ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1858
Committed: Wed Apr 3 21:32:13 2013 UTC (12 years ago) by gezelter
File size: 53954 byte(s)
Log Message:
Some bugfixes for cell-linked-list-style neighbor lists when the simulation
doesn't use periodic boundary conditions.   Cleaning up some of the Hull
stuff while we're in there.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 expot_row.resize(nAtomsInRow_);
180 expot_col.resize(nAtomsInCol_);
181
182 AtomRowToGlobal.resize(nAtomsInRow_);
183 AtomColToGlobal.resize(nAtomsInCol_);
184 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186
187 cgRowToGlobal.resize(nGroupsInRow_);
188 cgColToGlobal.resize(nGroupsInCol_);
189 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191
192 massFactorsRow.resize(nAtomsInRow_);
193 massFactorsCol.resize(nAtomsInCol_);
194 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196
197 groupListRow_.clear();
198 groupListRow_.resize(nGroupsInRow_);
199 for (int i = 0; i < nGroupsInRow_; i++) {
200 int gid = cgRowToGlobal[i];
201 for (int j = 0; j < nAtomsInRow_; j++) {
202 int aid = AtomRowToGlobal[j];
203 if (globalGroupMembership[aid] == gid)
204 groupListRow_[i].push_back(j);
205 }
206 }
207
208 groupListCol_.clear();
209 groupListCol_.resize(nGroupsInCol_);
210 for (int i = 0; i < nGroupsInCol_; i++) {
211 int gid = cgColToGlobal[i];
212 for (int j = 0; j < nAtomsInCol_; j++) {
213 int aid = AtomColToGlobal[j];
214 if (globalGroupMembership[aid] == gid)
215 groupListCol_[i].push_back(j);
216 }
217 }
218
219 excludesForAtom.clear();
220 excludesForAtom.resize(nAtomsInRow_);
221 toposForAtom.clear();
222 toposForAtom.resize(nAtomsInRow_);
223 topoDist.clear();
224 topoDist.resize(nAtomsInRow_);
225 for (int i = 0; i < nAtomsInRow_; i++) {
226 int iglob = AtomRowToGlobal[i];
227
228 for (int j = 0; j < nAtomsInCol_; j++) {
229 int jglob = AtomColToGlobal[j];
230
231 if (excludes->hasPair(iglob, jglob))
232 excludesForAtom[i].push_back(j);
233
234 if (oneTwo->hasPair(iglob, jglob)) {
235 toposForAtom[i].push_back(j);
236 topoDist[i].push_back(1);
237 } else {
238 if (oneThree->hasPair(iglob, jglob)) {
239 toposForAtom[i].push_back(j);
240 topoDist[i].push_back(2);
241 } else {
242 if (oneFour->hasPair(iglob, jglob)) {
243 toposForAtom[i].push_back(j);
244 topoDist[i].push_back(3);
245 }
246 }
247 }
248 }
249 }
250
251 #else
252 excludesForAtom.clear();
253 excludesForAtom.resize(nLocal_);
254 toposForAtom.clear();
255 toposForAtom.resize(nLocal_);
256 topoDist.clear();
257 topoDist.resize(nLocal_);
258
259 for (int i = 0; i < nLocal_; i++) {
260 int iglob = AtomLocalToGlobal[i];
261
262 for (int j = 0; j < nLocal_; j++) {
263 int jglob = AtomLocalToGlobal[j];
264
265 if (excludes->hasPair(iglob, jglob))
266 excludesForAtom[i].push_back(j);
267
268 if (oneTwo->hasPair(iglob, jglob)) {
269 toposForAtom[i].push_back(j);
270 topoDist[i].push_back(1);
271 } else {
272 if (oneThree->hasPair(iglob, jglob)) {
273 toposForAtom[i].push_back(j);
274 topoDist[i].push_back(2);
275 } else {
276 if (oneFour->hasPair(iglob, jglob)) {
277 toposForAtom[i].push_back(j);
278 topoDist[i].push_back(3);
279 }
280 }
281 }
282 }
283 }
284 #endif
285
286 // allocate memory for the parallel objects
287 atypesLocal.resize(nLocal_);
288
289 for (int i = 0; i < nLocal_; i++)
290 atypesLocal[i] = ff_->getAtomType(idents[i]);
291
292 groupList_.clear();
293 groupList_.resize(nGroups_);
294 for (int i = 0; i < nGroups_; i++) {
295 int gid = cgLocalToGlobal[i];
296 for (int j = 0; j < nLocal_; j++) {
297 int aid = AtomLocalToGlobal[j];
298 if (globalGroupMembership[aid] == gid) {
299 groupList_[i].push_back(j);
300 }
301 }
302 }
303
304
305 createGtypeCutoffMap();
306
307 }
308
309 void ForceMatrixDecomposition::createGtypeCutoffMap() {
310
311 RealType tol = 1e-6;
312 largestRcut_ = 0.0;
313 int atid;
314 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315
316 map<int, RealType> atypeCutoff;
317
318 for (set<AtomType*>::iterator at = atypes.begin();
319 at != atypes.end(); ++at){
320 atid = (*at)->getIdent();
321 if (userChoseCutoff_)
322 atypeCutoff[atid] = userCutoff_;
323 else
324 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 }
326
327 vector<RealType> gTypeCutoffs;
328 // first we do a single loop over the cutoff groups to find the
329 // largest cutoff for any atypes present in this group.
