1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
#include "math/SquareMatrix3.hpp" |
44 |
#include "nonbonded/NonBondedInteraction.hpp" |
45 |
#include "brains/SnapshotManager.hpp" |
46 |
#include "brains/PairList.hpp" |
47 |
|
48 |
using namespace std; |
49 |
namespace OpenMD { |
50 |
|
51 |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
52 |
|
53 |
// In a parallel computation, row and colum scans must visit all |
54 |
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
// are used when the processor can see all pairs) |
56 |
#ifdef IS_MPI |
57 |
cellOffsets_.clear(); |
58 |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
64 |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
#endif |
86 |
} |
87 |
|
88 |
|
89 |
/** |
90 |
* distributeInitialData is essentially a copy of the older fortran |
91 |
* SimulationSetup |
92 |
*/ |
93 |
void ForceMatrixDecomposition::distributeInitialData() { |
94 |
snap_ = sman_->getCurrentSnapshot(); |
95 |
storageLayout_ = sman_->getStorageLayout(); |
96 |
ff_ = info_->getForceField(); |
97 |
nLocal_ = snap_->getNumberOfAtoms(); |
98 |
|
99 |
nGroups_ = info_->getNLocalCutoffGroups(); |
100 |
// gather the information for atomtype IDs (atids): |
101 |
idents = info_->getIdentArray(); |
102 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
103 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
104 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
105 |
|
106 |
massFactors = info_->getMassFactors(); |
107 |
|
108 |
PairList* excludes = info_->getExcludedInteractions(); |
109 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
110 |
PairList* oneThree = info_->getOneThreeInteractions(); |
111 |
PairList* oneFour = info_->getOneFourInteractions(); |
112 |
|
113 |
if (needVelocities_) |
114 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
115 |
DataStorage::dslVelocity); |
116 |
else |
117 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
118 |
|
119 |
#ifdef IS_MPI |
120 |
|
121 |
MPI::Intracomm row = rowComm.getComm(); |
122 |
MPI::Intracomm col = colComm.getComm(); |
123 |
|
124 |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
125 |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
126 |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
127 |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
128 |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
129 |
|
130 |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
131 |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
132 |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
133 |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
134 |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
135 |
|
136 |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
137 |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
138 |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
139 |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
140 |
|
141 |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
142 |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
143 |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
144 |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
145 |
|
146 |
// Modify the data storage objects with the correct layouts and sizes: |
147 |
atomRowData.resize(nAtomsInRow_); |
148 |
atomRowData.setStorageLayout(storageLayout_); |
149 |
atomColData.resize(nAtomsInCol_); |
150 |
atomColData.setStorageLayout(storageLayout_); |
151 |
cgRowData.resize(nGroupsInRow_); |
152 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
153 |
cgColData.resize(nGroupsInCol_); |
154 |
if (needVelocities_) |
155 |
// we only need column velocities if we need them. |
156 |
cgColData.setStorageLayout(DataStorage::dslPosition | |
157 |
DataStorage::dslVelocity); |
158 |
else |
159 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
160 |
|
161 |
identsRow.resize(nAtomsInRow_); |
162 |
identsCol.resize(nAtomsInCol_); |
163 |
|
164 |
AtomPlanIntRow->gather(idents, identsRow); |
165 |
AtomPlanIntColumn->gather(idents, identsCol); |
166 |
|
167 |
// allocate memory for the parallel objects |
168 |
atypesRow.resize(nAtomsInRow_); |
169 |
atypesCol.resize(nAtomsInCol_); |
170 |
|
171 |
for (int i = 0; i < nAtomsInRow_; i++) |
172 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
173 |
for (int i = 0; i < nAtomsInCol_; i++) |
174 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
175 |
|
176 |
pot_row.resize(nAtomsInRow_); |
177 |
pot_col.resize(nAtomsInCol_); |
178 |
|
179 |
expot_row.resize(nAtomsInRow_); |
180 |
expot_col.resize(nAtomsInCol_); |
181 |
|
182 |
AtomRowToGlobal.resize(nAtomsInRow_); |
183 |
AtomColToGlobal.resize(nAtomsInCol_); |
184 |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
185 |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
186 |
|
187 |
cgRowToGlobal.resize(nGroupsInRow_); |
188 |
cgColToGlobal.resize(nGroupsInCol_); |
189 |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
190 |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
191 |
|
192 |
massFactorsRow.resize(nAtomsInRow_); |
193 |
massFactorsCol.resize(nAtomsInCol_); |
194 |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
195 |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
196 |
|
197 |
groupListRow_.clear(); |
198 |
groupListRow_.resize(nGroupsInRow_); |
199 |
for (int i = 0; i < nGroupsInRow_; i++) { |
200 |
int gid = cgRowToGlobal[i]; |
201 |
for (int j = 0; j < nAtomsInRow_; j++) { |
202 |
int aid = AtomRowToGlobal[j]; |
203 |
if (globalGroupMembership[aid] == gid) |
204 |
groupListRow_[i].push_back(j); |
205 |
} |
206 |
} |
207 |
|
208 |
groupListCol_.clear(); |
209 |
groupListCol_.resize(nGroupsInCol_); |
210 |
for (int i = 0; i < nGroupsInCol_; i++) { |
211 |
int gid = cgColToGlobal[i]; |
212 |
for (int j = 0; j < nAtomsInCol_; j++) { |
213 |
int aid = AtomColToGlobal[j]; |
214 |
if (globalGroupMembership[aid] == gid) |
215 |
groupListCol_[i].push_back(j); |
216 |
} |
217 |
} |
218 |
|
219 |
excludesForAtom.clear(); |
220 |
excludesForAtom.resize(nAtomsInRow_); |
221 |
toposForAtom.clear(); |
222 |
toposForAtom.resize(nAtomsInRow_); |
223 |
topoDist.clear(); |
224 |
topoDist.resize(nAtomsInRow_); |
225 |
for (int i = 0; i < nAtomsInRow_; i++) { |
226 |
int iglob = AtomRowToGlobal[i]; |
227 |
|
228 |
for (int j = 0; j < nAtomsInCol_; j++) { |
229 |
int jglob = AtomColToGlobal[j]; |
230 |
|
231 |
if (excludes->hasPair(iglob, jglob)) |
232 |
excludesForAtom[i].push_back(j); |
