ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1803
Committed: Wed Oct 3 14:20:07 2012 UTC (12 years, 6 months ago) by gezelter
File size: 52646 byte(s)
Log Message:
Merging trunk changes back to development branch

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 expot_row.resize(nAtomsInRow_);
180 expot_col.resize(nAtomsInCol_);
181
182 AtomRowToGlobal.resize(nAtomsInRow_);
183 AtomColToGlobal.resize(nAtomsInCol_);
184 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186
187 cgRowToGlobal.resize(nGroupsInRow_);
188 cgColToGlobal.resize(nGroupsInCol_);
189 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191
192 massFactorsRow.resize(nAtomsInRow_);
193 massFactorsCol.resize(nAtomsInCol_);
194 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196
197 groupListRow_.clear();
198 groupListRow_.resize(nGroupsInRow_);
199 for (int i = 0; i < nGroupsInRow_; i++) {
200 int gid = cgRowToGlobal[i];
201 for (int j = 0; j < nAtomsInRow_; j++) {
202 int aid = AtomRowToGlobal[j];
203 if (globalGroupMembership[aid] == gid)
204 groupListRow_[i].push_back(j);
205 }
206 }
207
208 groupListCol_.clear();
209 groupListCol_.resize(nGroupsInCol_);
210 for (int i = 0; i < nGroupsInCol_; i++) {
211 int gid = cgColToGlobal[i];
212 for (int j = 0; j < nAtomsInCol_; j++) {
213 int aid = AtomColToGlobal[j];
214 if (globalGroupMembership[aid] == gid)
215 groupListCol_[i].push_back(j);
216 }
217 }
218
219 excludesForAtom.clear();
220 excludesForAtom.resize(nAtomsInRow_);
221 toposForAtom.clear();
222 toposForAtom.resize(nAtomsInRow_);
223 topoDist.clear();
224 topoDist.resize(nAtomsInRow_);
225 for (int i = 0; i < nAtomsInRow_; i++) {
226 int iglob = AtomRowToGlobal[i];
227
228 for (int j = 0; j < nAtomsInCol_; j++) {
229 int jglob = AtomColToGlobal[j];
230
231 if (excludes->hasPair(iglob, jglob))
232 excludesForAtom[i].push_back(j);
233
234 if (oneTwo->hasPair(iglob, jglob)) {
235 toposForAtom[i].push_back(j);
236 topoDist[i].push_back(1);
237 } else {
238 if (oneThree->hasPair(iglob, jglob)) {
239 toposForAtom[i].push_back(j);
240 topoDist[i].push_back(2);
241 } else {
242 if (oneFour->hasPair(iglob, jglob)) {
243 toposForAtom[i].push_back(j);
244 topoDist[i].push_back(3);
245 }
246 }
247 }
248 }
249 }
250
251 #else
252 excludesForAtom.clear();
253 excludesForAtom.resize(nLocal_);
254 toposForAtom.clear();
255 toposForAtom.resize(nLocal_);
256 topoDist.clear();
257 topoDist.resize(nLocal_);
258
259 for (int i = 0; i < nLocal_; i++) {
260 int iglob = AtomLocalToGlobal[i];
261
262 for (int j = 0; j < nLocal_; j++) {
263 int jglob = AtomLocalToGlobal[j];
264
265 if (excludes->hasPair(iglob, jglob))
266 excludesForAtom[i].push_back(j);
267
268 if (oneTwo->hasPair(iglob, jglob)) {
269 toposForAtom[i].push_back(j);
270 topoDist[i].push_back(1);
271 } else {
272 if (oneThree->hasPair(iglob, jglob)) {
273 toposForAtom[i].push_back(j);
274 topoDist[i].push_back(2);
275 } else {
276 if (oneFour->hasPair(iglob, jglob)) {
277 toposForAtom[i].push_back(j);
278 topoDist[i].push_back(3);
279 }
280 }
281 }
282 }
283 }
284 #endif
285
286 // allocate memory for the parallel objects
287 atypesLocal.resize(nLocal_);
288
289 for (int i = 0; i < nLocal_; i++)
290 atypesLocal[i] = ff_->getAtomType(idents[i]);
291
292 groupList_.clear();
293 groupList_.resize(nGroups_);
294 for (int i = 0; i < nGroups_; i++) {
295 int gid = cgLocalToGlobal[i];
296 for (int j = 0; j < nLocal_; j++) {
297 int aid = AtomLocalToGlobal[j];
298 if (globalGroupMembership[aid] == gid) {
299 groupList_[i].push_back(j);
300 }
301 }
302 }
303
304
305 createGtypeCutoffMap();
306
307 }
308
309 void ForceMatrixDecomposition::createGtypeCutoffMap() {
310
311 RealType tol = 1e-6;
312 largestRcut_ = 0.0;
313 int atid;
314 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315
316 map<int, RealType> atypeCutoff;
317
318 for (set<AtomType*>::iterator at = atypes.begin();
319 at != atypes.end(); ++at){
320 atid = (*at)->getIdent();
321 if (userChoseCutoff_)
322 atypeCutoff[atid] = userCutoff_;
323 else
324 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 }
326
327 vector<RealType> gTypeCutoffs;
328 // first we do a single loop over the cutoff groups to find the
329 // largest cutoff for any atypes present in this group.