330 #ifdef IS_MPI
331 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 groupRowToGtype.resize(nGroupsInRow_);
333 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 for (vector<int>::iterator ia = atomListRow.begin();
336 ia != atomListRow.end(); ++ia) {
337 int atom1 = (*ia);
338 atid = identsRow[atom1];
339 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 groupCutoffRow[cg1] = atypeCutoff[atid];
341 }
342 }
343
344 bool gTypeFound = false;
345 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 groupRowToGtype[cg1] = gt;
348 gTypeFound = true;
349 }
350 }
351 if (!gTypeFound) {
352 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 }
355
356 }
357 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 groupColToGtype.resize(nGroupsInCol_);
359 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 for (vector<int>::iterator jb = atomListCol.begin();
362 jb != atomListCol.end(); ++jb) {
363 int atom2 = (*jb);
364 atid = identsCol[atom2];
365 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 groupCutoffCol[cg2] = atypeCutoff[atid];
367 }
368 }
369 bool gTypeFound = false;
370 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 groupColToGtype[cg2] = gt;
373 gTypeFound = true;
374 }
375 }
376 if (!gTypeFound) {
377 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 }
380 }
381 #else
382
383 vector<RealType> groupCutoff(nGroups_, 0.0);
384 groupToGtype.resize(nGroups_);
385 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 groupCutoff[cg1] = 0.0;
387 vector<int> atomList = getAtomsInGroupRow(cg1);
388 for (vector<int>::iterator ia = atomList.begin();
389 ia != atomList.end(); ++ia) {
390 int atom1 = (*ia);
391 atid = idents[atom1];
392 if (atypeCutoff[atid] > groupCutoff[cg1])
393 groupCutoff[cg1] = atypeCutoff[atid];
394 }
395
396 bool gTypeFound = false;
397 for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 groupToGtype[cg1] = gt;
400 gTypeFound = true;
401 }
402 }
403 if (!gTypeFound) {
404 gTypeCutoffs.push_back( groupCutoff[cg1] );
405 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 }
407 }
408 #endif
409
410 // Now we find the maximum group cutoff value present in the simulation
411
412 RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 gTypeCutoffs.end());
414
415 #ifdef IS_MPI
416 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 MPI::MAX);
418 #endif
419
420 RealType tradRcut = groupMax;
421
422 for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) {
423 for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) {
424 RealType thisRcut;
425 switch(cutoffPolicy_) {
426 case TRADITIONAL:
427 thisRcut = tradRcut;
428 break;
429 case MIX:
430 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 break;
432 case MAX:
433 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 break;
435 default:
436 sprintf(painCave.errMsg,
437 "ForceMatrixDecomposition::createGtypeCutoffMap "
438 "hit an unknown cutoff policy!\n");
439 painCave.severity = OPENMD_ERROR;
440 painCave.isFatal = 1;
441 simError();
442 break;
443 }
444
445 pair<int,int> key = make_pair(i,j);
446 gTypeCutoffMap[key].first = thisRcut;
447 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 // sanity check
451
452 if (userChoseCutoff_) {
453 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 sprintf(painCave.errMsg,
455 "ForceMatrixDecomposition::createGtypeCutoffMap "
456 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 painCave.severity = OPENMD_ERROR;
458 painCave.isFatal = 1;
459 simError();
460 }
461 }
462 }
463 }
464 }
465
466 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 int i, j;
468 #ifdef IS_MPI
469 i = groupRowToGtype[cg1];
470 j = groupColToGtype[cg2];
471 #else
472 i = groupToGtype[cg1];
473 j = groupToGtype[cg2];
474 #endif
475 return gTypeCutoffMap[make_pair(i,j)];
476 }
477
478 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 if (toposForAtom[atom1][j] == atom2)
481 return topoDist[atom1][j];
482 }
483 return 0;
484 }
485
486 void ForceMatrixDecomposition::zeroWorkArrays() {
487 pairwisePot = 0.0;
488 embeddingPot = 0.0;
489 excludedPot = 0.0;
490 excludedSelfPot = 0.0;
491
492 #ifdef IS_MPI
493 if (storageLayout_ & DataStorage::dslForce) {
494 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 }
497
498 if (storageLayout_ & DataStorage::dslTorque) {
499 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 }
502
503 fill(pot_row.begin(), pot_row.end(),
504 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505
506 fill(pot_col.begin(), pot_col.end(),
507 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508
509 fill(expot_row.begin(), expot_row.end(),
510 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511
512 fill(expot_col.begin(), expot_col.end(),
513 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514
515 if (storageLayout_ & DataStorage::dslParticlePot) {
516 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 0.0);
518 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 0.0);
520 }
521