233 |
|
234 |
if (oneTwo->hasPair(iglob, jglob)) { |
235 |
toposForAtom[i].push_back(j); |
236 |
topoDist[i].push_back(1); |
237 |
} else { |
238 |
if (oneThree->hasPair(iglob, jglob)) { |
239 |
toposForAtom[i].push_back(j); |
240 |
topoDist[i].push_back(2); |
241 |
} else { |
242 |
if (oneFour->hasPair(iglob, jglob)) { |
243 |
toposForAtom[i].push_back(j); |
244 |
topoDist[i].push_back(3); |
245 |
} |
246 |
} |
247 |
} |
248 |
} |
249 |
} |
250 |
|
251 |
#else |
252 |
excludesForAtom.clear(); |
253 |
excludesForAtom.resize(nLocal_); |
254 |
toposForAtom.clear(); |
255 |
toposForAtom.resize(nLocal_); |
256 |
topoDist.clear(); |
257 |
topoDist.resize(nLocal_); |
258 |
|
259 |
for (int i = 0; i < nLocal_; i++) { |
260 |
int iglob = AtomLocalToGlobal[i]; |
261 |
|
262 |
for (int j = 0; j < nLocal_; j++) { |
263 |
int jglob = AtomLocalToGlobal[j]; |
264 |
|
265 |
if (excludes->hasPair(iglob, jglob)) |
266 |
excludesForAtom[i].push_back(j); |
267 |
|
268 |
if (oneTwo->hasPair(iglob, jglob)) { |
269 |
toposForAtom[i].push_back(j); |
270 |
topoDist[i].push_back(1); |
271 |
} else { |
272 |
if (oneThree->hasPair(iglob, jglob)) { |
273 |
toposForAtom[i].push_back(j); |
274 |
topoDist[i].push_back(2); |
275 |
} else { |
276 |
if (oneFour->hasPair(iglob, jglob)) { |
277 |
toposForAtom[i].push_back(j); |
278 |
topoDist[i].push_back(3); |
279 |
} |
280 |
} |
281 |
} |
282 |
} |
283 |
} |
284 |
#endif |
285 |
|
286 |
// allocate memory for the parallel objects |
287 |
atypesLocal.resize(nLocal_); |
288 |
|
289 |
for (int i = 0; i < nLocal_; i++) |
290 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
291 |
|
292 |
groupList_.clear(); |
293 |
groupList_.resize(nGroups_); |
294 |
for (int i = 0; i < nGroups_; i++) { |
295 |
int gid = cgLocalToGlobal[i]; |
296 |
for (int j = 0; j < nLocal_; j++) { |
297 |
int aid = AtomLocalToGlobal[j]; |
298 |
if (globalGroupMembership[aid] == gid) { |
299 |
groupList_[i].push_back(j); |
300 |
} |
301 |
} |
302 |
} |
303 |
|
304 |
|
305 |
createGtypeCutoffMap(); |
306 |
|
307 |
} |
308 |
|
309 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
310 |
|
311 |
RealType tol = 1e-6; |
312 |
largestRcut_ = 0.0; |
313 |
int atid; |
314 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
315 |
|
316 |
map<int, RealType> atypeCutoff; |
317 |
|
318 |
for (set<AtomType*>::iterator at = atypes.begin(); |
319 |
at != atypes.end(); ++at){ |
320 |
atid = (*at)->getIdent(); |
321 |
if (userChoseCutoff_) |
322 |
atypeCutoff[atid] = userCutoff_; |
323 |
else |
324 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
325 |
} |
326 |
|
327 |
vector<RealType> gTypeCutoffs; |
328 |
// first we do a single loop over the cutoff groups to find the |
329 |
// largest cutoff for any atypes present in this group. |
330 |
#ifdef IS_MPI |
331 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
332 |
groupRowToGtype.resize(nGroupsInRow_); |
333 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
334 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
335 |
for (vector<int>::iterator ia = atomListRow.begin(); |
336 |
ia != atomListRow.end(); ++ia) { |
337 |
int atom1 = (*ia); |
338 |
atid = identsRow[atom1]; |
339 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
340 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
341 |
} |
342 |
} |
343 |
|
344 |
bool gTypeFound = false; |
345 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
346 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
347 |
groupRowToGtype[cg1] = gt; |
348 |
gTypeFound = true; |
349 |
} |
350 |
} |
351 |
if (!gTypeFound) { |
352 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
353 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
354 |
} |
355 |
|
356 |
} |
357 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
358 |
groupColToGtype.resize(nGroupsInCol_); |
359 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
360 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
361 |
for (vector<int>::iterator jb = atomListCol.begin(); |
362 |
jb != atomListCol.end(); ++jb) { |
363 |
int atom2 = (*jb); |
364 |
atid = identsCol[atom2]; |
365 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
366 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
367 |
} |
368 |
} |
369 |
bool gTypeFound = false; |
370 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
371 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
372 |
groupColToGtype[cg2] = gt; |
373 |
gTypeFound = true; |
374 |
} |
375 |
} |
376 |
if (!gTypeFound) { |
377 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
378 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
379 |
} |
380 |
} |
381 |
#else |
382 |
|
383 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
384 |
groupToGtype.resize(nGroups_); |
385 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
386 |
groupCutoff[cg1] = 0.0; |
387 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
388 |
for (vector<int>::iterator ia = atomList.begin(); |
389 |
ia != atomList.end(); ++ia) { |
390 |
int atom1 = (*ia); |
391 |
atid = idents[atom1]; |
392 |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
393 |
groupCutoff[cg1] = atypeCutoff[atid]; |
394 |
} |
395 |
|
396 |
bool gTypeFound = false; |
397 |
for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
398 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
399 |
groupToGtype[cg1] = gt; |
400 |
gTypeFound = true; |
401 |
} |
402 |
} |
403 |
if (!gTypeFound) { |
404 |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
405 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
406 |
} |
407 |
} |
408 |
#endif |
409 |
|
410 |
// Now we find the maximum group cutoff value present in the simulation |
411 |
|
412 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
413 |
gTypeCutoffs.end()); |
414 |
|
415 |
#ifdef IS_MPI |
416 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
417 |
MPI::MAX); |
418 |
#endif |
419 |
|
420 |
RealType tradRcut = groupMax; |
421 |
|
422 |
for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) { |
423 |
for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) { |
424 |
RealType thisRcut; |
425 |
switch(cutoffPolicy_) { |
426 |
case TRADITIONAL: |
427 |
thisRcut = tradRcut; |
428 |
break; |
429 |
case MIX: |
430 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
431 |
break; |
432 |
case MAX: |
433 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
434 |
break; |
435 |
default: |
436 |
sprintf(painCave.errMsg, |