330 #ifdef IS_MPI
331 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 groupRowToGtype.resize(nGroupsInRow_);
333 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334 vector<int> atomListRow = getAtomsInGroupRow(cg1);
335 for (vector<int>::iterator ia = atomListRow.begin();
336 ia != atomListRow.end(); ++ia) {
337 int atom1 = (*ia);
338 atid = identsRow[atom1];
339 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340 groupCutoffRow[cg1] = atypeCutoff[atid];
341 }
342 }
343
344 bool gTypeFound = false;
345 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347 groupRowToGtype[cg1] = gt;
348 gTypeFound = true;
349 }
350 }
351 if (!gTypeFound) {
352 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354 }
355
356 }
357 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 groupColToGtype.resize(nGroupsInCol_);
359 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361 for (vector<int>::iterator jb = atomListCol.begin();
362 jb != atomListCol.end(); ++jb) {
363 int atom2 = (*jb);
364 atid = identsCol[atom2];
365 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366 groupCutoffCol[cg2] = atypeCutoff[atid];
367 }
368 }
369 bool gTypeFound = false;
370 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372 groupColToGtype[cg2] = gt;
373 gTypeFound = true;
374 }
375 }
376 if (!gTypeFound) {
377 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379 }
380 }
381 #else
382
383 vector<RealType> groupCutoff(nGroups_, 0.0);
384 groupToGtype.resize(nGroups_);
385 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386 groupCutoff[cg1] = 0.0;
387 vector<int> atomList = getAtomsInGroupRow(cg1);
388 for (vector<int>::iterator ia = atomList.begin();
389 ia != atomList.end(); ++ia) {
390 int atom1 = (*ia);
391 atid = idents[atom1];
392 if (atypeCutoff[atid] > groupCutoff[cg1])
393 groupCutoff[cg1] = atypeCutoff[atid];
394 }
395
396 bool gTypeFound = false;
397 for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399 groupToGtype[cg1] = gt;
400 gTypeFound = true;
401 }
402 }
403 if (!gTypeFound) {
404 gTypeCutoffs.push_back( groupCutoff[cg1] );
405 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406 }
407 }
408 #endif
409
410 // Now we find the maximum group cutoff value present in the simulation
411
412 RealType groupMax = *max_element(gTypeCutoffs.begin(),
413 gTypeCutoffs.end());
414
415 #ifdef IS_MPI
416 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417 MPI::MAX);
418 #endif
419
420 RealType tradRcut = groupMax;
421
422 for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) {
423 for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) {
424 RealType thisRcut;
425 switch(cutoffPolicy_) {
426 case TRADITIONAL:
427 thisRcut = tradRcut;
428 break;
429 case MIX:
430 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 break;
432 case MAX:
433 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 break;
435 default:
436 sprintf(painCave.errMsg,
437 "ForceMatrixDecomposition::createGtypeCutoffMap "
438 "hit an unknown cutoff policy!\n");
439 painCave.severity = OPENMD_ERROR;
440 painCave.isFatal = 1;
441 simError();
442 break;
443 }
444
445 pair<int,int> key = make_pair(i,j);
446 gTypeCutoffMap[key].first = thisRcut;
447 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448 gTypeCutoffMap[key].second = thisRcut*thisRcut;
449 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450 // sanity check
451
452 if (userChoseCutoff_) {
453 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454 sprintf(painCave.errMsg,
455 "ForceMatrixDecomposition::createGtypeCutoffMap "
456 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 painCave.severity = OPENMD_ERROR;
458 painCave.isFatal = 1;
459 simError();
460 }
461 }
462 }
463 }
464 }
465
466 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 int i, j;
468 #ifdef IS_MPI
469 i = groupRowToGtype[cg1];
470 j = groupColToGtype[cg2];
471 #else
472 i = groupToGtype[cg1];
473 j = groupToGtype[cg2];
474 #endif
475 return gTypeCutoffMap[make_pair(i,j)];
476 }
477
478 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 if (toposForAtom[atom1][j] == atom2)
481 return topoDist[atom1][j];
482 }
483 return 0;
484 }
485
486 void ForceMatrixDecomposition::zeroWorkArrays() {
487 pairwisePot = 0.0;
488 embeddingPot = 0.0;
489 excludedPot = 0.0;
490 excludedSelfPot = 0.0;
491
492 #ifdef IS_MPI
493 if (storageLayout_ & DataStorage::dslForce) {
494 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496 }
497
498 if (storageLayout_ & DataStorage::dslTorque) {
499 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501 }
502
503 fill(pot_row.begin(), pot_row.end(),
504 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505
506 fill(pot_col.begin(), pot_col.end(),
507 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508
509 fill(expot_row.begin(), expot_row.end(),