522 if (storageLayout_ & DataStorage::dslDensity) {
523 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 }
526
527 if (storageLayout_ & DataStorage::dslFunctional) {
528 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 0.0);
530 fill(atomColData.functional.begin(), atomColData.functional.end(),
531 0.0);
532 }
533
534 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535 fill(atomRowData.functionalDerivative.begin(),
536 atomRowData.functionalDerivative.end(), 0.0);
537 fill(atomColData.functionalDerivative.begin(),
538 atomColData.functionalDerivative.end(), 0.0);
539 }
540
541 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 fill(atomRowData.skippedCharge.begin(),
543 atomRowData.skippedCharge.end(), 0.0);
544 fill(atomColData.skippedCharge.begin(),
545 atomColData.skippedCharge.end(), 0.0);
546 }
547
548 if (storageLayout_ & DataStorage::dslFlucQForce) {
549 fill(atomRowData.flucQFrc.begin(),
550 atomRowData.flucQFrc.end(), 0.0);
551 fill(atomColData.flucQFrc.begin(),
552 atomColData.flucQFrc.end(), 0.0);
553 }
554
555 if (storageLayout_ & DataStorage::dslElectricField) {
556 fill(atomRowData.electricField.begin(),
557 atomRowData.electricField.end(), V3Zero);
558 fill(atomColData.electricField.begin(),
559 atomColData.electricField.end(), V3Zero);
560 }
561
562 #endif
563 // even in parallel, we need to zero out the local arrays:
564
565 if (storageLayout_ & DataStorage::dslParticlePot) {
566 fill(snap_->atomData.particlePot.begin(),
567 snap_->atomData.particlePot.end(), 0.0);
568 }
569
570 if (storageLayout_ & DataStorage::dslDensity) {
571 fill(snap_->atomData.density.begin(),
572 snap_->atomData.density.end(), 0.0);
573 }
574
575 if (storageLayout_ & DataStorage::dslFunctional) {
576 fill(snap_->atomData.functional.begin(),
577 snap_->atomData.functional.end(), 0.0);
578 }
579
580 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
581 fill(snap_->atomData.functionalDerivative.begin(),
582 snap_->atomData.functionalDerivative.end(), 0.0);
583 }
584
585 if (storageLayout_ & DataStorage::dslSkippedCharge) {
586 fill(snap_->atomData.skippedCharge.begin(),
587 snap_->atomData.skippedCharge.end(), 0.0);
588 }
589
590 if (storageLayout_ & DataStorage::dslElectricField) {
591 fill(snap_->atomData.electricField.begin(),
592 snap_->atomData.electricField.end(), V3Zero);
593 }
594 }
595
596
597 void ForceMatrixDecomposition::distributeData() {
598 snap_ = sman_->getCurrentSnapshot();
599 storageLayout_ = sman_->getStorageLayout();
600 #ifdef IS_MPI
601
602 // gather up the atomic positions
603 AtomPlanVectorRow->gather(snap_->atomData.position,
604 atomRowData.position);
605 AtomPlanVectorColumn->gather(snap_->atomData.position,
606 atomColData.position);
607
608 // gather up the cutoff group positions
609
610 cgPlanVectorRow->gather(snap_->cgData.position,
611 cgRowData.position);
612
613 cgPlanVectorColumn->gather(snap_->cgData.position,
614 cgColData.position);
615
616
617
618 if (needVelocities_) {
619 // gather up the atomic velocities
620 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 atomColData.velocity);
622
623 cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 cgColData.velocity);
625 }
626
627
628 // if needed, gather the atomic rotation matrices
629 if (storageLayout_ & DataStorage::dslAmat) {
630 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631 atomRowData.aMat);
632 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633 atomColData.aMat);
634 }
635
636 // if needed, gather the atomic eletrostatic information
637 if (storageLayout_ & DataStorage::dslDipole) {
638 AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 atomRowData.dipole);
640 AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 atomColData.dipole);
642 }
643
644 if (storageLayout_ & DataStorage::dslQuadrupole) {
645 AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 atomRowData.quadrupole);
647 AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 atomColData.quadrupole);
649 }
650
651 // if needed, gather the atomic fluctuating charge values
652 if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 atomRowData.flucQPos);
655 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 atomColData.flucQPos);
657 }
658
659 #endif
660 }
661
662 /* collects information obtained during the pre-pair loop onto local
663 * data structures.
664 */
665 void ForceMatrixDecomposition::collectIntermediateData() {
666 snap_ = sman_->getCurrentSnapshot();
667 storageLayout_ = sman_->getStorageLayout();
668 #ifdef IS_MPI
669
670 if (storageLayout_ & DataStorage::dslDensity) {
671
672 AtomPlanRealRow->scatter(atomRowData.density,
673 snap_->atomData.density);
674
675 int n = snap_->atomData.density.size();
676 vector<RealType> rho_tmp(n, 0.0);
677 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 for (int i = 0; i < n; i++)
679 snap_->atomData.density[i] += rho_tmp[i];
680 }
681
682 // this isn't necessary if we don't have polarizable atoms, but
683 // we'll leave it here for now.
