |
myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
262 |
< |
myA[0][2] = sin(theta) * sin(psi); |
263 |
< |
|
264 |
< |
myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
265 |
< |
myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
266 |
< |
myA[1][2] = sin(theta) * cos(psi); |
267 |
< |
|
268 |
< |
myA[2][0] = sin(phi) * sin(theta); |
269 |
< |
myA[2][1] = -cos(phi) * sin(theta); |
270 |
< |
myA[2][2] = cos(theta); |
271 |
< |
|
272 |
< |
// Make the unit Frame: |
273 |
< |
|
274 |
< |
for (i=0; i < 3; i++) |
275 |
< |
for (j=0; j < 3; j++) |
276 |
< |
uFrame[i][j] = 0.0; |
277 |
< |
|
278 |
< |
for (i=0; i < 3; i++) |
279 |
< |
uFrame[i][i] = 1.0; |
280 |
< |
|
281 |
< |
// rotate by the given rotation matrix: |
282 |
< |
|
283 |
< |
matMul3(myA, uFrame, sU); |
284 |
< |
|
285 |
< |
// renormalize column vectors: |
286 |
< |
|
287 |
< |
for (i=0; i < 3; i++) { |
288 |
< |
len = 0.0; |
289 |
< |
for (j = 0; j < 3; j++) { |
290 |
< |
len += sU[i][j]*sU[i][j]; |
291 |
< |
} |
292 |
< |
len = sqrt(len); |
293 |
< |
for (j = 0; j < 3; j++) { |
294 |
< |
sU[i][j] /= len; |
295 |
< |
} |
158 |
> |
void DirectionalAtom::accept(BaseVisitor* v) { |
159 |
> |
v->visit(this); |
160 |
|
} |
297 |
– |
|
298 |
– |
// sU now contains the coordinates of the 'special' frame; |
299 |
– |
|
161 |
|
} |
162 |
|
|
302 |
– |
void DirectionalAtom::setEuler( double phi, double theta, double psi ){ |
303 |
– |
|
304 |
– |
if( hasCoords ){ |
305 |
– |
Amat[Axx] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
306 |
– |
Amat[Axy] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
307 |
– |
Amat[Axz] = sin(theta) * sin(psi); |
308 |
– |
|
309 |
– |
Amat[Ayx] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
310 |
– |
Amat[Ayy] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
311 |
– |
Amat[Ayz] = sin(theta) * cos(psi); |
312 |
– |
|
313 |
– |
Amat[Azx] = sin(phi) * sin(theta); |
314 |
– |
Amat[Azy] = -cos(phi) * sin(theta); |
315 |
– |
Amat[Azz] = cos(theta); |
316 |
– |
|
317 |
– |
this->updateU(); |
318 |
– |
} |
319 |
– |
else{ |
320 |
– |
|
321 |
– |
sprintf( painCave.errMsg, |
322 |
– |
"Attempt to set Euler angles for atom %d before coords set.\n", |
323 |
– |
index ); |
324 |
– |
painCave.isFatal = 1; |
325 |
– |
simError(); |
326 |
– |
} |
327 |
– |
} |
328 |
– |
|
329 |
– |
|
330 |
– |
void DirectionalAtom::lab2Body( double r[3] ){ |
331 |
– |
|
332 |
– |
double rl[3]; // the lab frame vector |
333 |
– |
|
334 |
– |
if( hasCoords ){ |
335 |
– |
rl[0] = r[0]; |
336 |
– |
rl[1] = r[1]; |
337 |
– |
rl[2] = r[2]; |
338 |
– |
|