510 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511
512 fill(expot_col.begin(), expot_col.end(),
513 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514
515 if (storageLayout_ & DataStorage::dslParticlePot) {
516 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517 0.0);
518 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519 0.0);
520 }
521
522 if (storageLayout_ & DataStorage::dslDensity) {
523 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525 }
526
527 if (storageLayout_ & DataStorage::dslFunctional) {
528 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529 0.0);
530 fill(atomColData.functional.begin(), atomColData.functional.end(),
531 0.0);
532 }
533
534 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535 fill(atomRowData.functionalDerivative.begin(),
536 atomRowData.functionalDerivative.end(), 0.0);
537 fill(atomColData.functionalDerivative.begin(),
538 atomColData.functionalDerivative.end(), 0.0);
539 }
540
541 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 fill(atomRowData.skippedCharge.begin(),
543 atomRowData.skippedCharge.end(), 0.0);
544 fill(atomColData.skippedCharge.begin(),
545 atomColData.skippedCharge.end(), 0.0);
546 }
547
548 if (storageLayout_ & DataStorage::dslFlucQForce) {
549 fill(atomRowData.flucQFrc.begin(),
550 atomRowData.flucQFrc.end(), 0.0);
551 fill(atomColData.flucQFrc.begin(),
552 atomColData.flucQFrc.end(), 0.0);
553 }
554
555 if (storageLayout_ & DataStorage::dslElectricField) {
556 fill(atomRowData.electricField.begin(),
557 atomRowData.electricField.end(), V3Zero);
558 fill(atomColData.electricField.begin(),
559 atomColData.electricField.end(), V3Zero);
560 }
561
562 #endif
563 // even in parallel, we need to zero out the local arrays:
564
565 if (storageLayout_ & DataStorage::dslParticlePot) {
566 fill(snap_->atomData.particlePot.begin(),
567 snap_->atomData.particlePot.end(), 0.0);
568 }
569
570 if (storageLayout_ & DataStorage::dslDensity) {
571 fill(snap_->atomData.density.begin(),
572 snap_->atomData.density.end(), 0.0);
573 }
574
575 if (storageLayout_ & DataStorage::dslFunctional) {
576 fill(snap_->atomData.functional.begin(),
577 snap_->atomData.functional.end(), 0.0);
578 }
579
580 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
581 fill(snap_->atomData.functionalDerivative.begin(),
582 snap_->atomData.functionalDerivative.end(), 0.0);
583 }
584
585 if (storageLayout_ & DataStorage::dslSkippedCharge) {
586 fill(snap_->atomData.skippedCharge.begin(),
587 snap_->atomData.skippedCharge.end(), 0.0);
588 }
589
590 if (storageLayout_ & DataStorage::dslElectricField) {
591 fill(snap_->atomData.electricField.begin(),
592 snap_->atomData.electricField.end(), V3Zero);
593 }
594 }
595
596
597 void ForceMatrixDecomposition::distributeData() {
598 snap_ = sman_->getCurrentSnapshot();
599 storageLayout_ = sman_->getStorageLayout();
600 #ifdef IS_MPI
601
602 // gather up the atomic positions
603 AtomPlanVectorRow->gather(snap_->atomData.position,
604 atomRowData.position);
605 AtomPlanVectorColumn->gather(snap_->atomData.position,
606 atomColData.position);
607
608 // gather up the cutoff group positions
609
610 cgPlanVectorRow->gather(snap_->cgData.position,
611 cgRowData.position);
612
613 cgPlanVectorColumn->gather(snap_->cgData.position,
614 cgColData.position);
615
616
617
618 if (needVelocities_) {
619 // gather up the atomic velocities
620 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621 atomColData.velocity);
622
623 cgPlanVectorColumn->gather(snap_->cgData.velocity,
624 cgColData.velocity);
625 }
626
627
628 // if needed, gather the atomic rotation matrices
629 if (storageLayout_ & DataStorage::dslAmat) {
630 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631 atomRowData.aMat);
632 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633 atomColData.aMat);
634 }
635
636 // if needed, gather the atomic eletrostatic information
637 if (storageLayout_ & DataStorage::dslDipole) {
638 AtomPlanVectorRow->gather(snap_->atomData.dipole,
639 atomRowData.dipole);
640 AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641 atomColData.dipole);
642 }
643
644 if (storageLayout_ & DataStorage::dslQuadrupole) {
645 AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646 atomRowData.quadrupole);
647 AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648 atomColData.quadrupole);
649 }
650
651 // if needed, gather the atomic fluctuating charge values
652 if (storageLayout_ & DataStorage::dslFlucQPosition) {
653 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654 atomRowData.flucQPos);
655 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656 atomColData.flucQPos);
657 }
658
659 #endif
660 }
661
662 /* collects information obtained during the pre-pair loop onto local
663 * data structures.