684 if (storageLayout_ & DataStorage::dslElectricField) {
685
686 AtomPlanVectorRow->scatter(atomRowData.electricField,
687 snap_->atomData.electricField);
688
689 int n = snap_->atomData.electricField.size();
690 vector<Vector3d> field_tmp(n, V3Zero);
691 AtomPlanVectorColumn->scatter(atomColData.electricField,
692 field_tmp);
693 for (int i = 0; i < n; i++)
694 snap_->atomData.electricField[i] += field_tmp[i];
695 }
696 #endif
697 }
698
699 /*
700 * redistributes information obtained during the pre-pair loop out to
701 * row and column-indexed data structures
702 */
703 void ForceMatrixDecomposition::distributeIntermediateData() {
704 snap_ = sman_->getCurrentSnapshot();
705 storageLayout_ = sman_->getStorageLayout();
706 #ifdef IS_MPI
707 if (storageLayout_ & DataStorage::dslFunctional) {
708 AtomPlanRealRow->gather(snap_->atomData.functional,
709 atomRowData.functional);
710 AtomPlanRealColumn->gather(snap_->atomData.functional,
711 atomColData.functional);
712 }
713
714 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
715 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
716 atomRowData.functionalDerivative);
717 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
718 atomColData.functionalDerivative);
719 }
720 #endif
721 }
722
723
724 void ForceMatrixDecomposition::collectData() {
725 snap_ = sman_->getCurrentSnapshot();
726 storageLayout_ = sman_->getStorageLayout();
727 #ifdef IS_MPI
728 int n = snap_->atomData.force.size();
729 vector<Vector3d> frc_tmp(n, V3Zero);
730
731 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
732 for (int i = 0; i < n; i++) {
733 snap_->atomData.force[i] += frc_tmp[i];
734 frc_tmp[i] = 0.0;
735 }
736
737 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
738 for (int i = 0; i < n; i++) {
739 snap_->atomData.force[i] += frc_tmp[i];
740 }
741
742 if (storageLayout_ & DataStorage::dslTorque) {
743
744 int nt = snap_->atomData.torque.size();
745 vector<Vector3d> trq_tmp(nt, V3Zero);
746
747 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
748 for (int i = 0; i < nt; i++) {
749 snap_->atomData.torque[i] += trq_tmp[i];
750 trq_tmp[i] = 0.0;
751 }
752
753 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
754 for (int i = 0; i < nt; i++)
755 snap_->atomData.torque[i] += trq_tmp[i];
756 }
757
758 if (storageLayout_ & DataStorage::dslSkippedCharge) {
759
760 int ns = snap_->atomData.skippedCharge.size();
761 vector<RealType> skch_tmp(ns, 0.0);
762
763 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
764 for (int i = 0; i < ns; i++) {
765 snap_->atomData.skippedCharge[i] += skch_tmp[i];
766 skch_tmp[i] = 0.0;
767 }
768
769 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
770 for (int i = 0; i < ns; i++)
771 snap_->atomData.skippedCharge[i] += skch_tmp[i];
772
773 }
774
775 if (storageLayout_ & DataStorage::dslFlucQForce) {
776
777 int nq = snap_->atomData.flucQFrc.size();
778 vector<RealType> fqfrc_tmp(nq, 0.0);
779
780 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
781 for (int i = 0; i < nq; i++) {
782 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
783 fqfrc_tmp[i] = 0.0;
784 }
785
786 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
787 for (int i = 0; i < nq; i++)
788 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
789
790 }
791
792 if (storageLayout_ & DataStorage::dslElectricField) {
793
794 int nef = snap_->atomData.electricField.size();
795 vector<Vector3d> efield_tmp(nef, V3Zero);
796
797 AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798 for (int i = 0; i < nef; i++) {
799 snap_->atomData.electricField[i] += efield_tmp[i];
800 efield_tmp[i] = 0.0;
801 }
802
803 AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804 for (int i = 0; i < nef; i++)
805 snap_->atomData.electricField[i] += efield_tmp[i];
806 }
807
808
809 nLocal_ = snap_->getNumberOfAtoms();
810
811 vector<potVec> pot_temp(nLocal_,
812 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 vector<potVec> expot_temp(nLocal_,
814 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815
816 // scatter/gather pot_row into the members of my column
817
818 AtomPlanPotRow->scatter(pot_row, pot_temp);
819 AtomPlanPotRow->scatter(expot_row, expot_temp);
820
821 for (int ii = 0; ii < pot_temp.size(); ii++ )
822 pairwisePot += pot_temp[ii];
823
824 for (int ii = 0; ii < expot_temp.size(); ii++ )
825 excludedPot += expot_temp[ii];
826
827 if (storageLayout_ & DataStorage::dslParticlePot) {
828 // This is the pairwise contribution to the particle pot. The
829 // embedding contribution is added in each of the low level
830 // non-bonded routines. In single processor, this is done in
831 // unpackInteractionData, not in collectData.
832 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833 for (int i = 0; i < nLocal_; i++) {
834 // factor of two is because the total potential terms are divided
835 // by 2 in parallel due to row/ column scatter
836 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837 }
838 }
839 }
840
841 fill(pot_temp.begin(), pot_temp.end(),
842 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 fill(expot_temp.begin(), expot_temp.end(),
844 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845
846 AtomPlanPotColumn->scatter(pot_col, pot_temp);
847 AtomPlanPotColumn->scatter(expot_col, expot_temp);
848
849 for (int ii = 0; ii < pot_temp.size(); ii++ )
850 pairwisePot += pot_temp[ii];
851
852 for (int ii = 0; ii < expot_temp.size(); ii++ )
853 excludedPot += expot_temp[ii];
854
855 if (storageLayout_ & DataStorage::dslParticlePot) {
856 // This is the pairwise contribution to the particle pot. The
857 // embedding contribution is added in each of the low level
858 // non-bonded routines. In single processor, this is done in
859 // unpackInteractionData, not in collectData.
860 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861 for (int i = 0; i < nLocal_; i++) {
862 // factor of two is because the total potential terms are divided
863 // by 2 in parallel due to row/ column scatter
864 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865 }
866 }
867 }
868
869 if (storageLayout_ & DataStorage::dslParticlePot) {
870 int npp = snap_->atomData.particlePot.size();
871 vector<RealType> ppot_temp(npp, 0.0);
872
873 // This is the direct or embedding contribution to the particle
874 // pot.