437 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
438 |
"hit an unknown cutoff policy!\n"); |
439 |
painCave.severity = OPENMD_ERROR; |
440 |
painCave.isFatal = 1; |
441 |
simError(); |
442 |
break; |
443 |
} |
444 |
|
445 |
pair<int,int> key = make_pair(i,j); |
446 |
gTypeCutoffMap[key].first = thisRcut; |
447 |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
448 |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
449 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
450 |
// sanity check |
451 |
|
452 |
if (userChoseCutoff_) { |
453 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
454 |
sprintf(painCave.errMsg, |
455 |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
456 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
457 |
painCave.severity = OPENMD_ERROR; |
458 |
painCave.isFatal = 1; |
459 |
simError(); |
460 |
} |
461 |
} |
462 |
} |
463 |
} |
464 |
} |
465 |
|
466 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
467 |
int i, j; |
468 |
#ifdef IS_MPI |
469 |
i = groupRowToGtype[cg1]; |
470 |
j = groupColToGtype[cg2]; |
471 |
#else |
472 |
i = groupToGtype[cg1]; |
473 |
j = groupToGtype[cg2]; |
474 |
#endif |
475 |
return gTypeCutoffMap[make_pair(i,j)]; |
476 |
} |
477 |
|
478 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
479 |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
480 |
if (toposForAtom[atom1][j] == atom2) |
481 |
return topoDist[atom1][j]; |
482 |
} |
483 |
return 0; |
484 |
} |
485 |
|
486 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
487 |
pairwisePot = 0.0; |
488 |
embeddingPot = 0.0; |
489 |
excludedPot = 0.0; |
490 |
excludedSelfPot = 0.0; |
491 |
|
492 |
#ifdef IS_MPI |
493 |
if (storageLayout_ & DataStorage::dslForce) { |
494 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
495 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
496 |
} |
497 |
|
498 |
if (storageLayout_ & DataStorage::dslTorque) { |
499 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
500 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
501 |
} |
502 |
|
503 |
fill(pot_row.begin(), pot_row.end(), |
504 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
505 |
|
506 |
fill(pot_col.begin(), pot_col.end(), |
507 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
508 |
|
509 |
fill(expot_row.begin(), expot_row.end(), |
510 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
511 |
|
512 |
fill(expot_col.begin(), expot_col.end(), |
513 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
514 |
|
515 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
516 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
517 |
0.0); |
518 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
519 |
0.0); |
520 |
} |
521 |
|
522 |
if (storageLayout_ & DataStorage::dslDensity) { |
523 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
524 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
525 |
} |
526 |
|
527 |
if (storageLayout_ & DataStorage::dslFunctional) { |
528 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
529 |
0.0); |
530 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
531 |
0.0); |
532 |
} |
533 |
|
534 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
535 |
fill(atomRowData.functionalDerivative.begin(), |
536 |
atomRowData.functionalDerivative.end(), 0.0); |
537 |
fill(atomColData.functionalDerivative.begin(), |
538 |
atomColData.functionalDerivative.end(), 0.0); |
539 |
} |
540 |
|
541 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
542 |
fill(atomRowData.skippedCharge.begin(), |
543 |
atomRowData.skippedCharge.end(), 0.0); |
544 |
fill(atomColData.skippedCharge.begin(), |
545 |
atomColData.skippedCharge.end(), 0.0); |
546 |
} |
547 |
|
548 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
549 |
fill(atomRowData.flucQFrc.begin(), |
550 |
atomRowData.flucQFrc.end(), 0.0); |
551 |
fill(atomColData.flucQFrc.begin(), |
552 |
atomColData.flucQFrc.end(), 0.0); |
553 |
} |
554 |
|
555 |
if (storageLayout_ & DataStorage::dslElectricField) { |
556 |
fill(atomRowData.electricField.begin(), |
557 |
atomRowData.electricField.end(), V3Zero); |
558 |
fill(atomColData.electricField.begin(), |
559 |
atomColData.electricField.end(), V3Zero); |
560 |
} |
561 |
|
562 |
#endif |
563 |
// even in parallel, we need to zero out the local arrays: |
564 |
|
565 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
566 |
fill(snap_->atomData.particlePot.begin(), |
567 |
snap_->atomData.particlePot.end(), 0.0); |
568 |
} |
569 |
|
570 |
if (storageLayout_ & DataStorage::dslDensity) { |
571 |
fill(snap_->atomData.density.begin(), |
572 |
snap_->atomData.density.end(), 0.0); |
573 |
} |
574 |
|
575 |
if (storageLayout_ & DataStorage::dslFunctional) { |
576 |
fill(snap_->atomData.functional.begin(), |
577 |
snap_->atomData.functional.end(), 0.0); |
578 |
} |
579 |
|
580 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
581 |
fill(snap_->atomData.functionalDerivative.begin(), |
582 |
snap_->atomData.functionalDerivative.end(), 0.0); |
583 |
} |
584 |
|
585 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
586 |
fill(snap_->atomData.skippedCharge.begin(), |
587 |
snap_->atomData.skippedCharge.end(), 0.0); |
588 |
} |
589 |
|
590 |
if (storageLayout_ & DataStorage::dslElectricField) { |
591 |
fill(snap_->atomData.electricField.begin(), |
592 |
snap_->atomData.electricField.end(), V3Zero); |
593 |
} |
594 |
} |
595 |
|
596 |
|
597 |
void ForceMatrixDecomposition::distributeData() { |
598 |
snap_ = sman_->getCurrentSnapshot(); |
599 |
storageLayout_ = sman_->getStorageLayout(); |
600 |
#ifdef IS_MPI |
601 |
|
602 |
// gather up the atomic positions |
603 |
AtomPlanVectorRow->gather(snap_->atomData.position, |
604 |
atomRowData.position); |
605 |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
606 |
atomColData.position); |
607 |
|
608 |
// gather up the cutoff group positions |
609 |
|
610 |
cgPlanVectorRow->gather(snap_->cgData.position, |
611 |
cgRowData.position); |
612 |
|
613 |
cgPlanVectorColumn->gather(snap_->cgData.position, |
614 |
cgColData.position); |
615 |
|
616 |
|
617 |
|
618 |
if (needVelocities_) { |
619 |
// gather up the atomic velocities |
620 |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
621 |
atomColData.velocity); |
622 |
|
623 |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
624 |
cgColData.velocity); |
625 |
} |
626 |
|
627 |
|
628 |
// if needed, gather the atomic rotation matrices |
629 |
if (storageLayout_ & DataStorage::dslAmat) { |