339 |
– |
r[0] = (Amat[Axx] * rl[0]) + (Amat[Axy] * rl[1]) + (Amat[Axz] * rl[2]); |
340 |
– |
r[1] = (Amat[Ayx] * rl[0]) + (Amat[Ayy] * rl[1]) + (Amat[Ayz] * rl[2]); |
341 |
– |
r[2] = (Amat[Azx] * rl[0]) + (Amat[Azy] * rl[1]) + (Amat[Azz] * rl[2]); |
342 |
– |
} |
343 |
– |
else{ |
344 |
– |
|
345 |
– |
sprintf( painCave.errMsg, |
346 |
– |
"Attempt to convert lab2body for atom %d before coords set.\n", |
347 |
– |
index ); |
348 |
– |
painCave.isFatal = 1; |
349 |
– |
simError(); |
350 |
– |
} |
351 |
– |
|
352 |
– |
} |
353 |
– |
|
354 |
– |
void DirectionalAtom::rotateBy( double by_A[3][3]) { |
355 |
– |
|
356 |
– |
// Check this |
357 |
– |
|
358 |
– |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
359 |
– |
|
360 |
– |
if( hasCoords ){ |
361 |
– |
|
362 |
– |
r00 = by_A[0][0]*Amat[Axx] + by_A[0][1]*Amat[Ayx] + by_A[0][2]*Amat[Azx]; |
363 |
– |
r01 = by_A[0][0]*Amat[Axy] + by_A[0][1]*Amat[Ayy] + by_A[0][2]*Amat[Azy]; |
364 |
– |
r02 = by_A[0][0]*Amat[Axz] + by_A[0][1]*Amat[Ayz] + by_A[0][2]*Amat[Azz]; |
365 |
– |
|
366 |
– |
r10 = by_A[1][0]*Amat[Axx] + by_A[1][1]*Amat[Ayx] + by_A[1][2]*Amat[Azx]; |
367 |
– |
r11 = by_A[1][0]*Amat[Axy] + by_A[1][1]*Amat[Ayy] + by_A[1][2]*Amat[Azy]; |
368 |
– |
r12 = by_A[1][0]*Amat[Axz] + by_A[1][1]*Amat[Ayz] + by_A[1][2]*Amat[Azz]; |
369 |
– |
|
370 |
– |
r20 = by_A[2][0]*Amat[Axx] + by_A[2][1]*Amat[Ayx] + by_A[2][2]*Amat[Azx]; |
371 |
– |
r21 = by_A[2][0]*Amat[Axy] + by_A[2][1]*Amat[Ayy] + by_A[2][2]*Amat[Azy]; |
372 |
– |
r22 = by_A[2][0]*Amat[Axz] + by_A[2][1]*Amat[Ayz] + by_A[2][2]*Amat[Azz]; |
373 |
– |
|
374 |
– |
Amat[Axx] = r00; Amat[Axy] = r01; Amat[Axz] = r02; |
375 |
– |
Amat[Ayx] = r10; Amat[Ayy] = r11; Amat[Ayz] = r12; |
376 |
– |
Amat[Azx] = r20; Amat[Azy] = r21; Amat[Azz] = r22; |
377 |
– |
|
378 |
– |
} |
379 |
– |
else{ |
380 |
– |
|
381 |
– |
sprintf( painCave.errMsg, |
382 |
– |
"Attempt to rotate frame for atom %d before coords set.\n", |
383 |
– |
index ); |
384 |
– |
painCave.isFatal = 1; |
385 |
– |
simError(); |
386 |
– |
} |
387 |
– |
|
388 |
– |
} |
389 |
– |
|
390 |
– |
|
391 |
– |
void DirectionalAtom::body2Lab( double r[3] ){ |
392 |
– |
|
393 |
– |
double rb[3]; // the body frame vector |
394 |
– |
|
395 |
– |
if( hasCoords ){ |
396 |
– |
rb[0] = r[0]; |
397 |
– |
rb[1] = r[1]; |
398 |
– |
rb[2] = r[2]; |
399 |
– |
|
400 |
– |
r[0] = (Amat[Axx] * rb[0]) + (Amat[Ayx] * rb[1]) + (Amat[Azx] * rb[2]); |
401 |
– |
r[1] = (Amat[Axy] * rb[0]) + (Amat[Ayy] * rb[1]) + (Amat[Azy] * rb[2]); |
402 |
– |
r[2] = (Amat[Axz] * rb[0]) + (Amat[Ayz] * rb[1]) + (Amat[Azz] * rb[2]); |