875
876 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877 for (int i = 0; i < npp; i++) {
878 snap_->atomData.particlePot[i] += ppot_temp[i];
879 }
880
881 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882
883 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884 for (int i = 0; i < npp; i++) {
885 snap_->atomData.particlePot[i] += ppot_temp[i];
886 }
887 }
888
889 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890 RealType ploc1 = pairwisePot[ii];
891 RealType ploc2 = 0.0;
892 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
893 pairwisePot[ii] = ploc2;
894 }
895
896 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897 RealType ploc1 = excludedPot[ii];
898 RealType ploc2 = 0.0;
899 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900 excludedPot[ii] = ploc2;
901 }
902
903 // Here be dragons.
904 MPI::Intracomm col = colComm.getComm();
905
906 col.Allreduce(MPI::IN_PLACE,
907 &snap_->frameData.conductiveHeatFlux[0], 3,
908 MPI::REALTYPE, MPI::SUM);
909
910
911 #endif
912
913 }
914
915 /**
916 * Collects information obtained during the post-pair (and embedding
917 * functional) loops onto local data structures.
918 */
919 void ForceMatrixDecomposition::collectSelfData() {
920 snap_ = sman_->getCurrentSnapshot();
921 storageLayout_ = sman_->getStorageLayout();
922
923 #ifdef IS_MPI
924 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925 RealType ploc1 = embeddingPot[ii];
926 RealType ploc2 = 0.0;
927 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928 embeddingPot[ii] = ploc2;
929 }
930 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931 RealType ploc1 = excludedSelfPot[ii];
932 RealType ploc2 = 0.0;
933 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934 excludedSelfPot[ii] = ploc2;
935 }
936 #endif
937
938 }
939
940
941
942 int ForceMatrixDecomposition::getNAtomsInRow() {
943 #ifdef IS_MPI
944 return nAtomsInRow_;
945 #else
946 return nLocal_;
947 #endif
948 }
949
950 /**
951 * returns the list of atoms belonging to this group.
952 */
953 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
954 #ifdef IS_MPI
955 return groupListRow_[cg1];
956 #else
957 return groupList_[cg1];
958 #endif
959 }
960
961 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
962 #ifdef IS_MPI
963 return groupListCol_[cg2];
964 #else
965 return groupList_[cg2];
966 #endif
967 }
968
969 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
970 Vector3d d;
971
972 #ifdef IS_MPI
973 d = cgColData.position[cg2] - cgRowData.position[cg1];
974 #else
975 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
976 #endif
977
978 if (usePeriodicBoundaryConditions_) {
979 snap_->wrapVector(d);
980 }
981 return d;
982 }
983
984 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
985 #ifdef IS_MPI
986 return cgColData.velocity[cg2];
987 #else
988 return snap_->cgData.velocity[cg2];
989 #endif
990 }
991
992 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
993 #ifdef IS_MPI
994 return atomColData.velocity[atom2];
995 #else
996 return snap_->atomData.velocity[atom2];
997 #endif
998 }
999
1000
1001 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1002
1003 Vector3d d;
1004
1005 #ifdef IS_MPI
1006 d = cgRowData.position[cg1] - atomRowData.position[atom1];
1007 #else
1008 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1009 #endif
1010 if (usePeriodicBoundaryConditions_) {
1011 snap_->wrapVector(d);
1012 }
1013 return d;
1014 }
1015
1016 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
1017 Vector3d d;
1018
1019 #ifdef IS_MPI
1020 d = cgColData.position[cg2] - atomColData.position[atom2];
1021 #else
1022 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1023 #endif
1024 if (usePeriodicBoundaryConditions_) {
1025 snap_->wrapVector(d);
1026 }
1027 return d;
1028 }
1029
1030 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1031 #ifdef IS_MPI
1032 return massFactorsRow[atom1];
1033 #else
1034 return massFactors[atom1];
1035 #endif
1036 }
1037
1038 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1039 #ifdef IS_MPI
1040 return massFactorsCol[atom2];
1041 #else
1042 return massFactors[atom2];
1043 #endif
1044
1045 }
1046
1047 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1048 Vector3d d;
1049
1050 #ifdef IS_MPI
1051 d = atomColData.position[atom2] - atomRowData.position[atom1];
1052 #else
1053 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1054 #endif
1055 if (usePeriodicBoundaryConditions_) {
1056 snap_->wrapVector(d);
1057 }
1058 return d;
1059 }
1060
1061 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1062 return excludesForAtom[atom1];
1063 }
1064
1065 /**
1066 * We need to exclude some overcounted interactions that result from
1067 * the parallel decomposition.
1068 */
1069 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1070 int unique_id_1, unique_id_2;
1071
1072 #ifdef IS_MPI
1073 // in MPI, we have to look up the unique IDs for each atom
1074 unique_id_1 = AtomRowToGlobal[atom1];
1075 unique_id_2 = AtomColToGlobal[atom2];
1076 // group1 = cgRowToGlobal[cg1];
1077 // group2 = cgColToGlobal[cg2];
1078 #else
1079 unique_id_1 = AtomLocalToGlobal[atom1];
1080 unique_id_2 = AtomLocalToGlobal[atom2];
1081 int group1 = cgLocalToGlobal[cg1];
1082 int group2 = cgLocalToGlobal[cg2];
1083 #endif
1084
1085 if (unique_id_1 == unique_id_2) return true;
1086
1087 #ifdef IS_MPI
1088 // this prevents us from doing the pair on multiple processors
1089 if (unique_id_1 < unique_id_2) {
1090 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1091 } else {
1092 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1093 }
1094 #endif
1095
1096 #ifndef IS_MPI
1097 if (group1 == group2) {
1098 if (unique_id_1 < unique_id_2) return true;
1099 }
1100 #endif
1101
1102 return false;
1103 }
1104
1105 /**
1106 * We need to handle the interactions for atoms who are involved in
1107 * the same rigid body as well as some short range interactions
1108 * (bonds, bends, torsions) differently from other interactions.