630 |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
631 |
atomRowData.aMat); |
632 |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
633 |
atomColData.aMat); |
634 |
} |
635 |
|
636 |
// if needed, gather the atomic eletrostatic information |
637 |
if (storageLayout_ & DataStorage::dslDipole) { |
638 |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
639 |
atomRowData.dipole); |
640 |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
641 |
atomColData.dipole); |
642 |
} |
643 |
|
644 |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
645 |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
646 |
atomRowData.quadrupole); |
647 |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
648 |
atomColData.quadrupole); |
649 |
} |
650 |
|
651 |
// if needed, gather the atomic fluctuating charge values |
652 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
653 |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
654 |
atomRowData.flucQPos); |
655 |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
656 |
atomColData.flucQPos); |
657 |
} |
658 |
|
659 |
#endif |
660 |
} |
661 |
|
662 |
/* collects information obtained during the pre-pair loop onto local |
663 |
* data structures. |
664 |
*/ |
665 |
void ForceMatrixDecomposition::collectIntermediateData() { |
666 |
snap_ = sman_->getCurrentSnapshot(); |
667 |
storageLayout_ = sman_->getStorageLayout(); |
668 |
#ifdef IS_MPI |
669 |
|
670 |
if (storageLayout_ & DataStorage::dslDensity) { |
671 |
|
672 |
AtomPlanRealRow->scatter(atomRowData.density, |
673 |
snap_->atomData.density); |
674 |
|
675 |
int n = snap_->atomData.density.size(); |
676 |
vector<RealType> rho_tmp(n, 0.0); |
677 |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
678 |
for (int i = 0; i < n; i++) |
679 |
snap_->atomData.density[i] += rho_tmp[i]; |
680 |
} |
681 |
|
682 |
// this isn't necessary if we don't have polarizable atoms, but |
683 |
// we'll leave it here for now. |
684 |
if (storageLayout_ & DataStorage::dslElectricField) { |
685 |
|
686 |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
687 |
snap_->atomData.electricField); |
688 |
|
689 |
int n = snap_->atomData.electricField.size(); |
690 |
vector<Vector3d> field_tmp(n, V3Zero); |
691 |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
692 |
field_tmp); |
693 |
for (int i = 0; i < n; i++) |
694 |
snap_->atomData.electricField[i] += field_tmp[i]; |
695 |
} |
696 |
#endif |
697 |
} |
698 |
|
699 |
/* |
700 |
* redistributes information obtained during the pre-pair loop out to |
701 |
* row and column-indexed data structures |
702 |
*/ |
703 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
704 |
snap_ = sman_->getCurrentSnapshot(); |
705 |
storageLayout_ = sman_->getStorageLayout(); |
706 |
#ifdef IS_MPI |
707 |
if (storageLayout_ & DataStorage::dslFunctional) { |
708 |
AtomPlanRealRow->gather(snap_->atomData.functional, |
709 |
atomRowData.functional); |
710 |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
711 |
atomColData.functional); |
712 |
} |
713 |
|
714 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
715 |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
716 |
atomRowData.functionalDerivative); |
717 |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
718 |
atomColData.functionalDerivative); |
719 |
} |
720 |
#endif |
721 |
} |
722 |
|
723 |
|
724 |
void ForceMatrixDecomposition::collectData() { |
725 |
snap_ = sman_->getCurrentSnapshot(); |
726 |
storageLayout_ = sman_->getStorageLayout(); |
727 |
#ifdef IS_MPI |
728 |
int n = snap_->atomData.force.size(); |
729 |
vector<Vector3d> frc_tmp(n, V3Zero); |
730 |
|
731 |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
732 |
for (int i = 0; i < n; i++) { |
733 |
snap_->atomData.force[i] += frc_tmp[i]; |
734 |
frc_tmp[i] = 0.0; |
735 |
} |
736 |
|
737 |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
738 |
for (int i = 0; i < n; i++) { |
739 |
snap_->atomData.force[i] += frc_tmp[i]; |
740 |
} |
741 |
|
742 |
if (storageLayout_ & DataStorage::dslTorque) { |
743 |
|
744 |
int nt = snap_->atomData.torque.size(); |
745 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
746 |
|
747 |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
748 |
for (int i = 0; i < nt; i++) { |
749 |
snap_->atomData.torque[i] += trq_tmp[i]; |
750 |
trq_tmp[i] = 0.0; |
751 |
} |
752 |
|
753 |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
754 |
for (int i = 0; i < nt; i++) |
755 |
snap_->atomData.torque[i] += trq_tmp[i]; |
756 |
} |
757 |
|
758 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
759 |
|
760 |
int ns = snap_->atomData.skippedCharge.size(); |
761 |
vector<RealType> skch_tmp(ns, 0.0); |
762 |
|
763 |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
764 |
for (int i = 0; i < ns; i++) { |
765 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
766 |
skch_tmp[i] = 0.0; |
767 |
} |
768 |
|
769 |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
770 |
for (int i = 0; i < ns; i++) |
771 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
772 |
|
773 |
} |
774 |
|
775 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
776 |
|
777 |
int nq = snap_->atomData.flucQFrc.size(); |
778 |
vector<RealType> fqfrc_tmp(nq, 0.0); |
779 |
|
780 |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
781 |
for (int i = 0; i < nq; i++) { |
782 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
783 |
fqfrc_tmp[i] = 0.0; |
784 |
} |
785 |
|
786 |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
787 |
for (int i = 0; i < nq; i++) |
788 |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
789 |
|
790 |
} |
791 |
|
792 |
if (storageLayout_ & DataStorage::dslElectricField) { |
793 |
|
794 |
int nef = snap_->atomData.electricField.size(); |
795 |
vector<Vector3d> efield_tmp(nef, V3Zero); |
796 |
|
797 |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
798 |
for (int i = 0; i < nef; i++) { |
799 |
snap_->atomData.electricField[i] += efield_tmp[i]; |
800 |
efield_tmp[i] = 0.0; |
801 |
} |
802 |
|
803 |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
804 |
for (int i = 0; i < nef; i++) |
805 |
snap_->atomData.electricField[i] += efield_tmp[i]; |
806 |
} |
807 |
|
808 |
|
809 |
nLocal_ = snap_->getNumberOfAtoms(); |
810 |
|
811 |
vector<potVec> pot_temp(nLocal_, |
812 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
813 |
vector<potVec> expot_temp(nLocal_, |
814 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
815 |