664 */
665 void ForceMatrixDecomposition::collectIntermediateData() {
666 snap_ = sman_->getCurrentSnapshot();
667 storageLayout_ = sman_->getStorageLayout();
668 #ifdef IS_MPI
669
670 if (storageLayout_ & DataStorage::dslDensity) {
671
672 AtomPlanRealRow->scatter(atomRowData.density,
673 snap_->atomData.density);
674
675 int n = snap_->atomData.density.size();
676 vector<RealType> rho_tmp(n, 0.0);
677 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 for (int i = 0; i < n; i++)
679 snap_->atomData.density[i] += rho_tmp[i];
680 }
681
682 if (storageLayout_ & DataStorage::dslElectricField) {
683
684 AtomPlanVectorRow->scatter(atomRowData.electricField,
685 snap_->atomData.electricField);
686
687 int n = snap_->atomData.electricField.size();
688 vector<Vector3d> field_tmp(n, V3Zero);
689 AtomPlanVectorColumn->scatter(atomColData.electricField,
690 field_tmp);
691 for (int i = 0; i < n; i++)
692 snap_->atomData.electricField[i] += field_tmp[i];
693 }
694 #endif
695 }
696
697 /*
698 * redistributes information obtained during the pre-pair loop out to
699 * row and column-indexed data structures
700 */
701 void ForceMatrixDecomposition::distributeIntermediateData() {
702 snap_ = sman_->getCurrentSnapshot();
703 storageLayout_ = sman_->getStorageLayout();
704 #ifdef IS_MPI
705 if (storageLayout_ & DataStorage::dslFunctional) {
706 AtomPlanRealRow->gather(snap_->atomData.functional,
707 atomRowData.functional);
708 AtomPlanRealColumn->gather(snap_->atomData.functional,
709 atomColData.functional);
710 }
711
712 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
713 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
714 atomRowData.functionalDerivative);
715 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
716 atomColData.functionalDerivative);
717 }
718 #endif
719 }
720
721
722 void ForceMatrixDecomposition::collectData() {
723 snap_ = sman_->getCurrentSnapshot();
724 storageLayout_ = sman_->getStorageLayout();
725 #ifdef IS_MPI
726 int n = snap_->atomData.force.size();
727 vector<Vector3d> frc_tmp(n, V3Zero);
728
729 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
730 for (int i = 0; i < n; i++) {
731 snap_->atomData.force[i] += frc_tmp[i];
732 frc_tmp[i] = 0.0;
733 }
734
735 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
736 for (int i = 0; i < n; i++) {
737 snap_->atomData.force[i] += frc_tmp[i];
738 }
739
740 if (storageLayout_ & DataStorage::dslTorque) {
741
742 int nt = snap_->atomData.torque.size();
743 vector<Vector3d> trq_tmp(nt, V3Zero);
744
745 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
746 for (int i = 0; i < nt; i++) {
747 snap_->atomData.torque[i] += trq_tmp[i];
748 trq_tmp[i] = 0.0;
749 }
750
751 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
752 for (int i = 0; i < nt; i++)
753 snap_->atomData.torque[i] += trq_tmp[i];
754 }
755
756 if (storageLayout_ & DataStorage::dslSkippedCharge) {
757
758 int ns = snap_->atomData.skippedCharge.size();
759 vector<RealType> skch_tmp(ns, 0.0);
760
761 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
762 for (int i = 0; i < ns; i++) {
763 snap_->atomData.skippedCharge[i] += skch_tmp[i];
764 skch_tmp[i] = 0.0;
765 }
766
767 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
768 for (int i = 0; i < ns; i++)
769 snap_->atomData.skippedCharge[i] += skch_tmp[i];
770
771 }
772
773 if (storageLayout_ & DataStorage::dslFlucQForce) {
774
775 int nq = snap_->atomData.flucQFrc.size();
776 vector<RealType> fqfrc_tmp(nq, 0.0);
777
778 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
779 for (int i = 0; i < nq; i++) {
780 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
781 fqfrc_tmp[i] = 0.0;
782 }
783
784 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
785 for (int i = 0; i < nq; i++)
786 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
787
788 }
789
790 nLocal_ = snap_->getNumberOfAtoms();
791
792 vector<potVec> pot_temp(nLocal_,
793 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
794 vector<potVec> expot_temp(nLocal_,
795 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
796
797 // scatter/gather pot_row into the members of my column
798
799 AtomPlanPotRow->scatter(pot_row, pot_temp);
800 AtomPlanPotRow->scatter(expot_row, expot_temp);
801
802 for (int ii = 0; ii < pot_temp.size(); ii++ )
803 pairwisePot += pot_temp[ii];
804
805 for (int ii = 0; ii < expot_temp.size(); ii++ )
806 excludedPot += expot_temp[ii];
807
808 if (storageLayout_ & DataStorage::dslParticlePot) {
809 // This is the pairwise contribution to the particle pot. The
810 // embedding contribution is added in each of the low level
811 // non-bonded routines. In single processor, this is done in
812 // unpackInteractionData, not in collectData.
813 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
814 for (int i = 0; i < nLocal_; i++) {
815 // factor of two is because the total potential terms are divided
816 // by 2 in parallel due to row/ column scatter
817 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
818 }
819 }
820 }
821
822 fill(pot_temp.begin(), pot_temp.end(),
823 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
824 fill(expot_temp.begin(), expot_temp.end(),
825 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
826
827 AtomPlanPotColumn->scatter(pot_col, pot_temp);
828 AtomPlanPotColumn->scatter(expot_col, expot_temp);
829
830 for (int ii = 0; ii < pot_temp.size(); ii++ )
831 pairwisePot += pot_temp[ii];
832
833 for (int ii = 0; ii < expot_temp.size(); ii++ )
834 excludedPot += expot_temp[ii];
835
836 if (storageLayout_ & DataStorage::dslParticlePot) {
837 // This is the pairwise contribution to the particle pot. The
838 // embedding contribution is added in each of the low level
839 // non-bonded routines. In single processor, this is done in
840 // unpackInteractionData, not in collectData.
841 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
842 for (int i = 0; i < nLocal_; i++) {
843 // factor of two is because the total potential terms are divided
844 // by 2 in parallel due to row/ column scatter
845 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
846 }
847 }
848 }
849
850 if (storageLayout_ & DataStorage::dslParticlePot) {
851 int npp = snap_->atomData.particlePot.size();
852 vector<RealType> ppot_temp(npp, 0.0);
853
854 // This is the direct or embedding contribution to the particle
855 // pot.