1109 * We'll still visit the pairwise routines, but with a flag that
1110 * tells those routines to exclude the pair from direct long range
1111 * interactions. Some indirect interactions (notably reaction
1112 * field) must still be handled for these pairs.
1113 */
1114 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1115
1116 // excludesForAtom was constructed to use row/column indices in the MPI
1117 // version, and to use local IDs in the non-MPI version:
1118
1119 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1120 i != excludesForAtom[atom1].end(); ++i) {
1121 if ( (*i) == atom2 ) return true;
1122 }
1123
1124 return false;
1125 }
1126
1127
1128 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1129 #ifdef IS_MPI
1130 atomRowData.force[atom1] += fg;
1131 #else
1132 snap_->atomData.force[atom1] += fg;
1133 #endif
1134 }
1135
1136 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1137 #ifdef IS_MPI
1138 atomColData.force[atom2] += fg;
1139 #else
1140 snap_->atomData.force[atom2] += fg;
1141 #endif
1142 }
1143
1144 // filling interaction blocks with pointers
1145 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1146 int atom1, int atom2) {
1147
1148 idat.excluded = excludeAtomPair(atom1, atom2);
1149
1150 #ifdef IS_MPI
1151 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1152 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1153 // ff_->getAtomType(identsCol[atom2]) );
1154
1155 if (storageLayout_ & DataStorage::dslAmat) {
1156 idat.A1 = &(atomRowData.aMat[atom1]);
1157 idat.A2 = &(atomColData.aMat[atom2]);
1158 }
1159
1160 if (storageLayout_ & DataStorage::dslTorque) {
1161 idat.t1 = &(atomRowData.torque[atom1]);
1162 idat.t2 = &(atomColData.torque[atom2]);
1163 }
1164
1165 if (storageLayout_ & DataStorage::dslDipole) {
1166 idat.dipole1 = &(atomRowData.dipole[atom1]);
1167 idat.dipole2 = &(atomColData.dipole[atom2]);
1168 }
1169
1170 if (storageLayout_ & DataStorage::dslQuadrupole) {
1171 idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1172 idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1173 }
1174
1175 if (storageLayout_ & DataStorage::dslDensity) {
1176 idat.rho1 = &(atomRowData.density[atom1]);
1177 idat.rho2 = &(atomColData.density[atom2]);
1178 }
1179
1180 if (storageLayout_ & DataStorage::dslFunctional) {
1181 idat.frho1 = &(atomRowData.functional[atom1]);
1182 idat.frho2 = &(atomColData.functional[atom2]);
1183 }
1184
1185 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1186 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1187 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1188 }
1189
1190 if (storageLayout_ & DataStorage::dslParticlePot) {
1191 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1192 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1193 }
1194
1195 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1196 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1197 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1198 }
1199
1200 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1201 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1202 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1203 }
1204
1205 #else
1206
1207 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1208
1209 if (storageLayout_ & DataStorage::dslAmat) {
1210 idat.A1 = &(snap_->atomData.aMat[atom1]);
1211 idat.A2 = &(snap_->atomData.aMat[atom2]);
1212 }
1213
1214 if (storageLayout_ & DataStorage::dslTorque) {
1215 idat.t1 = &(snap_->atomData.torque[atom1]);
1216 idat.t2 = &(snap_->atomData.torque[atom2]);
1217 }
1218
1219 if (storageLayout_ & DataStorage::dslDipole) {
1220 idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1221 idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1222 }
1223
1224 if (storageLayout_ & DataStorage::dslQuadrupole) {
1225 idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1226 idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1227 }
1228
1229 if (storageLayout_ & DataStorage::dslDensity) {
1230 idat.rho1 = &(snap_->atomData.density[atom1]);
1231 idat.rho2 = &(snap_->atomData.density[atom2]);
1232 }
1233
1234 if (storageLayout_ & DataStorage::dslFunctional) {
1235 idat.frho1 = &(snap_->atomData.functional[atom1]);
1236 idat.frho2 = &(snap_->atomData.functional[atom2]);
1237 }
1238
1239 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1240 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1241 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1242 }
1243
1244 if (storageLayout_ & DataStorage::dslParticlePot) {
1245 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1246 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1247 }
1248
1249 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1250 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1251 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1252 }
1253
1254 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1255 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1256 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1257 }
1258
1259 #endif
1260 }
1261
1262
1263 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1264 #ifdef IS_MPI
1265 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1266 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1267 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1268 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1269
1270 atomRowData.force[atom1] += *(idat.f1);
1271 atomColData.force[atom2] -= *(idat.f1);
1272
1273 if (storageLayout_ & DataStorage::dslFlucQForce) {
1274 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1275 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1276 }
1277
1278 if (storageLayout_ & DataStorage::dslElectricField) {
1279 atomRowData.electricField[atom1] += *(idat.eField1);
1280 atomColData.electricField[atom2] += *(idat.eField2);
1281 }
1282
1283 #else
1284 pairwisePot += *(idat.pot);
1285 excludedPot += *(idat.excludedPot);
1286
1287 snap_->atomData.force[atom1] += *(idat.f1);
1288 snap_->atomData.force[atom2] -= *(idat.f1);
1289
1290 if (idat.doParticlePot) {
1291 // This is the pairwise contribution to the particle pot. The
1292 // embedding contribution is added in each of the low level
1293 // non-bonded routines. In parallel, this calculation is done
1294 // in collectData, not in unpackInteractionData.