|
816 |
// scatter/gather pot_row into the members of my column |
817 |
|
818 |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
819 |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
820 |
|
821 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
822 |
pairwisePot += pot_temp[ii]; |
823 |
|
824 |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
825 |
excludedPot += expot_temp[ii]; |
826 |
|
827 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
828 |
// This is the pairwise contribution to the particle pot. The |
829 |
// embedding contribution is added in each of the low level |
830 |
// non-bonded routines. In single processor, this is done in |
831 |
// unpackInteractionData, not in collectData. |
832 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
833 |
for (int i = 0; i < nLocal_; i++) { |
834 |
// factor of two is because the total potential terms are divided |
835 |
// by 2 in parallel due to row/ column scatter |
836 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
837 |
} |
838 |
} |
839 |
} |
840 |
|
841 |
fill(pot_temp.begin(), pot_temp.end(), |
842 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
843 |
fill(expot_temp.begin(), expot_temp.end(), |
844 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
845 |
|
846 |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
847 |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
848 |
|
849 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
850 |
pairwisePot += pot_temp[ii]; |
851 |
|
852 |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
853 |
excludedPot += expot_temp[ii]; |
854 |
|
855 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
856 |
// This is the pairwise contribution to the particle pot. The |
857 |
// embedding contribution is added in each of the low level |
858 |
// non-bonded routines. In single processor, this is done in |
859 |
// unpackInteractionData, not in collectData. |
860 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
861 |
for (int i = 0; i < nLocal_; i++) { |
862 |
// factor of two is because the total potential terms are divided |
863 |
// by 2 in parallel due to row/ column scatter |
864 |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
865 |
} |
866 |
} |
867 |
} |
868 |
|
869 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
870 |
int npp = snap_->atomData.particlePot.size(); |
871 |
vector<RealType> ppot_temp(npp, 0.0); |
872 |
|
873 |
// This is the direct or embedding contribution to the particle |
874 |
// pot. |
875 |
|
876 |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
877 |
for (int i = 0; i < npp; i++) { |
878 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
879 |
} |
880 |
|
881 |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
882 |
|
883 |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
884 |
for (int i = 0; i < npp; i++) { |
885 |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
886 |
} |
887 |
} |
888 |
|
889 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
890 |
RealType ploc1 = pairwisePot[ii]; |
891 |
RealType ploc2 = 0.0; |
892 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
893 |
pairwisePot[ii] = ploc2; |
894 |
} |
895 |
|
896 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
897 |
RealType ploc1 = excludedPot[ii]; |
898 |
RealType ploc2 = 0.0; |
899 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
900 |
excludedPot[ii] = ploc2; |
901 |
} |
902 |
|
903 |
// Here be dragons. |
904 |
MPI::Intracomm col = colComm.getComm(); |
905 |
|
906 |
col.Allreduce(MPI::IN_PLACE, |
907 |
&snap_->frameData.conductiveHeatFlux[0], 3, |
908 |
MPI::REALTYPE, MPI::SUM); |
909 |
|
910 |
|
911 |
#endif |
912 |
|
913 |
} |
914 |
|
915 |
/** |
916 |
* Collects information obtained during the post-pair (and embedding |
917 |
* functional) loops onto local data structures. |
918 |
*/ |
919 |
void ForceMatrixDecomposition::collectSelfData() { |
920 |
snap_ = sman_->getCurrentSnapshot(); |
921 |
storageLayout_ = sman_->getStorageLayout(); |
922 |
|
923 |
#ifdef IS_MPI |
924 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
925 |
RealType ploc1 = embeddingPot[ii]; |
926 |
RealType ploc2 = 0.0; |
927 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
928 |
embeddingPot[ii] = ploc2; |
929 |
} |
930 |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
931 |
RealType ploc1 = excludedSelfPot[ii]; |
932 |
RealType ploc2 = 0.0; |
933 |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
934 |
excludedSelfPot[ii] = ploc2; |
935 |
} |
936 |
#endif |
937 |
|
938 |
} |
939 |
|
940 |
|
941 |
|
942 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
943 |
#ifdef IS_MPI |
944 |
return nAtomsInRow_; |
945 |
#else |
946 |
return nLocal_; |
947 |
#endif |
948 |
} |
949 |
|
950 |
/** |
951 |
* returns the list of atoms belonging to this group. |
952 |
*/ |
953 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
954 |
#ifdef IS_MPI |
955 |
return groupListRow_[cg1]; |
956 |
#else |
957 |
return groupList_[cg1]; |
958 |
#endif |
959 |
} |
960 |
|
961 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
962 |
#ifdef IS_MPI |
963 |
return groupListCol_[cg2]; |
964 |
#else |
965 |
return groupList_[cg2]; |
966 |
#endif |
967 |
} |
968 |
|
969 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
970 |
Vector3d d; |
971 |
|
972 |
#ifdef IS_MPI |
973 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
974 |
#else |
975 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
976 |
#endif |
977 |
|
978 |
snap_->wrapVector(d); |
979 |
return d; |
980 |
} |
981 |
|
982 |
Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
983 |
#ifdef IS_MPI |
984 |
return cgColData.velocity[cg2]; |
985 |
#else |
986 |
return snap_->cgData.velocity[cg2]; |
987 |
#endif |
988 |
} |
989 |
|
990 |
Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
991 |
#ifdef IS_MPI |
992 |
return atomColData.velocity[atom2]; |
993 |
#else |
994 |
return snap_->atomData.velocity[atom2]; |
995 |
#endif |
996 |
} |
997 |
|
998 |
|
999 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
1000 |
|
1001 |
Vector3d d; |
1002 |
|
1003 |
#ifdef IS_MPI |
1004 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
1005 |
#else |
1006 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
1007 |
#endif |
1008 |
|
1009 |
snap_->wrapVector(d); |
1010 |
return d; |
1011 |
} |
1012 |
|
1013 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
1014 |
Vector3d d; |
1015 |
|
1016 |
#ifdef IS_MPI |