856
857 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
858 for (int i = 0; i < npp; i++) {
859 snap_->atomData.particlePot[i] += ppot_temp[i];
860 }
861
862 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
863
864 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
865 for (int i = 0; i < npp; i++) {
866 snap_->atomData.particlePot[i] += ppot_temp[i];
867 }
868 }
869
870 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
871 RealType ploc1 = pairwisePot[ii];
872 RealType ploc2 = 0.0;
873 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
874 pairwisePot[ii] = ploc2;
875 }
876
877 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
878 RealType ploc1 = excludedPot[ii];
879 RealType ploc2 = 0.0;
880 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
881 excludedPot[ii] = ploc2;
882 }
883
884 // Here be dragons.
885 MPI::Intracomm col = colComm.getComm();
886
887 col.Allreduce(MPI::IN_PLACE,
888 &snap_->frameData.conductiveHeatFlux[0], 3,
889 MPI::REALTYPE, MPI::SUM);
890
891
892 #endif
893
894 }
895
896 /**
897 * Collects information obtained during the post-pair (and embedding
898 * functional) loops onto local data structures.
899 */
900 void ForceMatrixDecomposition::collectSelfData() {
901 snap_ = sman_->getCurrentSnapshot();
902 storageLayout_ = sman_->getStorageLayout();
903
904 #ifdef IS_MPI
905 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
906 RealType ploc1 = embeddingPot[ii];
907 RealType ploc2 = 0.0;
908 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
909 embeddingPot[ii] = ploc2;
910 }
911 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
912 RealType ploc1 = excludedSelfPot[ii];
913 RealType ploc2 = 0.0;
914 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
915 excludedSelfPot[ii] = ploc2;
916 }
917 #endif
918
919 }
920
921
922
923 int ForceMatrixDecomposition::getNAtomsInRow() {
924 #ifdef IS_MPI
925 return nAtomsInRow_;
926 #else
927 return nLocal_;
928 #endif
929 }
930
931 /**
932 * returns the list of atoms belonging to this group.
933 */
934 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
935 #ifdef IS_MPI
936 return groupListRow_[cg1];
937 #else
938 return groupList_[cg1];
939 #endif
940 }
941
942 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
943 #ifdef IS_MPI
944 return groupListCol_[cg2];
945 #else
946 return groupList_[cg2];
947 #endif
948 }
949
950 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
951 Vector3d d;
952
953 #ifdef IS_MPI
954 d = cgColData.position[cg2] - cgRowData.position[cg1];
955 #else
956 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
957 #endif
958
959 snap_->wrapVector(d);
960 return d;
961 }
962
963 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
964 #ifdef IS_MPI
965 return cgColData.velocity[cg2];
966 #else
967 return snap_->cgData.velocity[cg2];
968 #endif
969 }
970
971 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
972 #ifdef IS_MPI
973 return atomColData.velocity[atom2];
974 #else
975 return snap_->atomData.velocity[atom2];
976 #endif
977 }
978
979
980 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
981
982 Vector3d d;
983
984 #ifdef IS_MPI
985 d = cgRowData.position[cg1] - atomRowData.position[atom1];
986 #else
987 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
988 #endif
989
990 snap_->wrapVector(d);
991 return d;
992 }
993
994 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
995 Vector3d d;
996
997 #ifdef IS_MPI
998 d = cgColData.position[cg2] - atomColData.position[atom2];
999 #else
1000 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1001 #endif
1002
1003 snap_->wrapVector(d);
1004 return d;
1005 }
1006
1007 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1008 #ifdef IS_MPI
1009 return massFactorsRow[atom1];
1010 #else
1011 return massFactors[atom1];
1012 #endif
1013 }
1014
1015 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1016 #ifdef IS_MPI
1017 return massFactorsCol[atom2];
1018 #else
1019 return massFactors[atom2];
1020 #endif
1021
1022 }
1023
1024 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1025 Vector3d d;
1026
1027 #ifdef IS_MPI
1028 d = atomColData.position[atom2] - atomRowData.position[atom1];
1029 #else
1030 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1031 #endif
1032
1033 snap_->wrapVector(d);
1034 return d;
1035 }
1036
1037 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1038 return excludesForAtom[atom1];
1039 }
1040
1041 /**
1042 * We need to exclude some overcounted interactions that result from
1043 * the parallel decomposition.
1044 */
1045 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1046 int unique_id_1, unique_id_2;
1047
1048 #ifdef IS_MPI
1049 // in MPI, we have to look up the unique IDs for each atom
1050 unique_id_1 = AtomRowToGlobal[atom1];
1051 unique_id_2 = AtomColToGlobal[atom2];
1052 // group1 = cgRowToGlobal[cg1];
1053 // group2 = cgColToGlobal[cg2];
1054 #else
1055 unique_id_1 = AtomLocalToGlobal[atom1];
1056 unique_id_2 = AtomLocalToGlobal[atom2];
1057 int group1 = cgLocalToGlobal[cg1];
1058 int group2 = cgLocalToGlobal[cg2];
1059 #endif
1060
1061 if (unique_id_1 == unique_id_2) return true;
1062
1063 #ifdef IS_MPI
1064 // this prevents us from doing the pair on multiple processors
1065 if (unique_id_1 < unique_id_2) {
1066 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1067 } else {
1068 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1069 }
1070 #endif
1071
1072 #ifndef IS_MPI
1073 if (group1 == group2) {
1074 if (unique_id_1 < unique_id_2) return true;
1075 }
1076 #endif
1077
1078 return false;
1079 }
1080
1081 /**
1082 * We need to handle the interactions for atoms who are involved in
1083 * the same rigid body as well as some short range interactions
1084 * (bonds, bends, torsions) differently from other interactions.