1295 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1296 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1297 }
1298
1299 if (storageLayout_ & DataStorage::dslFlucQForce) {
1300 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1301 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1302 }
1303
1304 if (storageLayout_ & DataStorage::dslElectricField) {
1305 snap_->atomData.electricField[atom1] += *(idat.eField1);
1306 snap_->atomData.electricField[atom2] += *(idat.eField2);
1307 }
1308
1309 #endif
1310
1311 }
1312
1313 /*
1314 * buildNeighborList
1315 *
1316 * first element of pair is row-indexed CutoffGroup
1317 * second element of pair is column-indexed CutoffGroup
1318 */
1319 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1320
1321 vector<pair<int, int> > neighborList;
1322 groupCutoffs cuts;
1323 bool doAllPairs = false;
1324
1325 RealType rList_ = (largestRcut_ + skinThickness_);
1326 Snapshot* snap_ = sman_->getCurrentSnapshot();
1327 Mat3x3d box;
1328 Mat3x3d invBox;
1329
1330 Vector3d rs, scaled, dr;
1331 Vector3i whichCell;
1332 int cellIndex;
1333
1334 #ifdef IS_MPI
1335 cellListRow_.clear();
1336 cellListCol_.clear();
1337 #else
1338 cellList_.clear();
1339 #endif
1340
1341 if (!usePeriodicBoundaryConditions_) {
1342 box = snap_->getBoundingBox();
1343 invBox = snap_->getInvBoundingBox();
1344 } else {
1345 box = snap_->getHmat();
1346 invBox = snap_->getInvHmat();
1347 }
1348
1349 Vector3d boxX = box.getColumn(0);
1350 Vector3d boxY = box.getColumn(1);
1351 Vector3d boxZ = box.getColumn(2);
1352
1353 nCells_.x() = (int) ( boxX.length() )/ rList_;
1354 nCells_.y() = (int) ( boxY.length() )/ rList_;
1355 nCells_.z() = (int) ( boxZ.length() )/ rList_;
1356
1357 // handle small boxes where the cell offsets can end up repeating cells
1358
1359 if (nCells_.x() < 3) doAllPairs = true;
1360 if (nCells_.y() < 3) doAllPairs = true;
1361 if (nCells_.z() < 3) doAllPairs = true;
1362
1363 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1364
1365 #ifdef IS_MPI
1366 cellListRow_.resize(nCtot);
1367 cellListCol_.resize(nCtot);
1368 #else
1369 cellList_.resize(nCtot);
1370 #endif
1371
1372 if (!doAllPairs) {
1373 #ifdef IS_MPI
1374
1375 for (int i = 0; i < nGroupsInRow_; i++) {
1376 rs = cgRowData.position[i];
1377
1378 // scaled positions relative to the box vectors
1379 scaled = invBox * rs;
1380
1381 // wrap the vector back into the unit box by subtracting integer box
1382 // numbers
1383 for (int j = 0; j < 3; j++) {
1384 scaled[j] -= roundMe(scaled[j]);
1385 scaled[j] += 0.5;
1386 // Handle the special case when an object is exactly on the
1387 // boundary (a scaled coordinate of 1.0 is the same as
1388 // scaled coordinate of 0.0)
1389 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1390 }
1391
1392 // find xyz-indices of cell that cutoffGroup is in.
1393 whichCell.x() = nCells_.x() * scaled.x();
1394 whichCell.y() = nCells_.y() * scaled.y();
1395 whichCell.z() = nCells_.z() * scaled.z();
1396
1397 // find single index of this cell:
1398 cellIndex = Vlinear(whichCell, nCells_);
1399
1400 // add this cutoff group to the list of groups in this cell;
1401 cellListRow_[cellIndex].push_back(i);
1402 }
1403 for (int i = 0; i < nGroupsInCol_; i++) {
1404 rs = cgColData.position[i];
1405
1406 // scaled positions relative to the box vectors
1407 scaled = invBox * rs;
1408
1409 // wrap the vector back into the unit box by subtracting integer box
1410 // numbers
1411 for (int j = 0; j < 3; j++) {
1412 scaled[j] -= roundMe(scaled[j]);
1413 scaled[j] += 0.5;
1414 // Handle the special case when an object is exactly on the
1415 // boundary (a scaled coordinate of 1.0 is the same as
1416 // scaled coordinate of 0.0)
1417 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1418 }
1419
1420 // find xyz-indices of cell that cutoffGroup is in.
