ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1755
Committed: Thu Jun 14 01:58:35 2012 UTC (12 years, 10 months ago) by gezelter
File size: 49436 byte(s)
Log Message:
general bugfixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 if (needVelocities_)
114 snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115 DataStorage::dslVelocity);
116 else
117 snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118
119 #ifdef IS_MPI
120
121 MPI::Intracomm row = rowComm.getComm();
122 MPI::Intracomm col = colComm.getComm();
123
124 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129
130 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135
136 cgPlanIntRow = new Plan<int>(row, nGroups_);
137 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138 cgPlanIntColumn = new Plan<int>(col, nGroups_);
139 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140
141 nAtomsInRow_ = AtomPlanIntRow->getSize();
142 nAtomsInCol_ = AtomPlanIntColumn->getSize();
143 nGroupsInRow_ = cgPlanIntRow->getSize();
144 nGroupsInCol_ = cgPlanIntColumn->getSize();
145
146 // Modify the data storage objects with the correct layouts and sizes:
147 atomRowData.resize(nAtomsInRow_);
148 atomRowData.setStorageLayout(storageLayout_);
149 atomColData.resize(nAtomsInCol_);
150 atomColData.setStorageLayout(storageLayout_);
151 cgRowData.resize(nGroupsInRow_);
152 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 cgColData.resize(nGroupsInCol_);
154 if (needVelocities_)
155 // we only need column velocities if we need them.
156 cgColData.setStorageLayout(DataStorage::dslPosition |
157 DataStorage::dslVelocity);
158 else
159 cgColData.setStorageLayout(DataStorage::dslPosition);
160
161 identsRow.resize(nAtomsInRow_);
162 identsCol.resize(nAtomsInCol_);
163
164 AtomPlanIntRow->gather(idents, identsRow);
165 AtomPlanIntColumn->gather(idents, identsCol);
166
167 // allocate memory for the parallel objects
168 atypesRow.resize(nAtomsInRow_);
169 atypesCol.resize(nAtomsInCol_);
170
171 for (int i = 0; i < nAtomsInRow_; i++)
172 atypesRow[i] = ff_->getAtomType(identsRow[i]);
173 for (int i = 0; i < nAtomsInCol_; i++)
174 atypesCol[i] = ff_->getAtomType(identsCol[i]);
175
176 pot_row.resize(nAtomsInRow_);
177 pot_col.resize(nAtomsInCol_);
178
179 AtomRowToGlobal.resize(nAtomsInRow_);
180 AtomColToGlobal.resize(nAtomsInCol_);
181 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
182 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
183
184 cgRowToGlobal.resize(nGroupsInRow_);
185 cgColToGlobal.resize(nGroupsInCol_);
186 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
187 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
188
189 massFactorsRow.resize(nAtomsInRow_);
190 massFactorsCol.resize(nAtomsInCol_);
191 AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193
194 groupListRow_.clear();
195 groupListRow_.resize(nGroupsInRow_);
196 for (int i = 0; i < nGroupsInRow_; i++) {
197 int gid = cgRowToGlobal[i];
198 for (int j = 0; j < nAtomsInRow_; j++) {
199 int aid = AtomRowToGlobal[j];
200 if (globalGroupMembership[aid] == gid)
201 groupListRow_[i].push_back(j);
202 }
203 }
204
205 groupListCol_.clear();
206 groupListCol_.resize(nGroupsInCol_);
207 for (int i = 0; i < nGroupsInCol_; i++) {
208 int gid = cgColToGlobal[i];
209 for (int j = 0; j < nAtomsInCol_; j++) {
210 int aid = AtomColToGlobal[j];
211 if (globalGroupMembership[aid] == gid)
212 groupListCol_[i].push_back(j);
213 }
214 }
215
216 excludesForAtom.clear();
217 excludesForAtom.resize(nAtomsInRow_);
218 toposForAtom.clear();
219 toposForAtom.resize(nAtomsInRow_);
220 topoDist.clear();
221 topoDist.resize(nAtomsInRow_);
222 for (int i = 0; i < nAtomsInRow_; i++) {
223 int iglob = AtomRowToGlobal[i];
224
225 for (int j = 0; j < nAtomsInCol_; j++) {
226 int jglob = AtomColToGlobal[j];
227
228 if (excludes->hasPair(iglob, jglob))
229 excludesForAtom[i].push_back(j);
230
231 if (oneTwo->hasPair(iglob, jglob)) {
232 toposForAtom[i].push_back(j);
233 topoDist[i].push_back(1);
234 } else {
235 if (oneThree->hasPair(iglob, jglob)) {
236 toposForAtom[i].push_back(j);
237 topoDist[i].push_back(2);
238 } else {
239 if (oneFour->hasPair(iglob, jglob)) {
240 toposForAtom[i].push_back(j);
241 topoDist[i].push_back(3);
242 }
243 }
244 }
245 }
246 }
247
248 #else
249 excludesForAtom.clear();
250 excludesForAtom.resize(nLocal_);
251 toposForAtom.clear();
252 toposForAtom.resize(nLocal_);