1085 * We'll still visit the pairwise routines, but with a flag that
1086 * tells those routines to exclude the pair from direct long range
1087 * interactions. Some indirect interactions (notably reaction
1088 * field) must still be handled for these pairs.
1089 */
1090 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1091
1092 // excludesForAtom was constructed to use row/column indices in the MPI
1093 // version, and to use local IDs in the non-MPI version:
1094
1095 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1096 i != excludesForAtom[atom1].end(); ++i) {
1097 if ( (*i) == atom2 ) return true;
1098 }
1099
1100 return false;
1101 }
1102
1103
1104 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1105 #ifdef IS_MPI
1106 atomRowData.force[atom1] += fg;
1107 #else
1108 snap_->atomData.force[atom1] += fg;
1109 #endif
1110 }
1111
1112 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1113 #ifdef IS_MPI
1114 atomColData.force[atom2] += fg;
1115 #else
1116 snap_->atomData.force[atom2] += fg;
1117 #endif
1118 }
1119
1120 // filling interaction blocks with pointers
1121 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1122 int atom1, int atom2) {
1123
1124 idat.excluded = excludeAtomPair(atom1, atom2);
1125
1126 #ifdef IS_MPI
1127 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1128 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1129 // ff_->getAtomType(identsCol[atom2]) );
1130
1131 if (storageLayout_ & DataStorage::dslAmat) {
1132 idat.A1 = &(atomRowData.aMat[atom1]);
1133 idat.A2 = &(atomColData.aMat[atom2]);
1134 }
1135
1136 if (storageLayout_ & DataStorage::dslTorque) {
1137 idat.t1 = &(atomRowData.torque[atom1]);
1138 idat.t2 = &(atomColData.torque[atom2]);
1139 }
1140
1141 if (storageLayout_ & DataStorage::dslDipole) {
1142 idat.dipole1 = &(atomRowData.dipole[atom1]);
1143 idat.dipole2 = &(atomColData.dipole[atom2]);
1144 }
1145
1146 if (storageLayout_ & DataStorage::dslQuadrupole) {
1147 idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1148 idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1149 }
1150
1151 if (storageLayout_ & DataStorage::dslDensity) {
1152 idat.rho1 = &(atomRowData.density[atom1]);
1153 idat.rho2 = &(atomColData.density[atom2]);
1154 }
1155
1156 if (storageLayout_ & DataStorage::dslFunctional) {
1157 idat.frho1 = &(atomRowData.functional[atom1]);
1158 idat.frho2 = &(atomColData.functional[atom2]);
1159 }
1160
1161 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1162 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1163 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1164 }
1165
1166 if (storageLayout_ & DataStorage::dslParticlePot) {
1167 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1168 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1169 }
1170
1171 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1172 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1173 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1174 }
1175
1176 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1177 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1178 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1179 }
1180
1181 #else
1182
1183 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1184
1185 if (storageLayout_ & DataStorage::dslAmat) {
1186 idat.A1 = &(snap_->atomData.aMat[atom1]);
1187 idat.A2 = &(snap_->atomData.aMat[atom2]);
1188 }
1189
1190 if (storageLayout_ & DataStorage::dslTorque) {
1191 idat.t1 = &(snap_->atomData.torque[atom1]);
1192 idat.t2 = &(snap_->atomData.torque[atom2]);
1193 }
1194
1195 if (storageLayout_ & DataStorage::dslDipole) {
1196 idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1197 idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1198 }
1199
1200 if (storageLayout_ & DataStorage::dslQuadrupole) {
1201 idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1202 idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1203 }
1204
1205 if (storageLayout_ & DataStorage::dslDensity) {
1206 idat.rho1 = &(snap_->atomData.density[atom1]);
1207 idat.rho2 = &(snap_->atomData.density[atom2]);
1208 }
1209
1210 if (storageLayout_ & DataStorage::dslFunctional) {
1211 idat.frho1 = &(snap_->atomData.functional[atom1]);
1212 idat.frho2 = &(snap_->atomData.functional[atom2]);
1213 }
1214
1215 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1216 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1217 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1218 }
1219
1220 if (storageLayout_ & DataStorage::dslParticlePot) {
1221 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1222 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1223 }
1224
1225 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1226 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1227 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1228 }
1229
1230 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1231 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1232 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1233 }
1234
1235 #endif
1236 }
1237
1238
1239 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1240 #ifdef IS_MPI
1241 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1242 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1243 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1244 expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1245
1246 atomRowData.force[atom1] += *(idat.f1);
1247 atomColData.force[atom2] -= *(idat.f1);
1248
1249 if (storageLayout_ & DataStorage::dslFlucQForce) {
1250 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1251 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1252 }
1253
1254 if (storageLayout_ & DataStorage::dslElectricField) {
1255 atomRowData.electricField[atom1] += *(idat.eField1);
1256 atomColData.electricField[atom2] += *(idat.eField2);
1257 }
1258
1259 #else
1260 pairwisePot += *(idat.pot);
1261 excludedPot += *(idat.excludedPot);
1262
1263 snap_->atomData.force[atom1] += *(idat.f1);
1264 snap_->atomData.force[atom2] -= *(idat.f1);
1265
1266 if (idat.doParticlePot) {
1267 // This is the pairwise contribution to the particle pot. The
1268 // embedding contribution is added in each of the low level
1269 // non-bonded routines. In parallel, this calculation is done
1270 // in collectData, not in unpackInteractionData.