1017 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
1018 |
#else |
1019 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
1020 |
#endif |
1021 |
|
1022 |
snap_->wrapVector(d); |
1023 |
return d; |
1024 |
} |
1025 |
|
1026 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
1027 |
#ifdef IS_MPI |
1028 |
return massFactorsRow[atom1]; |
1029 |
#else |
1030 |
return massFactors[atom1]; |
1031 |
#endif |
1032 |
} |
1033 |
|
1034 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
1035 |
#ifdef IS_MPI |
1036 |
return massFactorsCol[atom2]; |
1037 |
#else |
1038 |
return massFactors[atom2]; |
1039 |
#endif |
1040 |
|
1041 |
} |
1042 |
|
1043 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
1044 |
Vector3d d; |
1045 |
|
1046 |
#ifdef IS_MPI |
1047 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
1048 |
#else |
1049 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
1050 |
#endif |
1051 |
|
1052 |
snap_->wrapVector(d); |
1053 |
return d; |
1054 |
} |
1055 |
|
1056 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
1057 |
return excludesForAtom[atom1]; |
1058 |
} |
1059 |
|
1060 |
/** |
1061 |
* We need to exclude some overcounted interactions that result from |
1062 |
* the parallel decomposition. |
1063 |
*/ |
1064 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
1065 |
int unique_id_1, unique_id_2; |
1066 |
|
1067 |
#ifdef IS_MPI |
1068 |
// in MPI, we have to look up the unique IDs for each atom |
1069 |
unique_id_1 = AtomRowToGlobal[atom1]; |
1070 |
unique_id_2 = AtomColToGlobal[atom2]; |
1071 |
// group1 = cgRowToGlobal[cg1]; |
1072 |
// group2 = cgColToGlobal[cg2]; |
1073 |
#else |
1074 |
unique_id_1 = AtomLocalToGlobal[atom1]; |
1075 |
unique_id_2 = AtomLocalToGlobal[atom2]; |
1076 |
int group1 = cgLocalToGlobal[cg1]; |
1077 |
int group2 = cgLocalToGlobal[cg2]; |
1078 |
#endif |
1079 |
|
1080 |
if (unique_id_1 == unique_id_2) return true; |
1081 |
|
1082 |
#ifdef IS_MPI |
1083 |
// this prevents us from doing the pair on multiple processors |
1084 |
if (unique_id_1 < unique_id_2) { |
1085 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
1086 |
} else { |
1087 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
1088 |
} |
1089 |
#endif |
1090 |
|
1091 |
#ifndef IS_MPI |
1092 |
if (group1 == group2) { |
1093 |
if (unique_id_1 < unique_id_2) return true; |
1094 |
} |
1095 |
#endif |
1096 |
|
1097 |
return false; |
1098 |
} |
1099 |
|
1100 |
/** |
1101 |
* We need to handle the interactions for atoms who are involved in |
1102 |
* the same rigid body as well as some short range interactions |
1103 |
* (bonds, bends, torsions) differently from other interactions. |
1104 |
* We'll still visit the pairwise routines, but with a flag that |
1105 |
* tells those routines to exclude the pair from direct long range |
1106 |
* interactions. Some indirect interactions (notably reaction |
1107 |
* field) must still be handled for these pairs. |
1108 |
*/ |
1109 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
1110 |
|
1111 |
// excludesForAtom was constructed to use row/column indices in the MPI |
1112 |
// version, and to use local IDs in the non-MPI version: |
1113 |
|
1114 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
1115 |
i != excludesForAtom[atom1].end(); ++i) { |
1116 |
if ( (*i) == atom2 ) return true; |
1117 |
} |
1118 |
|
1119 |
return false; |
1120 |
} |
1121 |
|
1122 |
|
1123 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
1124 |
#ifdef IS_MPI |
1125 |
atomRowData.force[atom1] += fg; |
1126 |
#else |
1127 |
snap_->atomData.force[atom1] += fg; |
1128 |
#endif |
1129 |
} |
1130 |
|
1131 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
1132 |
#ifdef IS_MPI |
1133 |
atomColData.force[atom2] += fg; |
1134 |
#else |
1135 |
snap_->atomData.force[atom2] += fg; |
1136 |
#endif |
1137 |
} |
1138 |
|
1139 |
// filling interaction blocks with pointers |
1140 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
1141 |
int atom1, int atom2) { |
1142 |
|
1143 |
idat.excluded = excludeAtomPair(atom1, atom2); |
1144 |
|
1145 |
#ifdef IS_MPI |
1146 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1147 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1148 |
// ff_->getAtomType(identsCol[atom2]) ); |
1149 |
|
1150 |
if (storageLayout_ & DataStorage::dslAmat) { |
1151 |
idat.A1 = &(atomRowData.aMat[atom1]); |
1152 |
idat.A2 = &(atomColData.aMat[atom2]); |
1153 |
} |
1154 |
|
1155 |
if (storageLayout_ & DataStorage::dslTorque) { |
1156 |
idat.t1 = &(atomRowData.torque[atom1]); |
1157 |
idat.t2 = &(atomColData.torque[atom2]); |
1158 |
} |
1159 |
|
1160 |
if (storageLayout_ & DataStorage::dslDipole) { |
1161 |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
1162 |
idat.dipole2 = &(atomColData.dipole[atom2]); |
1163 |
} |
1164 |
|
1165 |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1166 |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
1167 |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
1168 |
} |
1169 |
|
1170 |
if (storageLayout_ & DataStorage::dslDensity) { |
1171 |
idat.rho1 = &(atomRowData.density[atom1]); |
1172 |
idat.rho2 = &(atomColData.density[atom2]); |
1173 |
} |
1174 |
|
1175 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1176 |
idat.frho1 = &(atomRowData.functional[atom1]); |
1177 |
idat.frho2 = &(atomColData.functional[atom2]); |
1178 |
} |
1179 |
|
1180 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1181 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1182 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1183 |
} |
1184 |
|
1185 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1186 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1187 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1188 |
} |
1189 |
|
1190 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1191 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1192 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1193 |
} |
1194 |
|
1195 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1196 |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
1197 |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
1198 |
} |
1199 |
|
1200 |
#else |
1201 |
|
1202 |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1203 |
|
1204 |
if (storageLayout_ & DataStorage::dslAmat) { |
1205 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1206 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1207 |
} |
1208 |
|
1209 |
RealType ct = dot(idat.A1->getColumn(2), idat.A2->getColumn(2)); |