253 topoDist.clear();
254 topoDist.resize(nLocal_);
255
256 for (int i = 0; i < nLocal_; i++) {
257 int iglob = AtomLocalToGlobal[i];
258
259 for (int j = 0; j < nLocal_; j++) {
260 int jglob = AtomLocalToGlobal[j];
261
262 if (excludes->hasPair(iglob, jglob))
263 excludesForAtom[i].push_back(j);
264
265 if (oneTwo->hasPair(iglob, jglob)) {
266 toposForAtom[i].push_back(j);
267 topoDist[i].push_back(1);
268 } else {
269 if (oneThree->hasPair(iglob, jglob)) {
270 toposForAtom[i].push_back(j);
271 topoDist[i].push_back(2);
272 } else {
273 if (oneFour->hasPair(iglob, jglob)) {
274 toposForAtom[i].push_back(j);
275 topoDist[i].push_back(3);
276 }
277 }
278 }
279 }
280 }
281 #endif
282
283 // allocate memory for the parallel objects
284 atypesLocal.resize(nLocal_);
285
286 for (int i = 0; i < nLocal_; i++)
287 atypesLocal[i] = ff_->getAtomType(idents[i]);
288
289 groupList_.clear();
290 groupList_.resize(nGroups_);
291 for (int i = 0; i < nGroups_; i++) {
292 int gid = cgLocalToGlobal[i];
293 for (int j = 0; j < nLocal_; j++) {
294 int aid = AtomLocalToGlobal[j];
295 if (globalGroupMembership[aid] == gid) {
296 groupList_[i].push_back(j);
297 }
298 }
299 }
300
301
302 createGtypeCutoffMap();
303
304 }
305
306 void ForceMatrixDecomposition::createGtypeCutoffMap() {
307
308 RealType tol = 1e-6;
309 largestRcut_ = 0.0;
310 RealType rc;
311 int atid;
312 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
313
314 map<int, RealType> atypeCutoff;
315
316 for (set<AtomType*>::iterator at = atypes.begin();
317 at != atypes.end(); ++at){
318 atid = (*at)->getIdent();
319 if (userChoseCutoff_)
320 atypeCutoff[atid] = userCutoff_;
321 else
322 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
323 }
324
325 vector<RealType> gTypeCutoffs;
326 // first we do a single loop over the cutoff groups to find the
327 // largest cutoff for any atypes present in this group.
328 #ifdef IS_MPI
329 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
330 groupRowToGtype.resize(nGroupsInRow_);
331 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
332 vector<int> atomListRow = getAtomsInGroupRow(cg1);
333 for (vector<int>::iterator ia = atomListRow.begin();
334 ia != atomListRow.end(); ++ia) {
335 int atom1 = (*ia);
336 atid = identsRow[atom1];
337 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
338 groupCutoffRow[cg1] = atypeCutoff[atid];
339 }
340 }
341
342 bool gTypeFound = false;
343 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
344 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
345 groupRowToGtype[cg1] = gt;
346 gTypeFound = true;
347 }
348 }
349 if (!gTypeFound) {
350 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
351 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
352 }
353
354 }
355 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
356 groupColToGtype.resize(nGroupsInCol_);
357 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
358 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
359 for (vector<int>::iterator jb = atomListCol.begin();
360 jb != atomListCol.end(); ++jb) {
361 int atom2 = (*jb);
362 atid = identsCol[atom2];
363 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
364 groupCutoffCol[cg2] = atypeCutoff[atid];
365 }
366 }
367 bool gTypeFound = false;
368 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
369 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
370 groupColToGtype[cg2] = gt;
371 gTypeFound = true;
372 }
373 }
374 if (!gTypeFound) {
375 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
376 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
377 }
378 }
379 #else
380
381 vector<RealType> groupCutoff(nGroups_, 0.0);
382 groupToGtype.resize(nGroups_);
383 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
384 groupCutoff[cg1] = 0.0;
385 vector<int> atomList = getAtomsInGroupRow(cg1);
386 for (vector<int>::iterator ia = atomList.begin();
387 ia != atomList.end(); ++ia) {
388 int atom1 = (*ia);
389 atid = idents[atom1];
390 if (atypeCutoff[atid] > groupCutoff[cg1])
391 groupCutoff[cg1] = atypeCutoff[atid];
392 }
393
394 bool gTypeFound = false;
395 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
396 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
397 groupToGtype[cg1] = gt;
398 gTypeFound = true;
399 }
400 }
401 if (!gTypeFound) {
402 gTypeCutoffs.push_back( groupCutoff[cg1] );
403 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
404 }
405 }
406 #endif
