1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
tim |
3 |
#include "primitives/DirectionalAtom.hpp" |
43 |
tim |
273 |
#include "utils/simError.h" |
44 |
gezelter |
246 |
namespace oopse { |
45 |
gezelter |
2 |
|
46 |
gezelter |
507 |
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
47 |
|
|
: Atom(dAtomType){ |
48 |
|
|
objType_= otDAtom; |
49 |
|
|
if (dAtomType->isMultipole()) { |
50 |
gezelter |
246 |
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
51 |
gezelter |
507 |
} |
52 |
tim |
273 |
|
53 |
gezelter |
507 |
//check if one of the diagonal inertia tensor of this directional atom is zero |
54 |
|
|
int nLinearAxis = 0; |
55 |
|
|
Mat3x3d inertiaTensor = getI(); |
56 |
|
|
for (int i = 0; i < 3; i++) { |
57 |
tim |
273 |
if (fabs(inertiaTensor(i, i)) < oopse::epsilon) { |
58 |
gezelter |
507 |
linear_ = true; |
59 |
|
|
linearAxis_ = i; |
60 |
|
|
++ nLinearAxis; |
61 |
tim |
273 |
} |
62 |
gezelter |
507 |
} |
63 |
tim |
273 |
|
64 |
gezelter |
507 |
if (nLinearAxis > 1) { |
65 |
tim |
273 |
sprintf( painCave.errMsg, |
66 |
gezelter |
663 |
"Directional Atom warning.\n" |
67 |
gezelter |
507 |
"\tOOPSE found more than one axis in this directional atom with a vanishing \n" |
68 |
|
|
"\tmoment of inertia."); |
69 |
gezelter |
663 |
painCave.isFatal = 0; |
70 |
tim |
273 |
simError(); |
71 |
gezelter |
507 |
} |
72 |
|
|
|
73 |
tim |
273 |
} |
74 |
gezelter |
2 |
|
75 |
gezelter |
507 |
Mat3x3d DirectionalAtom::getI() { |
76 |
gezelter |
246 |
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
77 |
gezelter |
507 |
} |
78 |
gezelter |
2 |
|
79 |
gezelter |
507 |
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
80 |
gezelter |
246 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
81 |
|
|
if (atomType_->isMultipole()) { |
82 |
gezelter |
507 |
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
83 |
gezelter |
205 |
} |
84 |
gezelter |
507 |
} |
85 |
gezelter |
2 |
|
86 |
gezelter |
246 |
|
87 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a) { |
88 |
gezelter |
246 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
89 |
gezelter |
2 |
|
90 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
91 |
gezelter |
507 |
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
92 |
gezelter |
2 |
} |
93 |
gezelter |
507 |
} |
94 |
gezelter |
2 |
|
95 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
96 |
gezelter |
246 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
97 |
gezelter |
2 |
|
98 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
99 |
gezelter |
507 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
100 |
gezelter |
2 |
} |
101 |
gezelter |
507 |
} |
102 |
gezelter |
2 |
|
103 |
gezelter |
507 |
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
104 |
gezelter |
246 |
setA(m *getA()); |
105 |
gezelter |
507 |
} |
106 |
gezelter |
2 |
|
107 |
gezelter |
507 |
std::vector<double> DirectionalAtom::getGrad() { |
108 |
gezelter |
246 |
std::vector<double> grad(6, 0.0); |
109 |
|
|
Vector3d force; |
110 |
|
|
Vector3d torque; |
111 |
|
|
Vector3d myEuler; |
112 |
|
|
double phi, theta, psi; |
113 |
|
|
double cphi, sphi, ctheta, stheta; |
114 |
|
|
Vector3d ephi; |
115 |
|
|
Vector3d etheta; |
116 |
|
|
Vector3d epsi; |
117 |
gezelter |
2 |
|
118 |
gezelter |
246 |
force = getFrc(); |
119 |
|
|
torque =getTrq(); |
120 |
|
|
myEuler = getA().toEulerAngles(); |
121 |
gezelter |
2 |
|
122 |
gezelter |
246 |
phi = myEuler[0]; |
123 |
|
|
theta = myEuler[1]; |
124 |
|
|
psi = myEuler[2]; |
125 |
gezelter |
2 |
|
126 |
gezelter |
246 |
cphi = cos(phi); |
127 |
|
|
sphi = sin(phi); |
128 |
|
|
ctheta = cos(theta); |
129 |
|
|
stheta = sin(theta); |
130 |
gezelter |
2 |
|
131 |
gezelter |
246 |
// get unit vectors along the phi, theta and psi rotation axes |
132 |
gezelter |
2 |
|
133 |
gezelter |
246 |
ephi[0] = 0.0; |
134 |
|
|
ephi[1] = 0.0; |
135 |
|
|
ephi[2] = 1.0; |
136 |
gezelter |
2 |
|
137 |
gezelter |
246 |
etheta[0] = cphi; |
138 |
|
|
etheta[1] = sphi; |
139 |
|
|
etheta[2] = 0.0; |
140 |
gezelter |
2 |
|
141 |
gezelter |
246 |
epsi[0] = stheta * cphi; |
142 |
|
|
epsi[1] = stheta * sphi; |
143 |
|
|
epsi[2] = ctheta; |
144 |
gezelter |
2 |
|
145 |
gezelter |
246 |
//gradient is equal to -force |
146 |
|
|
for (int j = 0 ; j<3; j++) |
147 |
gezelter |
507 |
grad[j] = -force[j]; |
148 |
gezelter |
2 |
|
149 |
gezelter |
246 |
for (int j = 0; j < 3; j++ ) { |
150 |
gezelter |
2 |
|
151 |
tim |
642 |
grad[3] -= torque[j]*ephi[j]; |
152 |
|
|
grad[4] -= torque[j]*etheta[j]; |
153 |
|
|
grad[5] -= torque[j]*epsi[j]; |
154 |
gezelter |
2 |
|
155 |
gezelter |
246 |
} |
156 |
gezelter |
2 |
|
157 |
gezelter |
246 |
return grad; |
158 |
gezelter |
507 |
} |
159 |
gezelter |
2 |
|
160 |
gezelter |
507 |
void DirectionalAtom::accept(BaseVisitor* v) { |
161 |
gezelter |
246 |
v->visit(this); |
162 |
gezelter |
507 |
} |
163 |
gezelter |
2 |
|
164 |
|
|
} |
165 |
|
|
|