1271 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1272 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1273 }
1274
1275 if (storageLayout_ & DataStorage::dslFlucQForce) {
1276 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1277 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1278 }
1279
1280 if (storageLayout_ & DataStorage::dslElectricField) {
1281 snap_->atomData.electricField[atom1] += *(idat.eField1);
1282 snap_->atomData.electricField[atom2] += *(idat.eField2);
1283 }
1284
1285 #endif
1286
1287 }
1288
1289 /*
1290 * buildNeighborList
1291 *
1292 * first element of pair is row-indexed CutoffGroup
1293 * second element of pair is column-indexed CutoffGroup
1294 */
1295 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1296
1297 vector<pair<int, int> > neighborList;
1298 groupCutoffs cuts;
1299 bool doAllPairs = false;
1300
1301 #ifdef IS_MPI
1302 cellListRow_.clear();
1303 cellListCol_.clear();
1304 #else
1305 cellList_.clear();
1306 #endif
1307
1308 RealType rList_ = (largestRcut_ + skinThickness_);
1309 RealType rl2 = rList_ * rList_;
1310 Snapshot* snap_ = sman_->getCurrentSnapshot();
1311 Mat3x3d Hmat = snap_->getHmat();
1312 Vector3d Hx = Hmat.getColumn(0);
1313 Vector3d Hy = Hmat.getColumn(1);
1314 Vector3d Hz = Hmat.getColumn(2);
1315
1316 nCells_.x() = (int) ( Hx.length() )/ rList_;
1317 nCells_.y() = (int) ( Hy.length() )/ rList_;
1318 nCells_.z() = (int) ( Hz.length() )/ rList_;
1319
1320 // handle small boxes where the cell offsets can end up repeating cells
1321
1322 if (nCells_.x() < 3) doAllPairs = true;
1323 if (nCells_.y() < 3) doAllPairs = true;
1324 if (nCells_.z() < 3) doAllPairs = true;
1325
1326 Mat3x3d invHmat = snap_->getInvHmat();
1327 Vector3d rs, scaled, dr;
1328 Vector3i whichCell;
1329 int cellIndex;
1330 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1331
1332 #ifdef IS_MPI
1333 cellListRow_.resize(nCtot);
1334 cellListCol_.resize(nCtot);
1335 #else
1336 cellList_.resize(nCtot);
1337 #endif
1338
1339 if (!doAllPairs) {
1340 #ifdef IS_MPI
1341
1342 for (int i = 0; i < nGroupsInRow_; i++) {
1343 rs = cgRowData.position[i];
1344
1345 // scaled positions relative to the box vectors
1346 scaled = invHmat * rs;
1347
1348 // wrap the vector back into the unit box by subtracting integer box
1349 // numbers
1350 for (int j = 0; j < 3; j++) {
1351 scaled[j] -= roundMe(scaled[j]);
1352 scaled[j] += 0.5;
1353 // Handle the special case when an object is exactly on the
1354 // boundary (a scaled coordinate of 1.0 is the same as
1355 // scaled coordinate of 0.0)
1356 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1357 }
1358
1359 // find xyz-indices of cell that cutoffGroup is in.
1360 whichCell.x() = nCells_.x() * scaled.x();
1361 whichCell.y() = nCells_.y() * scaled.y();
1362 whichCell.z() = nCells_.z() * scaled.z();
1363
1364 // find single index of this cell:
1365 cellIndex = Vlinear(whichCell, nCells_);
1366
1367 // add this cutoff group to the list of groups in this cell;
1368 cellListRow_[cellIndex].push_back(i);
1369 }
1370 for (int i = 0; i < nGroupsInCol_; i++) {
1371 rs = cgColData.position[i];
1372
1373 // scaled positions relative to the box vectors
1374 scaled = invHmat * rs;
1375
1376 // wrap the vector back into the unit box by subtracting integer box
1377 // numbers
1378 for (int j = 0; j < 3; j++) {
1379 scaled[j] -= roundMe(scaled[j]);
1380 scaled[j] += 0.5;
1381 // Handle the special case when an object is exactly on the
1382 // boundary (a scaled coordinate of 1.0 is the same as
1383 // scaled coordinate of 0.0)
1384 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1385 }
1386
1387 // find xyz-indices of cell that cutoffGroup is in.