407
408 // Now we find the maximum group cutoff value present in the simulation
409
410 RealType groupMax = *max_element(gTypeCutoffs.begin(),
411 gTypeCutoffs.end());
412
413 #ifdef IS_MPI
414 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
415 MPI::MAX);
416 #endif
417
418 RealType tradRcut = groupMax;
419
420 for (int i = 0; i < gTypeCutoffs.size(); i++) {
421 for (int j = 0; j < gTypeCutoffs.size(); j++) {
422 RealType thisRcut;
423 switch(cutoffPolicy_) {
424 case TRADITIONAL:
425 thisRcut = tradRcut;
426 break;
427 case MIX:
428 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
429 break;
430 case MAX:
431 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
432 break;
433 default:
434 sprintf(painCave.errMsg,
435 "ForceMatrixDecomposition::createGtypeCutoffMap "
436 "hit an unknown cutoff policy!\n");
437 painCave.severity = OPENMD_ERROR;
438 painCave.isFatal = 1;
439 simError();
440 break;
441 }
442
443 pair<int,int> key = make_pair(i,j);
444 gTypeCutoffMap[key].first = thisRcut;
445 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
446 gTypeCutoffMap[key].second = thisRcut*thisRcut;
447 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
448 // sanity check
449
450 if (userChoseCutoff_) {
451 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
452 sprintf(painCave.errMsg,
453 "ForceMatrixDecomposition::createGtypeCutoffMap "
454 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
455 painCave.severity = OPENMD_ERROR;
456 painCave.isFatal = 1;
457 simError();
458 }
459 }
460 }
461 }
462 }
463
464
465 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
466 int i, j;
467 #ifdef IS_MPI
468 i = groupRowToGtype[cg1];
469 j = groupColToGtype[cg2];
470 #else
471 i = groupToGtype[cg1];
472 j = groupToGtype[cg2];
473 #endif
474 return gTypeCutoffMap[make_pair(i,j)];
475 }
476
477 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
478 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
479 if (toposForAtom[atom1][j] == atom2)
480 return topoDist[atom1][j];
481 }
482 return 0;
483 }
484
485 void ForceMatrixDecomposition::zeroWorkArrays() {
486 pairwisePot = 0.0;
487 embeddingPot = 0.0;
488
489 #ifdef IS_MPI
490 if (storageLayout_ & DataStorage::dslForce) {
491 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
492 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
493 }
494
495 if (storageLayout_ & DataStorage::dslTorque) {
496 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
497 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
498 }
499
500 fill(pot_row.begin(), pot_row.end(),
501 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
502
503 fill(pot_col.begin(), pot_col.end(),
504 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505
506 if (storageLayout_ & DataStorage::dslParticlePot) {
507 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
508 0.0);
509 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
510 0.0);
511 }
512
513 if (storageLayout_ & DataStorage::dslDensity) {
514 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
515 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
516 }
517
518 if (storageLayout_ & DataStorage::dslFunctional) {
519 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
520 0.0);
521 fill(atomColData.functional.begin(), atomColData.functional.end(),
522 0.0);
523 }
524
525 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
526 fill(atomRowData.functionalDerivative.begin(),
527 atomRowData.functionalDerivative.end(), 0.0);
528 fill(atomColData.functionalDerivative.begin(),
529 atomColData.functionalDerivative.end(), 0.0);
530 }
531
532 if (storageLayout_ & DataStorage::dslSkippedCharge) {
533 fill(atomRowData.skippedCharge.begin(),
534 atomRowData.skippedCharge.end(), 0.0);
535 fill(atomColData.skippedCharge.begin(),
536 atomColData.skippedCharge.end(), 0.0);
537 }
538
539 if (storageLayout_ & DataStorage::dslFlucQForce) {
540 fill(atomRowData.flucQFrc.begin(),
541 atomRowData.flucQFrc.end(), 0.0);
542 fill(atomColData.flucQFrc.begin(),
543 atomColData.flucQFrc.end(), 0.0);
544 }
545
546 if (storageLayout_ & DataStorage::dslElectricField) {
547 fill(atomRowData.electricField.begin(),
548 atomRowData.electricField.end(), V3Zero);
549 fill(atomColData.electricField.begin(),
550 atomColData.electricField.end(), V3Zero);
551 }
552
553 if (storageLayout_ & DataStorage::dslFlucQForce) {
554 fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