1210 |
|
1211 |
if (storageLayout_ & DataStorage::dslTorque) { |
1212 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1213 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
1214 |
} |
1215 |
|
1216 |
if (storageLayout_ & DataStorage::dslDipole) { |
1217 |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
1218 |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
1219 |
} |
1220 |
|
1221 |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
1222 |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
1223 |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
1224 |
} |
1225 |
|
1226 |
if (storageLayout_ & DataStorage::dslDensity) { |
1227 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1228 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
1229 |
} |
1230 |
|
1231 |
if (storageLayout_ & DataStorage::dslFunctional) { |
1232 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1233 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1234 |
} |
1235 |
|
1236 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
1237 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1238 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1239 |
} |
1240 |
|
1241 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
1242 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1243 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1244 |
} |
1245 |
|
1246 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
1247 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1248 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1249 |
} |
1250 |
|
1251 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
1252 |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
1253 |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
1254 |
} |
1255 |
|
1256 |
#endif |
1257 |
} |
1258 |
|
1259 |
|
1260 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1261 |
#ifdef IS_MPI |
1262 |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1263 |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1264 |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
1265 |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
1266 |
|
1267 |
atomRowData.force[atom1] += *(idat.f1); |
1268 |
atomColData.force[atom2] -= *(idat.f1); |
1269 |
|
1270 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1271 |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1272 |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1273 |
} |
1274 |
|
1275 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1276 |
atomRowData.electricField[atom1] += *(idat.eField1); |
1277 |
atomColData.electricField[atom2] += *(idat.eField2); |
1278 |
} |
1279 |
|
1280 |
#else |
1281 |
pairwisePot += *(idat.pot); |
1282 |
excludedPot += *(idat.excludedPot); |
1283 |
|
1284 |
snap_->atomData.force[atom1] += *(idat.f1); |
1285 |
snap_->atomData.force[atom2] -= *(idat.f1); |
1286 |
|
1287 |
if (idat.doParticlePot) { |
1288 |
// This is the pairwise contribution to the particle pot. The |
1289 |
// embedding contribution is added in each of the low level |
1290 |
// non-bonded routines. In parallel, this calculation is done |
1291 |
// in collectData, not in unpackInteractionData. |
1292 |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1293 |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
1294 |
} |
1295 |
|
1296 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
1297 |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
1298 |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
1299 |
} |
1300 |
|
1301 |
if (storageLayout_ & DataStorage::dslElectricField) { |
1302 |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
1303 |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
1304 |
} |
1305 |
|
1306 |
#endif |
1307 |
|
1308 |
} |
1309 |
|
1310 |
/* |
1311 |
* buildNeighborList |
1312 |
* |
1313 |
* first element of pair is row-indexed CutoffGroup |
1314 |
* second element of pair is column-indexed CutoffGroup |
1315 |
*/ |
1316 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1317 |
|
1318 |
vector<pair<int, int> > neighborList; |
1319 |
groupCutoffs cuts; |
1320 |
bool doAllPairs = false; |
1321 |
|
1322 |
#ifdef IS_MPI |
1323 |
cellListRow_.clear(); |
1324 |
cellListCol_.clear(); |
1325 |
#else |
1326 |
cellList_.clear(); |
1327 |
#endif |
1328 |
|
1329 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1330 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1331 |
Mat3x3d Hmat = snap_->getHmat(); |
1332 |
Vector3d Hx = Hmat.getColumn(0); |
1333 |
Vector3d Hy = Hmat.getColumn(1); |
1334 |
Vector3d Hz = Hmat.getColumn(2); |
1335 |
|
1336 |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
1337 |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
1338 |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
1339 |
|
1340 |
// handle small boxes where the cell offsets can end up repeating cells |
1341 |
|
1342 |
if (nCells_.x() < 3) doAllPairs = true; |
1343 |
if (nCells_.y() < 3) doAllPairs = true; |
1344 |
if (nCells_.z() < 3) doAllPairs = true; |
1345 |
|
1346 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1347 |
Vector3d rs, scaled, dr; |
1348 |
Vector3i whichCell; |
1349 |
int cellIndex; |
1350 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1351 |
|
1352 |
#ifdef IS_MPI |
1353 |
cellListRow_.resize(nCtot); |
1354 |
cellListCol_.resize(nCtot); |
1355 |
#else |
1356 |
cellList_.resize(nCtot); |
1357 |
#endif |
1358 |
|
1359 |
if (!doAllPairs) { |
1360 |
#ifdef IS_MPI |
1361 |
|
1362 |
for (int i = 0; i < nGroupsInRow_; i++) { |
1363 |
rs = cgRowData.position[i]; |
1364 |
|
1365 |
// scaled positions relative to the box vectors |
1366 |
scaled = invHmat * rs; |
1367 |
|
1368 |
// wrap the vector back into the unit box by subtracting integer box |
1369 |
// numbers |
1370 |
for (int j = 0; j < 3; j++) { |
1371 |
scaled[j] -= roundMe(scaled[j]); |
1372 |
scaled[j] += 0.5; |
1373 |
// Handle the special case when an object is exactly on the |
1374 |
// boundary (a scaled coordinate of 1.0 is the same as |
1375 |
// scaled coordinate of 0.0) |
1376 |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1377 |
} |
1378 |
|
1379 |
// find xyz-indices of cell that cutoffGroup is in. |
1380 |
whichCell.x() = nCells_.x() * scaled.x(); |
1381 |
whichCell.y() = nCells_.y() * scaled.y(); |
1382 |
whichCell.z() = nCells_.z() * scaled.z(); |
1383 |
|
1384 |
// find single index of this cell: |
1385 |
cellIndex = Vlinear(whichCell, nCells_); |
1386 |
|
1387 |