403 |
– |
} |
404 |
– |
else{ |
405 |
– |
|
406 |
– |
sprintf( painCave.errMsg, |
407 |
– |
"Attempt to convert body2lab for atom %d before coords set.\n", |
408 |
– |
index ); |
409 |
– |
painCave.isFatal = 1; |
410 |
– |
simError(); |
411 |
– |
} |
412 |
– |
} |
413 |
– |
|
414 |
– |
void DirectionalAtom::updateU( void ){ |
415 |
– |
|
416 |
– |
if( hasCoords ){ |
417 |
– |
ul[offsetX] = (Amat[Axx] * sU[2][0]) + |
418 |
– |
(Amat[Ayx] * sU[2][1]) + (Amat[Azx] * sU[2][2]); |
419 |
– |
ul[offsetY] = (Amat[Axy] * sU[2][0]) + |
420 |
– |
(Amat[Ayy] * sU[2][1]) + (Amat[Azy] * sU[2][2]); |
421 |
– |
ul[offsetZ] = (Amat[Axz] * sU[2][0]) + |
422 |
– |
(Amat[Ayz] * sU[2][1]) + (Amat[Azz] * sU[2][2]); |
423 |
– |
} |
424 |
– |
else{ |
425 |
– |
|
426 |
– |
sprintf( painCave.errMsg, |
427 |
– |
"Attempt to updateU for atom %d before coords set.\n", |
428 |
– |
index ); |
429 |
– |
painCave.isFatal = 1; |
430 |
– |
simError(); |
431 |
– |
} |
432 |
– |
} |
433 |
– |
|
434 |
– |
void DirectionalAtom::getJ( double theJ[3] ){ |
435 |
– |
|
436 |
– |
theJ[0] = jx; |
437 |
– |
theJ[1] = jy; |
438 |
– |
theJ[2] = jz; |
439 |
– |
} |
440 |
– |
|
441 |
– |
void DirectionalAtom::setJ( double theJ[3] ){ |
442 |
– |
|
443 |
– |
jx = theJ[0]; |
444 |
– |
jy = theJ[1]; |
445 |
– |
jz = theJ[2]; |
446 |
– |
} |
447 |
– |
|
448 |
– |
void DirectionalAtom::getTrq( double theT[3] ){ |
449 |
– |
|
450 |
– |
if( hasCoords ){ |
451 |
– |
theT[0] = trq[offsetX]; |
452 |
– |
theT[1] = trq[offsetY]; |
453 |
– |
theT[2] = trq[offsetZ]; |
454 |
– |
} |
455 |
– |
else{ |
456 |
– |
|
457 |
– |
sprintf( painCave.errMsg, |
458 |
– |
"Attempt to get Trq for atom %d before coords set.\n", |
459 |
– |
index ); |
460 |
– |
painCave.isFatal = 1; |
461 |
– |
simError(); |
462 |
– |
} |
463 |
– |
} |
464 |
– |
|
465 |
– |
void DirectionalAtom::addTrq( double theT[3] ){ |
466 |
– |
|
467 |
– |
if( hasCoords ){ |
468 |
– |
trq[offsetX] += theT[0]; |
469 |
– |
trq[offsetY] += theT[1]; |
470 |
– |
trq[offsetZ] += theT[2]; |
471 |
– |
} |
472 |
– |
else{ |
473 |
– |
|
474 |
– |
sprintf( painCave.errMsg, |
475 |
– |
"Attempt to add Trq for atom %d before coords set.\n", |
476 |
– |
index ); |
477 |
– |
painCave.isFatal = 1; |
478 |
– |
simError(); |
479 |
– |
} |
480 |
– |
} |
481 |
– |
|
482 |
– |
|
483 |
– |
void DirectionalAtom::getI( double the_I[3][3] ){ |
484 |
– |
|
485 |
– |
the_I[0][0] = Ixx; |
486 |
– |
the_I[0][1] = Ixy; |
487 |
– |
the_I[0][2] = Ixz; |
488 |
– |
|
489 |
– |
the_I[1][0] = Iyx; |
490 |
– |
the_I[1][1] = Iyy; |
491 |
– |
the_I[1][2] = Iyz; |
492 |
– |
|
493 |
– |