555 0.0);
556 fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
557 0.0);
558 }
559
560 #endif
561 // even in parallel, we need to zero out the local arrays:
562
563 if (storageLayout_ & DataStorage::dslParticlePot) {
564 fill(snap_->atomData.particlePot.begin(),
565 snap_->atomData.particlePot.end(), 0.0);
566 }
567
568 if (storageLayout_ & DataStorage::dslDensity) {
569 fill(snap_->atomData.density.begin(),
570 snap_->atomData.density.end(), 0.0);
571 }
572
573 if (storageLayout_ & DataStorage::dslFunctional) {
574 fill(snap_->atomData.functional.begin(),
575 snap_->atomData.functional.end(), 0.0);
576 }
577
578 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
579 fill(snap_->atomData.functionalDerivative.begin(),
580 snap_->atomData.functionalDerivative.end(), 0.0);
581 }
582
583 if (storageLayout_ & DataStorage::dslSkippedCharge) {
584 fill(snap_->atomData.skippedCharge.begin(),
585 snap_->atomData.skippedCharge.end(), 0.0);
586 }
587
588 if (storageLayout_ & DataStorage::dslElectricField) {
589 fill(snap_->atomData.electricField.begin(),
590 snap_->atomData.electricField.end(), V3Zero);
591 }
592 }
593
594
595 void ForceMatrixDecomposition::distributeData() {
596 snap_ = sman_->getCurrentSnapshot();
597 storageLayout_ = sman_->getStorageLayout();
598 #ifdef IS_MPI
599
600 // gather up the atomic positions
601 AtomPlanVectorRow->gather(snap_->atomData.position,
602 atomRowData.position);
603 AtomPlanVectorColumn->gather(snap_->atomData.position,
604 atomColData.position);
605
606 // gather up the cutoff group positions
607
608 cgPlanVectorRow->gather(snap_->cgData.position,
609 cgRowData.position);
610
611 cgPlanVectorColumn->gather(snap_->cgData.position,
612 cgColData.position);
613
614
615
616 if (needVelocities_) {
617 // gather up the atomic velocities
618 AtomPlanVectorColumn->gather(snap_->atomData.velocity,
619 atomColData.velocity);
620
621 cgPlanVectorColumn->gather(snap_->cgData.velocity,
622 cgColData.velocity);
623 }
624
625
626 // if needed, gather the atomic rotation matrices
627 if (storageLayout_ & DataStorage::dslAmat) {
628 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
629 atomRowData.aMat);
630 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
631 atomColData.aMat);
632 }
633
634 // if needed, gather the atomic eletrostatic frames
635 if (storageLayout_ & DataStorage::dslElectroFrame) {
636 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
637 atomRowData.electroFrame);
638 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
639 atomColData.electroFrame);
640 }
641
642 // if needed, gather the atomic fluctuating charge values
643 if (storageLayout_ & DataStorage::dslFlucQPosition) {
644 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
645 atomRowData.flucQPos);
646 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
647 atomColData.flucQPos);
648 }
649
650 #endif
651 }
652
653 /* collects information obtained during the pre-pair loop onto local
654 * data structures.
655 */
656 void ForceMatrixDecomposition::collectIntermediateData() {
657 snap_ = sman_->getCurrentSnapshot();
658 storageLayout_ = sman_->getStorageLayout();
659 #ifdef IS_MPI
660
661 if (storageLayout_ & DataStorage::dslDensity) {
662
663 AtomPlanRealRow->scatter(atomRowData.density,
664 snap_->atomData.density);
665
666 int n = snap_->atomData.density.size();
667 vector<RealType> rho_tmp(n, 0.0);
668 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
669 for (int i = 0; i < n; i++)
670 snap_->atomData.density[i] += rho_tmp[i];
671 }
672
673 if (storageLayout_ & DataStorage::dslElectricField) {
674
675 AtomPlanVectorRow->scatter(atomRowData.electricField,
676 snap_->atomData.electricField);
677
678 int n = snap_->atomData.electricField.size();
679 vector<Vector3d> field_tmp(n, V3Zero);
680 AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
681 for (int i = 0; i < n; i++)
682 snap_->atomData.electricField[i] += field_tmp[i];
683 }
684 #endif
685 }
686
687 /*
688 * redistributes information obtained during the pre-pair loop out to
689 * row and column-indexed data structures
690 */
691 void ForceMatrixDecomposition::distributeIntermediateData() {
692 snap_ = sman_->getCurrentSnapshot();
693 storageLayout_ = sman_->getStorageLayout();
694 #ifdef IS_MPI
695 if (storageLayout_ & DataStorage::dslFunctional) {
696 AtomPlanRealRow->gather(snap_->atomData.functional,
697 atomRowData.functional);
