1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include "perturbations/ElectricField.hpp" |
43 |
#include "types/FixedChargeAdapter.hpp" |
44 |
#include "types/FluctuatingChargeAdapter.hpp" |
45 |
#include "types/MultipoleAdapter.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "nonbonded/NonBondedInteraction.hpp" |
48 |
|
49 |
namespace OpenMD { |
50 |
|
51 |
ElectricField::ElectricField(SimInfo* info) : info_(info), |
52 |
doElectricField(false), |
53 |
doParticlePot(false), |
54 |
initialized(false) { |
55 |
simParams = info_->getSimParams(); |
56 |
} |
57 |
|
58 |
void ElectricField::initialize() { |
59 |
if (simParams->haveElectricField()) { |
60 |
doElectricField = true; |
61 |
EF = simParams->getElectricField(); |
62 |
} |
63 |
int storageLayout_ = info_->getSnapshotManager()->getStorageLayout(); |
64 |
if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true; |
65 |
initialized = true; |
66 |
} |
67 |
|
68 |
void ElectricField::applyPerturbation() { |
69 |
if (!initialized) initialize(); |
70 |
|
71 |
SimInfo::MoleculeIterator i; |
72 |
Molecule::AtomIterator j; |
73 |
Molecule* mol; |
74 |
Atom* atom; |
75 |
potVec longRangePotential(0.0); |
76 |
Vector3d dip; |
77 |
Vector3d trq; |
78 |
Vector3d EFfrc; |
79 |
Vector3d pos; |
80 |
|
81 |
if (doElectricField) { |
82 |
const RealType chrgToKcal = 23.0609; |
83 |
const RealType debyeToKcal = 4.8018969509; |
84 |
RealType pot; |
85 |
RealType fieldPot = 0.0; |
86 |
|
87 |
for (mol = info_->beginMolecule(i); mol != NULL; |
88 |
mol = info_->nextMolecule(i)) { |
89 |
|
90 |
for (atom = mol->beginAtom(j); atom != NULL; |
91 |
atom = mol->nextAtom(j)) { |
92 |
|
93 |
bool isCharge = false; |
94 |
RealType chrg = 0.0; |
95 |
|
96 |
AtomType* atype = atom->getAtomType(); |
97 |
|
98 |
if (atype->isElectrostatic()) { |
99 |
atom->addElectricField(EF * chrgToKcal); |
100 |
} |
101 |
|
102 |
FixedChargeAdapter fca = FixedChargeAdapter(atype); |
103 |
if ( fca.isFixedCharge() ) { |
104 |
isCharge = true; |
105 |
chrg = fca.getCharge(); |
106 |
} |
107 |
|
108 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype); |
109 |
if ( fqa.isFluctuatingCharge() ) { |
110 |
isCharge = true; |
111 |
chrg += atom->getFlucQPos(); |
112 |
} |
113 |
|
114 |
if (isCharge) { |
115 |
EFfrc = EF*chrg; |
116 |
EFfrc *= chrgToKcal; |
117 |
atom->addFrc(EFfrc); |
118 |
// ad-hoc choice of the origin for potential calculation |
119 |
pos = atom->getPos(); |
120 |
pot = -dot(pos, EFfrc); |
121 |
if (doParticlePot) { |
122 |
atom->addParticlePot(pot); |
123 |
} |
124 |
fieldPot += pot; |
125 |
} |
126 |
|
127 |
MultipoleAdapter ma = MultipoleAdapter(atype); |
128 |
if (ma.isDipole() ) { |
129 |
Vector3d dipole = atom->getDipole(); |
130 |
dipole *= debyeToKcal; |
131 |
|
132 |
trq = cross(dipole, EF); |
133 |
atom->addTrq(trq); |
134 |
|
135 |
pot = -dot(dipole, EF); |
136 |
if (doParticlePot) { |
137 |
atom->addParticlePot(pot); |
138 |
} |
139 |
fieldPot += pot; |
140 |
} |
141 |
} |
142 |
} |
143 |
#ifdef IS_MPI |
144 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &fieldPot, 1, MPI::REALTYPE, |
145 |
MPI::SUM); |
146 |
#endif |
147 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
148 |
longRangePotential = snap->getLongRangePotentials(); |
149 |
longRangePotential[ELECTROSTATIC_FAMILY] += fieldPot; |
150 |
snap->setLongRangePotential(longRangePotential); |
151 |
} |
152 |
} |
153 |
} |