1421 whichCell.x() = nCells_.x() * scaled.x();
1422 whichCell.y() = nCells_.y() * scaled.y();
1423 whichCell.z() = nCells_.z() * scaled.z();
1424
1425 // find single index of this cell:
1426 cellIndex = Vlinear(whichCell, nCells_);
1427
1428 // add this cutoff group to the list of groups in this cell;
1429 cellListCol_[cellIndex].push_back(i);
1430 }
1431
1432 #else
1433 for (int i = 0; i < nGroups_; i++) {
1434 rs = snap_->cgData.position[i];
1435
1436 // scaled positions relative to the box vectors
1437 scaled = invBox * rs;
1438
1439 // wrap the vector back into the unit box by subtracting integer box
1440 // numbers
1441 for (int j = 0; j < 3; j++) {
1442 scaled[j] -= roundMe(scaled[j]);
1443 scaled[j] += 0.5;
1444 // Handle the special case when an object is exactly on the
1445 // boundary (a scaled coordinate of 1.0 is the same as
1446 // scaled coordinate of 0.0)
1447 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1448 }
1449
1450 // find xyz-indices of cell that cutoffGroup is in.
1451 whichCell.x() = nCells_.x() * scaled.x();
1452 whichCell.y() = nCells_.y() * scaled.y();
1453 whichCell.z() = nCells_.z() * scaled.z();
1454
1455 // find single index of this cell:
1456 cellIndex = Vlinear(whichCell, nCells_);
1457
1458 // add this cutoff group to the list of groups in this cell;
1459 cellList_[cellIndex].push_back(i);
1460 }
1461
1462 #endif
1463
1464 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1465 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1466 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1467 Vector3i m1v(m1x, m1y, m1z);
1468 int m1 = Vlinear(m1v, nCells_);
1469
1470 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1471 os != cellOffsets_.end(); ++os) {
1472
1473 Vector3i m2v = m1v + (*os);
1474
1475
1476 if (m2v.x() >= nCells_.x()) {
1477 m2v.x() = 0;
1478 } else if (m2v.x() < 0) {
1479 m2v.x() = nCells_.x() - 1;
1480 }
1481
1482 if (m2v.y() >= nCells_.y()) {
1483 m2v.y() = 0;
1484 } else if (m2v.y() < 0) {
1485 m2v.y() = nCells_.y() - 1;
1486 }
1487
1488 if (m2v.z() >= nCells_.z()) {
1489 m2v.z() = 0;
1490 } else if (m2v.z() < 0) {
1491 m2v.z() = nCells_.z() - 1;
1492 }
1493
1494 int m2 = Vlinear (m2v, nCells_);
1495
1496 #ifdef IS_MPI
1497 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1498 j1 != cellListRow_[m1].end(); ++j1) {
1499 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1500 j2 != cellListCol_[m2].end(); ++j2) {
1501
1502 // In parallel, we need to visit *all* pairs of row
1503 // & column indicies and will divide labor in the
1504 // force evaluation later.
1505 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1506 if (usePeriodicBoundaryConditions_) {
1507 snap_->wrapVector(dr);
1508 }
1509 cuts = getGroupCutoffs( (*j1), (*j2) );
1510 if (dr.lengthSquare() < cuts.third) {
1511 neighborList.push_back(make_pair((*j1), (*j2)));
1512 }
1513 }
1514 }
1515 #else
1516 for (vector<int>::iterator j1 = cellList_[m1].begin();
1517 j1 != cellList_[m1].end(); ++j1) {
1518 for (vector<int>::iterator j2 = cellList_[m2].begin();
1519 j2 != cellList_[m2].end(); ++j2) {
1520
1521 // Always do this if we're in different cells or if
1522 // we're in the same cell and the global index of
1523 // the j2 cutoff group is greater than or equal to
1524 // the j1 cutoff group. Note that Rappaport's code
1525 // has a "less than" conditional here, but that
1526 // deals with atom-by-atom computation. OpenMD
1527 // allows atoms within a single cutoff group to
1528 // interact with each other.
1529
1530 if (m2 != m1 || (*j2) >= (*j1) ) {
1531
1532 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1533 if (usePeriodicBoundaryConditions_) {
1534 snap_->wrapVector(dr);
1535 }
1536 cuts = getGroupCutoffs( (*j1), (*j2) );
1537 if (dr.lengthSquare() < cuts.third) {
1538 neighborList.push_back(make_pair((*j1), (*j2)));
1539 }
1540 }
1541 }
1542 }
1543 #endif
1544 }
1545 }
1546 }
1547 }
1548 } else {
1549 // branch to do all cutoff group pairs
1550 #ifdef IS_MPI
1551 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1552 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1553 dr = cgColData.position[j2] - cgRowData.position[j1];
1554 if (usePeriodicBoundaryConditions_) {
1555 snap_->wrapVector(dr);
1556 }
1557 cuts = getGroupCutoffs( j1, j2 );
1558 if (dr.lengthSquare() < cuts.third) {
1559 neighborList.push_back(make_pair(j1, j2));
1560 }
1561 }
1562 }
1563 #else
1564 // include all groups here.
1565 for (int j1 = 0; j1 < nGroups_; j1++) {
1566 // include self group interactions j2 == j1
1567 for (int j2 = j1; j2 < nGroups_; j2++) {
1568 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1569 if (usePeriodicBoundaryConditions_) {
1570 snap_->wrapVector(dr);
1571 }
1572 cuts = getGroupCutoffs( j1, j2 );
1573 if (dr.lengthSquare() < cuts.third) {
1574 neighborList.push_back(make_pair(j1, j2));
1575 }
1576 }
1577 }
1578 #endif
1579 }
1580
1581 // save the local cutoff group positions for the check that is
1582 // done on each loop:
1583 saved_CG_positions_.clear();
1584 for (int i = 0; i < nGroups_; i++)
1585 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1586
1587 return neighborList;
1588 }
1589 } //end namespace OpenMD