698 AtomPlanRealColumn->gather(snap_->atomData.functional,
699 atomColData.functional);
700 }
701
702 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
703 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
704 atomRowData.functionalDerivative);
705 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
706 atomColData.functionalDerivative);
707 }
708 #endif
709 }
710
711
712 void ForceMatrixDecomposition::collectData() {
713 snap_ = sman_->getCurrentSnapshot();
714 storageLayout_ = sman_->getStorageLayout();
715 #ifdef IS_MPI
716 int n = snap_->atomData.force.size();
717 vector<Vector3d> frc_tmp(n, V3Zero);
718
719 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
720 for (int i = 0; i < n; i++) {
721 snap_->atomData.force[i] += frc_tmp[i];
722 frc_tmp[i] = 0.0;
723 }
724
725 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
726 for (int i = 0; i < n; i++) {
727 snap_->atomData.force[i] += frc_tmp[i];
728 }
729
730 if (storageLayout_ & DataStorage::dslTorque) {
731
732 int nt = snap_->atomData.torque.size();
733 vector<Vector3d> trq_tmp(nt, V3Zero);
734
735 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
736 for (int i = 0; i < nt; i++) {
737 snap_->atomData.torque[i] += trq_tmp[i];
738 trq_tmp[i] = 0.0;
739 }
740
741 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
742 for (int i = 0; i < nt; i++)
743 snap_->atomData.torque[i] += trq_tmp[i];
744 }
745
746 if (storageLayout_ & DataStorage::dslSkippedCharge) {
747
748 int ns = snap_->atomData.skippedCharge.size();
749 vector<RealType> skch_tmp(ns, 0.0);
750
751 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
752 for (int i = 0; i < ns; i++) {
753 snap_->atomData.skippedCharge[i] += skch_tmp[i];
754 skch_tmp[i] = 0.0;
755 }
756
757 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
758 for (int i = 0; i < ns; i++)
759 snap_->atomData.skippedCharge[i] += skch_tmp[i];
760
761 }
762
763 if (storageLayout_ & DataStorage::dslFlucQForce) {
764
765 int nq = snap_->atomData.flucQFrc.size();
766 vector<RealType> fqfrc_tmp(nq, 0.0);
767
768 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
769 for (int i = 0; i < nq; i++) {
770 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
771 fqfrc_tmp[i] = 0.0;
772 }
773
774 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
775 for (int i = 0; i < nq; i++)
776 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
777
778 }
779
780 nLocal_ = snap_->getNumberOfAtoms();
781
782 vector<potVec> pot_temp(nLocal_,
783 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
784
785 // scatter/gather pot_row into the members of my column
786
787 AtomPlanPotRow->scatter(pot_row, pot_temp);
788
789 for (int ii = 0; ii < pot_temp.size(); ii++ )
790 pairwisePot += pot_temp[ii];
791
792 if (storageLayout_ & DataStorage::dslParticlePot) {
793 // This is the pairwise contribution to the particle pot. The
794 // embedding contribution is added in each of the low level
795 // non-bonded routines. In single processor, this is done in
796 // unpackInteractionData, not in collectData.
797 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
798 for (int i = 0; i < nLocal_; i++) {
799 // factor of two is because the total potential terms are divided
800 // by 2 in parallel due to row/ column scatter
801 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
802 }
803 }
804 }
805
806 fill(pot_temp.begin(), pot_temp.end(),
807 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
808
809 AtomPlanPotColumn->scatter(pot_col, pot_temp);
810
811 for (int ii = 0; ii < pot_temp.size(); ii++ )
812 pairwisePot += pot_temp[ii];
813
814 if (storageLayout_ & DataStorage::dslParticlePot) {
815 // This is the pairwise contribution to the particle pot. The
816 // embedding contribution is added in each of the low level
817 // non-bonded routines. In single processor, this is done in
818 // unpackInteractionData, not in collectData.
819 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
820 for (int i = 0; i < nLocal_; i++) {
821 // factor of two is because the total potential terms are divided
822 // by 2 in parallel due to row/ column scatter
823 snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
824 }
825 }
826 }
827
828 if (storageLayout_ & DataStorage::dslParticlePot) {
829 int npp = snap_->atomData.particlePot.size();
830 vector<RealType> ppot_temp(npp, 0.0);
831
832 // This is the direct or embedding contribution to the particle
833 // pot.