the_I[2][0] = Izx; |
494 |
– |
the_I[2][1] = Izy; |
495 |
– |
the_I[2][2] = Izz; |
496 |
– |
} |
497 |
– |
|
498 |
– |
void DirectionalAtom::getGrad( double grad[6] ) { |
499 |
– |
|
500 |
– |
double myEuler[3]; |
501 |
– |
double phi, theta, psi; |
502 |
– |
double cphi, sphi, ctheta, stheta; |
503 |
– |
double ephi[3]; |
504 |
– |
double etheta[3]; |
505 |
– |
double epsi[3]; |
506 |
– |
|
507 |
– |
this->getEulerAngles(myEuler); |
508 |
– |
|
509 |
– |
phi = myEuler[0]; |
510 |
– |
theta = myEuler[1]; |
511 |
– |
psi = myEuler[2]; |
512 |
– |
|
513 |
– |
cphi = cos(phi); |
514 |
– |
sphi = sin(phi); |
515 |
– |
ctheta = cos(theta); |
516 |
– |
stheta = sin(theta); |
517 |
– |
|
518 |
– |
// get unit vectors along the phi, theta and psi rotation axes |
519 |
– |
|
520 |
– |
ephi[0] = 0.0; |
521 |
– |
ephi[1] = 0.0; |
522 |
– |
ephi[2] = 1.0; |
523 |
– |
|
524 |
– |
etheta[0] = cphi; |
525 |
– |
etheta[1] = sphi; |
526 |
– |
etheta[2] = 0.0; |
527 |
– |
|
528 |
– |
epsi[0] = stheta * cphi; |
529 |
– |
epsi[1] = stheta * sphi; |
530 |
– |
epsi[2] = ctheta; |
531 |
– |
|
532 |
– |
for (int j = 0 ; j<3; j++) |
533 |
– |
grad[j] = frc[j]; |
534 |
– |
|
535 |
– |
grad[3] = 0; |
536 |
– |
grad[4] = 0; |
537 |
– |
grad[5] = 0; |
538 |
– |
|
539 |
– |
for (int j = 0; j < 3; j++ ) { |
540 |
– |
|
541 |
– |
grad[3] += trq[j]*ephi[j]; |
542 |
– |
grad[4] += trq[j]*etheta[j]; |
543 |
– |
grad[5] += trq[j]*epsi[j]; |
544 |
– |
|
545 |
– |
} |
546 |
– |
|
547 |
– |
} |
548 |
– |
|
549 |
– |
/** |
550 |
– |
* getEulerAngles computes a set of Euler angle values consistent |
551 |
– |
* with an input rotation matrix. They are returned in the following |
552 |
– |
* order: |
553 |
– |
* myEuler[0] = phi; |
554 |
– |
* myEuler[1] = theta; |
555 |
– |
* myEuler[2] = psi; |
556 |
– |
*/ |
557 |
– |
void DirectionalAtom::getEulerAngles(double myEuler[3]) { |
558 |
– |
|
559 |
– |
// We use so-called "x-convention", which is the most common definition. |
560 |
– |
// In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
561 |
– |
// rotation is by an angle phi about the z-axis, the second is by an angle |
562 |
– |
// theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
563 |
– |
//z-axis (again). |
564 |
– |
|
565 |
– |
|
566 |
– |
double phi,theta,psi,eps; |
567 |
– |
double ctheta,stheta; |
568 |
– |
|
569 |
– |
// set the tolerance for Euler angles and rotation elements |
570 |
– |
|
571 |
– |
eps = 1.0e-8; |
572 |
– |
|
573 |
– |
theta = acos(min(1.0,max(-1.0,Amat[Azz]))); |
574 |
– |
ctheta = Amat[Azz]; |
575 |
– |
stheta = sqrt(1.0 - ctheta * ctheta); |