1388 whichCell.x() = nCells_.x() * scaled.x();
1389 whichCell.y() = nCells_.y() * scaled.y();
1390 whichCell.z() = nCells_.z() * scaled.z();
1391
1392 // find single index of this cell:
1393 cellIndex = Vlinear(whichCell, nCells_);
1394
1395 // add this cutoff group to the list of groups in this cell;
1396 cellListCol_[cellIndex].push_back(i);
1397 }
1398
1399 #else
1400 for (int i = 0; i < nGroups_; i++) {
1401 rs = snap_->cgData.position[i];
1402
1403 // scaled positions relative to the box vectors
1404 scaled = invHmat * rs;
1405
1406 // wrap the vector back into the unit box by subtracting integer box
1407 // numbers
1408 for (int j = 0; j < 3; j++) {
1409 scaled[j] -= roundMe(scaled[j]);
1410 scaled[j] += 0.5;
1411 // Handle the special case when an object is exactly on the
1412 // boundary (a scaled coordinate of 1.0 is the same as
1413 // scaled coordinate of 0.0)
1414 if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1415 }
1416
1417 // find xyz-indices of cell that cutoffGroup is in.
1418 whichCell.x() = nCells_.x() * scaled.x();
1419 whichCell.y() = nCells_.y() * scaled.y();
1420 whichCell.z() = nCells_.z() * scaled.z();
1421
1422 // find single index of this cell:
1423 cellIndex = Vlinear(whichCell, nCells_);
1424
1425 // add this cutoff group to the list of groups in this cell;
1426 cellList_[cellIndex].push_back(i);
1427 }
1428
1429 #endif
1430
1431 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1432 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1433 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1434 Vector3i m1v(m1x, m1y, m1z);
1435 int m1 = Vlinear(m1v, nCells_);
1436
1437 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1438 os != cellOffsets_.end(); ++os) {
1439
1440 Vector3i m2v = m1v + (*os);
1441
1442
1443 if (m2v.x() >= nCells_.x()) {
1444 m2v.x() = 0;
1445 } else if (m2v.x() < 0) {
1446 m2v.x() = nCells_.x() - 1;
1447 }
1448
1449 if (m2v.y() >= nCells_.y()) {
1450 m2v.y() = 0;
1451 } else if (m2v.y() < 0) {
1452 m2v.y() = nCells_.y() - 1;
1453 }
1454
1455 if (m2v.z() >= nCells_.z()) {
1456 m2v.z() = 0;
1457 } else if (m2v.z() < 0) {
1458 m2v.z() = nCells_.z() - 1;
1459 }
1460
1461 int m2 = Vlinear (m2v, nCells_);
1462
1463 #ifdef IS_MPI
1464 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1465 j1 != cellListRow_[m1].end(); ++j1) {
1466 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1467 j2 != cellListCol_[m2].end(); ++j2) {
1468
1469 // In parallel, we need to visit *all* pairs of row
1470 // & column indicies and will divide labor in the
1471 // force evaluation later.
1472 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1473 snap_->wrapVector(dr);
1474 cuts = getGroupCutoffs( (*j1), (*j2) );
1475 if (dr.lengthSquare() < cuts.third) {
1476 neighborList.push_back(make_pair((*j1), (*j2)));
1477 }
1478 }
1479 }
1480 #else
1481 for (vector<int>::iterator j1 = cellList_[m1].begin();
1482 j1 != cellList_[m1].end(); ++j1) {
1483 for (vector<int>::iterator j2 = cellList_[m2].begin();
1484 j2 != cellList_[m2].end(); ++j2) {
1485
1486 // Always do this if we're in different cells or if
1487 // we're in the same cell and the global index of
1488 // the j2 cutoff group is greater than or equal to
1489 // the j1 cutoff group. Note that Rappaport's code
1490 // has a "less than" conditional here, but that
1491 // deals with atom-by-atom computation. OpenMD
1492 // allows atoms within a single cutoff group to
1493 // interact with each other.
1494
1495
1496
1497 if (m2 != m1 || (*j2) >= (*j1) ) {
1498
1499 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1500 snap_->wrapVector(dr);
1501 cuts = getGroupCutoffs( (*j1), (*j2) );
1502 if (dr.lengthSquare() < cuts.third) {
1503 neighborList.push_back(make_pair((*j1), (*j2)));
1504 }
1505 }
1506 }
1507 }
1508 #endif
1509 }
1510 }
1511 }
1512 }
1513 } else {
1514 // branch to do all cutoff group pairs
1515 #ifdef IS_MPI
1516 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1517 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1518 dr = cgColData.position[j2] - cgRowData.position[j1];
1519 snap_->wrapVector(dr);
1520 cuts = getGroupCutoffs( j1, j2 );
1521 if (dr.lengthSquare() < cuts.third) {
1522 neighborList.push_back(make_pair(j1, j2));
1523 }
1524 }
1525 }
1526 #else
1527 // include all groups here.
1528 for (int j1 = 0; j1 < nGroups_; j1++) {
1529 // include self group interactions j2 == j1
1530 for (int j2 = j1; j2 < nGroups_; j2++) {
1531 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1532 snap_->wrapVector(dr);
1533 cuts = getGroupCutoffs( j1, j2 );
1534 if (dr.lengthSquare() < cuts.third) {
1535 neighborList.push_back(make_pair(j1, j2));
1536 }
1537 }
1538 }
1539 #endif
1540 }
1541
1542 // save the local cutoff group positions for the check that is
1543 // done on each loop:
1544 saved_CG_positions_.clear();
1545 for (int i = 0; i < nGroups_; i++)
1546 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1547
1548 return neighborList;
1549 }
1550 } //end namespace OpenMD