834
835 AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
836 for (int i = 0; i < npp; i++) {
837 snap_->atomData.particlePot[i] += ppot_temp[i];
838 }
839
840 fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
841
842 AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
843 for (int i = 0; i < npp; i++) {
844 snap_->atomData.particlePot[i] += ppot_temp[i];
845 }
846 }
847
848 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
849 RealType ploc1 = pairwisePot[ii];
850 RealType ploc2 = 0.0;
851 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
852 pairwisePot[ii] = ploc2;
853 }
854
855 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
856 RealType ploc1 = embeddingPot[ii];
857 RealType ploc2 = 0.0;
858 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
859 embeddingPot[ii] = ploc2;
860 }
861
862 // Here be dragons.
863 MPI::Intracomm col = colComm.getComm();
864
865 col.Allreduce(MPI::IN_PLACE,
866 &snap_->frameData.conductiveHeatFlux[0], 3,
867 MPI::REALTYPE, MPI::SUM);
868
869
870 #endif
871
872 }
873
874 int ForceMatrixDecomposition::getNAtomsInRow() {
875 #ifdef IS_MPI
876 return nAtomsInRow_;
877 #else
878 return nLocal_;
879 #endif
880 }
881
882 /**
883 * returns the list of atoms belonging to this group.
884 */
885 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
886 #ifdef IS_MPI
887 return groupListRow_[cg1];
888 #else
889 return groupList_[cg1];
890 #endif
891 }
892
893 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
894 #ifdef IS_MPI
895 return groupListCol_[cg2];
896 #else
897 return groupList_[cg2];
898 #endif
899 }
900
901 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
902 Vector3d d;
903
904 #ifdef IS_MPI
905 d = cgColData.position[cg2] - cgRowData.position[cg1];
906 #else
907 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
908 #endif
909
910 snap_->wrapVector(d);
911 return d;
912 }
913
914 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
915 #ifdef IS_MPI
916 return cgColData.velocity[cg2];
917 #else
918 return snap_->cgData.velocity[cg2];
919 #endif
920 }
921
922 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
923 #ifdef IS_MPI
924 return atomColData.velocity[atom2];
925 #else
926 return snap_->atomData.velocity[atom2];
927 #endif
928 }
929
930
931 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
932
933 Vector3d d;
934
935 #ifdef IS_MPI
936 d = cgRowData.position[cg1] - atomRowData.position[atom1];
937 #else
938 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
939 #endif
940
941 snap_->wrapVector(d);
942 return d;
943 }
944
945 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
946 Vector3d d;
947
948 #ifdef IS_MPI
949 d = cgColData.position[cg2] - atomColData.position[atom2];
950 #else
951 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
952 #endif
953
954 snap_->wrapVector(d);
955 return d;
956 }
957
958 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
959 #ifdef IS_MPI
960 return massFactorsRow[atom1];
961 #else
962 return massFactors[atom1];
963 #endif
964 }
965
966 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
967 #ifdef IS_MPI
968 return massFactorsCol[atom2];
969 #else
970 return massFactors[atom2];
971 #endif
972
973 }
974
975 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
976 Vector3d d;
977
978 #ifdef IS_MPI
979 d = atomColData.position[atom2] - atomRowData.position[atom1];
980 #else
981 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
982 #endif
983
984 snap_->wrapVector(d);
985 return d;
986 }
987
988 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
989 return excludesForAtom[atom1];
990 }
991
992 /**
993 * We need to exclude some overcounted interactions that result from
994 * the parallel decomposition.
995 */
996 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
997 int unique_id_1, unique_id_2;
998
999 #ifdef IS_MPI
1000 // in MPI, we have to look up the unique IDs for each atom
1001 unique_id_1 = AtomRowToGlobal[atom1];
1002 unique_id_2 = AtomColToGlobal[atom2];
1003 #else
1004 unique_id_1 = AtomLocalToGlobal[atom1];
1005 unique_id_2 = AtomLocalToGlobal[atom2];
1006 #endif
1007
1008 if (unique_id_1 == unique_id_2) return true;
1009
1010 #ifdef IS_MPI
1011 // this prevents us from doing the pair on multiple processors
1012 if (unique_id_1 < unique_id_2) {
1013 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1014 } else {
1015 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1016 }
1017 #endif
1018
1019 return false;
1020 }
1021
1022 /**
1023 * We need to handle the interactions for atoms who are involved in
1024 * the same rigid body as well as some short range interactions
1025 * (bonds, bends, torsions) differently from other interactions.
1026 * We'll still visit the pairwise routines, but with a flag that
1027 * tells those routines to exclude the pair from direct long range
1028 * interactions. Some indirect interactions (notably reaction
1029 * field) must still be handled for these pairs.