// add this cutoff group to the list of groups in this cell; |
1388 |
cellListRow_[cellIndex].push_back(i); |
1389 |
} |
1390 |
for (int i = 0; i < nGroupsInCol_; i++) { |
1391 |
rs = cgColData.position[i]; |
1392 |
|
1393 |
// scaled positions relative to the box vectors |
1394 |
scaled = invHmat * rs; |
1395 |
|
1396 |
// wrap the vector back into the unit box by subtracting integer box |
1397 |
// numbers |
1398 |
for (int j = 0; j < 3; j++) { |
1399 |
scaled[j] -= roundMe(scaled[j]); |
1400 |
scaled[j] += 0.5; |
1401 |
// Handle the special case when an object is exactly on the |
1402 |
// boundary (a scaled coordinate of 1.0 is the same as |
1403 |
// scaled coordinate of 0.0) |
1404 |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1405 |
} |
1406 |
|
1407 |
// find xyz-indices of cell that cutoffGroup is in. |
1408 |
whichCell.x() = nCells_.x() * scaled.x(); |
1409 |
whichCell.y() = nCells_.y() * scaled.y(); |
1410 |
whichCell.z() = nCells_.z() * scaled.z(); |
1411 |
|
1412 |
// find single index of this cell: |
1413 |
cellIndex = Vlinear(whichCell, nCells_); |
1414 |
|
1415 |
// add this cutoff group to the list of groups in this cell; |
1416 |
cellListCol_[cellIndex].push_back(i); |
1417 |
} |
1418 |
|
1419 |
#else |
1420 |
for (int i = 0; i < nGroups_; i++) { |
1421 |
rs = snap_->cgData.position[i]; |
1422 |
|
1423 |
// scaled positions relative to the box vectors |
1424 |
scaled = invHmat * rs; |
1425 |
|
1426 |
// wrap the vector back into the unit box by subtracting integer box |
1427 |
// numbers |
1428 |
for (int j = 0; j < 3; j++) { |
1429 |
scaled[j] -= roundMe(scaled[j]); |
1430 |
scaled[j] += 0.5; |
1431 |
// Handle the special case when an object is exactly on the |
1432 |
// boundary (a scaled coordinate of 1.0 is the same as |
1433 |
// scaled coordinate of 0.0) |
1434 |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
1435 |
} |
1436 |
|
1437 |
// find xyz-indices of cell that cutoffGroup is in. |
1438 |
whichCell.x() = nCells_.x() * scaled.x(); |
1439 |
whichCell.y() = nCells_.y() * scaled.y(); |
1440 |
whichCell.z() = nCells_.z() * scaled.z(); |
1441 |
|
1442 |
// find single index of this cell: |
1443 |
cellIndex = Vlinear(whichCell, nCells_); |
1444 |
|
1445 |
// add this cutoff group to the list of groups in this cell; |
1446 |
cellList_[cellIndex].push_back(i); |
1447 |
} |
1448 |
|
1449 |
#endif |
1450 |
|
1451 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1452 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1453 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1454 |
Vector3i m1v(m1x, m1y, m1z); |
1455 |
int m1 = Vlinear(m1v, nCells_); |
1456 |
|
1457 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1458 |
os != cellOffsets_.end(); ++os) { |
1459 |
|
1460 |
Vector3i m2v = m1v + (*os); |
1461 |
|
1462 |
|
1463 |
if (m2v.x() >= nCells_.x()) { |
1464 |
m2v.x() = 0; |
1465 |
} else if (m2v.x() < 0) { |
1466 |
m2v.x() = nCells_.x() - 1; |
1467 |
} |
1468 |
|
1469 |
if (m2v.y() >= nCells_.y()) { |
1470 |
m2v.y() = 0; |
1471 |
} else if (m2v.y() < 0) { |
1472 |
m2v.y() = nCells_.y() - 1; |
1473 |
} |
1474 |
|
1475 |
if (m2v.z() >= nCells_.z()) { |
1476 |
m2v.z() = 0; |
1477 |
} else if (m2v.z() < 0) { |
1478 |
m2v.z() = nCells_.z() - 1; |
1479 |
} |
1480 |
|
1481 |
int m2 = Vlinear (m2v, nCells_); |
1482 |
|
1483 |
#ifdef IS_MPI |
1484 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1485 |
j1 != cellListRow_[m1].end(); ++j1) { |
1486 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1487 |
j2 != cellListCol_[m2].end(); ++j2) { |
1488 |
|
1489 |
// In parallel, we need to visit *all* pairs of row |
1490 |
// & column indicies and will divide labor in the |
1491 |
// force evaluation later. |
1492 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1493 |
snap_->wrapVector(dr); |
1494 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1495 |
if (dr.lengthSquare() < cuts.third) { |
1496 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1497 |
} |
1498 |
} |
1499 |
} |
1500 |
#else |
1501 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1502 |
j1 != cellList_[m1].end(); ++j1) { |
1503 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1504 |
j2 != cellList_[m2].end(); ++j2) { |
1505 |
|
1506 |
// Always do this if we're in different cells or if |
1507 |
// we're in the same cell and the global index of |
1508 |
// the j2 cutoff group is greater than or equal to |
1509 |
// the j1 cutoff group. Note that Rappaport's code |
1510 |
// has a "less than" conditional here, but that |
1511 |
// deals with atom-by-atom computation. OpenMD |
1512 |
// allows atoms within a single cutoff group to |
1513 |
// interact with each other. |
1514 |
|
1515 |
|
1516 |
|
1517 |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1518 |
|
1519 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1520 |
snap_->wrapVector(dr); |
1521 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1522 |
if (dr.lengthSquare() < cuts.third) { |
1523 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1524 |
} |
1525 |
} |
1526 |
} |
1527 |
} |
1528 |
#endif |
1529 |
} |
1530 |
} |
1531 |
} |
1532 |
} |
1533 |
} else { |
1534 |
// branch to do all cutoff group pairs |
1535 |
#ifdef IS_MPI |
1536 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1537 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1538 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1539 |
snap_->wrapVector(dr); |
1540 |
cuts = getGroupCutoffs( j1, j2 ); |
1541 |
if (dr.lengthSquare() < cuts.third) { |
1542 |
neighborList.push_back(make_pair(j1, j2)); |
1543 |
} |
1544 |
} |
1545 |
} |
1546 |
#else |
1547 |
// include all groups here. |
1548 |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1549 |
// include self group interactions j2 == j1 |
1550 |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1551 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1552 |
snap_->wrapVector(dr); |
1553 |
cuts = getGroupCutoffs( j1, j2 ); |
1554 |
if (dr.lengthSquare() < cuts.third) { |
1555 |
neighborList.push_back(make_pair(j1, j2)); |
1556 |
} |
1557 |
} |
1558 |
} |
1559 |
#endif |
1560 |
} |
1561 |
|
1562 |
// save the local cutoff group positions for the check that is |
1563 |
// done on each loop: |
1564 |
saved_CG_positions_.clear(); |
1565 |
for (int i = 0; i < nGroups_; i++) |
1566 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1567 |
|
1568 |
return neighborList; |
1569 |
} |
1570 |
} //end namespace OpenMD |