1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
gezelter |
1665 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
246 |
*/ |
42 |
|
|
|
43 |
tim |
3 |
#include "primitives/DirectionalAtom.hpp" |
44 |
tim |
273 |
#include "utils/simError.h" |
45 |
gezelter |
1390 |
namespace OpenMD { |
46 |
gezelter |
1211 |
|
47 |
gezelter |
507 |
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
48 |
|
|
: Atom(dAtomType){ |
49 |
gezelter |
1211 |
objType_= otDAtom; |
50 |
|
|
if (dAtomType->isMultipole()) { |
51 |
|
|
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
// Check if one of the diagonal inertia tensor of this directional |
55 |
|
|
// atom is zero: |
56 |
|
|
int nLinearAxis = 0; |
57 |
|
|
Mat3x3d inertiaTensor = getI(); |
58 |
|
|
for (int i = 0; i < 3; i++) { |
59 |
gezelter |
1390 |
if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) { |
60 |
gezelter |
1211 |
linear_ = true; |
61 |
|
|
linearAxis_ = i; |
62 |
|
|
++ nLinearAxis; |
63 |
gezelter |
507 |
} |
64 |
tim |
273 |
} |
65 |
gezelter |
2 |
|
66 |
gezelter |
1211 |
if (nLinearAxis > 1) { |
67 |
|
|
sprintf( painCave.errMsg, |
68 |
|
|
"Directional Atom warning.\n" |
69 |
gezelter |
1390 |
"\tOpenMD found more than one axis in this directional atom with a vanishing \n" |
70 |
gezelter |
1211 |
"\tmoment of inertia."); |
71 |
|
|
painCave.isFatal = 0; |
72 |
|
|
simError(); |
73 |
|
|
} |
74 |
|
|
} |
75 |
|
|
|
76 |
gezelter |
507 |
Mat3x3d DirectionalAtom::getI() { |
77 |
gezelter |
246 |
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
78 |
gezelter |
507 |
} |
79 |
gezelter |
1211 |
|
80 |
gezelter |
507 |
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
81 |
gezelter |
246 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
82 |
|
|
if (atomType_->isMultipole()) { |
83 |
gezelter |
507 |
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
84 |
gezelter |
205 |
} |
85 |
gezelter |
507 |
} |
86 |
gezelter |
1211 |
|
87 |
|
|
|
88 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a) { |
89 |
gezelter |
246 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
90 |
gezelter |
1211 |
|
91 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
92 |
gezelter |
507 |
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
93 |
gezelter |
2 |
} |
94 |
gezelter |
507 |
} |
95 |
gezelter |
1211 |
|
96 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
97 |
gezelter |
246 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
98 |
gezelter |
1211 |
|
99 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
100 |
gezelter |
507 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
101 |
gezelter |
2 |
} |
102 |
gezelter |
507 |
} |
103 |
gezelter |
1211 |
|
104 |
gezelter |
507 |
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
105 |
gezelter |
246 |
setA(m *getA()); |
106 |
gezelter |
507 |
} |
107 |
gezelter |
1211 |
|
108 |
tim |
963 |
std::vector<RealType> DirectionalAtom::getGrad() { |
109 |
|
|
std::vector<RealType> grad(6, 0.0); |
110 |
gezelter |
246 |
Vector3d force; |
111 |
|
|
Vector3d torque; |
112 |
|
|
Vector3d myEuler; |
113 |
tim |
963 |
RealType phi, theta, psi; |
114 |
|
|
RealType cphi, sphi, ctheta, stheta; |
115 |
gezelter |
246 |
Vector3d ephi; |
116 |
|
|
Vector3d etheta; |
117 |
|
|
Vector3d epsi; |
118 |
gezelter |
1211 |
|
119 |
gezelter |
246 |
force = getFrc(); |
120 |
|
|
torque =getTrq(); |
121 |
|
|
myEuler = getA().toEulerAngles(); |
122 |
gezelter |
1211 |
|
123 |
gezelter |
246 |
phi = myEuler[0]; |
124 |
|
|
theta = myEuler[1]; |
125 |
|
|
psi = myEuler[2]; |
126 |
gezelter |
1211 |
|
127 |
gezelter |
246 |
cphi = cos(phi); |
128 |
|
|
sphi = sin(phi); |
129 |
|
|
ctheta = cos(theta); |
130 |
|
|
stheta = sin(theta); |
131 |
gezelter |
1211 |
|
132 |
gezelter |
246 |
// get unit vectors along the phi, theta and psi rotation axes |
133 |
gezelter |
1211 |
|
134 |
gezelter |
246 |
ephi[0] = 0.0; |
135 |
|
|
ephi[1] = 0.0; |
136 |
|
|
ephi[2] = 1.0; |
137 |
gezelter |
1211 |
|
138 |
gezelter |
1424 |
//etheta[0] = -sphi; |
139 |
|
|
//etheta[1] = cphi; |
140 |
|
|
//etheta[2] = 0.0; |
141 |
gezelter |
1211 |
|
142 |
gezelter |
1424 |
etheta[0] = cphi; |
143 |
|
|
etheta[1] = sphi; |
144 |
|
|
etheta[2] = 0.0; |
145 |
|
|
|
146 |
gezelter |
246 |
epsi[0] = stheta * cphi; |
147 |
|
|
epsi[1] = stheta * sphi; |
148 |
|
|
epsi[2] = ctheta; |
149 |
gezelter |
1211 |
|
150 |
gezelter |
246 |
//gradient is equal to -force |
151 |
|
|
for (int j = 0 ; j<3; j++) |
152 |
gezelter |
507 |
grad[j] = -force[j]; |
153 |
gezelter |
1211 |
|
154 |
|
|
for (int j = 0; j < 3; j++ ) { |
155 |
tim |
642 |
grad[3] -= torque[j]*ephi[j]; |
156 |
|
|
grad[4] -= torque[j]*etheta[j]; |
157 |
gezelter |
1211 |
grad[5] -= torque[j]*epsi[j]; |
158 |
gezelter |
246 |
} |
159 |
gezelter |
2 |
|
160 |
gezelter |
246 |
return grad; |
161 |
gezelter |
507 |
} |
162 |
gezelter |
1211 |
|
163 |
gezelter |
507 |
void DirectionalAtom::accept(BaseVisitor* v) { |
164 |
gezelter |
246 |
v->visit(this); |
165 |
gezelter |
1211 |
} |
166 |
gezelter |
2 |
} |
167 |
|
|
|