1030 */
1031 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1032
1033 // excludesForAtom was constructed to use row/column indices in the MPI
1034 // version, and to use local IDs in the non-MPI version:
1035
1036 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1037 i != excludesForAtom[atom1].end(); ++i) {
1038 if ( (*i) == atom2 ) return true;
1039 }
1040
1041 return false;
1042 }
1043
1044
1045 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1046 #ifdef IS_MPI
1047 atomRowData.force[atom1] += fg;
1048 #else
1049 snap_->atomData.force[atom1] += fg;
1050 #endif
1051 }
1052
1053 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1054 #ifdef IS_MPI
1055 atomColData.force[atom2] += fg;
1056 #else
1057 snap_->atomData.force[atom2] += fg;
1058 #endif
1059 }
1060
1061 // filling interaction blocks with pointers
1062 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1063 int atom1, int atom2) {
1064
1065 idat.excluded = excludeAtomPair(atom1, atom2);
1066
1067 #ifdef IS_MPI
1068 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1069 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1070 // ff_->getAtomType(identsCol[atom2]) );
1071
1072 if (storageLayout_ & DataStorage::dslAmat) {
1073 idat.A1 = &(atomRowData.aMat[atom1]);
1074 idat.A2 = &(atomColData.aMat[atom2]);
1075 }
1076
1077 if (storageLayout_ & DataStorage::dslElectroFrame) {
1078 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1079 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1080 }
1081
1082 if (storageLayout_ & DataStorage::dslTorque) {
1083 idat.t1 = &(atomRowData.torque[atom1]);
1084 idat.t2 = &(atomColData.torque[atom2]);
1085 }
1086
1087 if (storageLayout_ & DataStorage::dslDensity) {
1088 idat.rho1 = &(atomRowData.density[atom1]);
1089 idat.rho2 = &(atomColData.density[atom2]);
1090 }
1091
1092 if (storageLayout_ & DataStorage::dslFunctional) {
1093 idat.frho1 = &(atomRowData.functional[atom1]);
1094 idat.frho2 = &(atomColData.functional[atom2]);
1095 }
1096
1097 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1098 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1099 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1100 }
1101
1102 if (storageLayout_ & DataStorage::dslParticlePot) {
1103 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1104 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1105 }
1106
1107 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1108 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1109 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1110 }
1111
1112 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1113 idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1114 idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1115 }
1116
1117 #else
1118
1119 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1120
1121 if (storageLayout_ & DataStorage::dslAmat) {
1122 idat.A1 = &(snap_->atomData.aMat[atom1]);
1123 idat.A2 = &(snap_->atomData.aMat[atom2]);
1124 }
1125
1126 if (storageLayout_ & DataStorage::dslElectroFrame) {
1127 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1128 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1129 }
1130
1131 if (storageLayout_ & DataStorage::dslTorque) {
1132 idat.t1 = &(snap_->atomData.torque[atom1]);
1133 idat.t2 = &(snap_->atomData.torque[atom2]);
1134 }
1135
1136 if (storageLayout_ & DataStorage::dslDensity) {
1137 idat.rho1 = &(snap_->atomData.density[atom1]);
1138 idat.rho2 = &(snap_->atomData.density[atom2]);
1139 }
1140
1141 if (storageLayout_ & DataStorage::dslFunctional) {
1142 idat.frho1 = &(snap_->atomData.functional[atom1]);
1143 idat.frho2 = &(snap_->atomData.functional[atom2]);
1144 }
1145
1146 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1147 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1148 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1149 }
1150
1151 if (storageLayout_ & DataStorage::dslParticlePot) {
1152 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1153 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1154 }
1155
1156 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1157 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1158 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1159 }
1160
1161 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1162 idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1163 idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1164 }
1165
1166 #endif
1167 }
1168
1169
1170 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1171 #ifdef IS_MPI
1172 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1173 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1174
1175 atomRowData.force[atom1] += *(idat.f1);
1176 atomColData.force[atom2] -= *(idat.f1);
1177
1178 if (storageLayout_ & DataStorage::dslFlucQForce) {
1179 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1180 atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1181 }
1182
1183 if (storageLayout_ & DataStorage::dslElectricField) {
1184 atomRowData.electricField[atom1] += *(idat.eField1);
1185 atomColData.electricField[atom2] += *(idat.eField2);
1186 }
1187
1188 #else
1189 pairwisePot += *(idat.pot);
1190
1191 snap_->atomData.force[atom1] += *(idat.f1);
1192 snap_->atomData.force[atom2] -= *(idat.f1);
1193
1194 if (idat.doParticlePot) {
1195 // This is the pairwise contribution to the particle pot. The
1196 // embedding contribution is added in each of the low level
1197 // non-bonded routines. In parallel, this calculation is done
1198 // in collectData, not in unpackInteractionData.