576 |
– |
|
577 |
– |
// when sin(theta) is close to 0, we need to consider singularity |
578 |
– |
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
579 |
– |
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
580 |
– |
// in cases of singularity. |
581 |
– |
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
582 |
– |
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
583 |
– |
// change the sign of both of the parameters passed to atan2. |
584 |
– |
|
585 |
– |
if (fabs(stheta) <= eps){ |
586 |
– |
psi = 0.0; |
587 |
– |
phi = atan2(-Amat[Ayx], Amat[Axx]); |
588 |
– |
} |
589 |
– |
// we only have one unique solution |
590 |
– |
else{ |
591 |
– |
phi = atan2(Amat[Azx], -Amat[Azy]); |
592 |
– |
psi = atan2(Amat[Axz], Amat[Ayz]); |
593 |
– |
} |
594 |
– |
|
595 |
– |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
596 |
– |
//if (phi < 0) |
597 |
– |
// phi += M_PI; |
598 |
– |
|
599 |
– |
//if (psi < 0) |
600 |
– |
// psi += M_PI; |
601 |
– |
|
602 |
– |
myEuler[0] = phi; |
603 |
– |
myEuler[1] = theta; |
604 |
– |
myEuler[2] = psi; |
605 |
– |
|
606 |
– |
return; |
607 |
– |
} |
608 |
– |
|
609 |
– |
double DirectionalAtom::getZangle( ){ |
610 |
– |
|
611 |
– |
if( hasCoords ){ |
612 |
– |
return zAngle; |
613 |
– |
} |
614 |
– |
else{ |
615 |
– |
|
616 |
– |
sprintf( painCave.errMsg, |
617 |
– |
"Attempt to get zAngle for atom %d before coords set.\n", |
618 |
– |
index ); |
619 |
– |
painCave.isFatal = 1; |
620 |
– |
simError(); |
621 |
– |
return 0; |
622 |
– |
} |
623 |
– |
} |
624 |
– |
|
625 |
– |
void DirectionalAtom::setZangle( double zAng ){ |
626 |
– |
|
627 |
– |
if( hasCoords ){ |
628 |
– |
zAngle = zAng; |
629 |
– |
} |
630 |
– |
else{ |
631 |
– |
|
632 |
– |
sprintf( painCave.errMsg, |
633 |
– |
"Attempt to set zAngle for atom %d before coords set.\n", |
634 |
– |
index ); |
635 |
– |
painCave.isFatal = 1; |
636 |
– |
simError(); |
637 |
– |
} |
638 |
– |
} |
639 |
– |
|
640 |
– |
void DirectionalAtom::addZangle( double zAng ){ |
641 |
– |
|
642 |
– |
if( hasCoords ){ |
643 |
– |
zAngle += zAng; |
644 |
– |
} |
645 |
– |
else{ |
646 |
– |
|
647 |
– |
sprintf( painCave.errMsg, |
648 |
– |
"Attempt to add zAngle to atom %d before coords set.\n", |
649 |
– |
index ); |
650 |
– |
painCave.isFatal = 1; |
651 |
– |
simError(); |
652 |
– |
} |
653 |
– |
} |
654 |
– |
|
655 |
– |
double DirectionalAtom::max(double x, double y) { |
656 |
– |
return (x > y) ? x : y; |
657 |
– |
} |
658 |
– |
|
659 |
– |
double DirectionalAtom::min(double x, double y) { |
660 |
– |
return (x > y) ? y : x; |
661 |
– |
} |