1199 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1200 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1201 }
1202
1203 if (storageLayout_ & DataStorage::dslFlucQForce) {
1204 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1205 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1206 }
1207
1208 if (storageLayout_ & DataStorage::dslElectricField) {
1209 snap_->atomData.electricField[atom1] += *(idat.eField1);
1210 snap_->atomData.electricField[atom2] += *(idat.eField2);
1211 }
1212
1213 #endif
1214
1215 }
1216
1217 /*
1218 * buildNeighborList
1219 *
1220 * first element of pair is row-indexed CutoffGroup
1221 * second element of pair is column-indexed CutoffGroup
1222 */
1223 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1224
1225 vector<pair<int, int> > neighborList;
1226 groupCutoffs cuts;
1227 bool doAllPairs = false;
1228
1229 #ifdef IS_MPI
1230 cellListRow_.clear();
1231 cellListCol_.clear();
1232 #else
1233 cellList_.clear();
1234 #endif
1235
1236 RealType rList_ = (largestRcut_ + skinThickness_);
1237 RealType rl2 = rList_ * rList_;
1238 Snapshot* snap_ = sman_->getCurrentSnapshot();
1239 Mat3x3d Hmat = snap_->getHmat();
1240 Vector3d Hx = Hmat.getColumn(0);
1241 Vector3d Hy = Hmat.getColumn(1);
1242 Vector3d Hz = Hmat.getColumn(2);
1243
1244 nCells_.x() = (int) ( Hx.length() )/ rList_;
1245 nCells_.y() = (int) ( Hy.length() )/ rList_;
1246 nCells_.z() = (int) ( Hz.length() )/ rList_;
1247
1248 // handle small boxes where the cell offsets can end up repeating cells
1249
1250 if (nCells_.x() < 3) doAllPairs = true;
1251 if (nCells_.y() < 3) doAllPairs = true;
1252 if (nCells_.z() < 3) doAllPairs = true;
1253
1254 Mat3x3d invHmat = snap_->getInvHmat();
1255 Vector3d rs, scaled, dr;
1256 Vector3i whichCell;
1257 int cellIndex;
1258 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1259
1260 #ifdef IS_MPI
1261 cellListRow_.resize(nCtot);
1262 cellListCol_.resize(nCtot);
1263 #else
1264 cellList_.resize(nCtot);
1265 #endif
1266
1267 if (!doAllPairs) {
1268 #ifdef IS_MPI
1269
1270 for (int i = 0; i < nGroupsInRow_; i++) {
1271 rs = cgRowData.position[i];
1272
1273 // scaled positions relative to the box vectors
1274 scaled = invHmat * rs;
1275
1276 // wrap the vector back into the unit box by subtracting integer box
1277 // numbers
1278 for (int j = 0; j < 3; j++) {
1279 scaled[j] -= roundMe(scaled[j]);
1280 scaled[j] += 0.5;
1281 }
1282
1283 // find xyz-indices of cell that cutoffGroup is in.
1284 whichCell.x() = nCells_.x() * scaled.x();
1285 whichCell.y() = nCells_.y() * scaled.y();
1286 whichCell.z() = nCells_.z() * scaled.z();
1287
1288 // find single index of this cell:
1289 cellIndex = Vlinear(whichCell, nCells_);
1290
1291 // add this cutoff group to the list of groups in this cell;
1292 cellListRow_[cellIndex].push_back(i);
1293 }
1294 for (int i = 0; i < nGroupsInCol_; i++) {
1295 rs = cgColData.position[i];
1296
1297 // scaled positions relative to the box vectors
1298 scaled = invHmat * rs;
1299
1300 // wrap the vector back into the unit box by subtracting integer box
1301 // numbers
1302 for (int j = 0; j < 3; j++) {
1303 scaled[j] -= roundMe(scaled[j]);
1304 scaled[j] += 0.5;
1305 }
1306
1307 // find xyz-indices of cell that cutoffGroup is in.
1308 whichCell.x() = nCells_.x() * scaled.x();
1309 whichCell.y() = nCells_.y() * scaled.y();
1310 whichCell.z() = nCells_.z() * scaled.z();
1311
1312 // find single index of this cell:
1313 cellIndex = Vlinear(whichCell, nCells_);
1314
1315 // add this cutoff group to the list of groups in this cell;
1316 cellListCol_[cellIndex].push_back(i);
1317 }
1318
1319 #else
1320 for (int i = 0; i < nGroups_; i++) {
1321 rs = snap_->cgData.position[i];
1322
1323 // scaled positions relative to the box vectors
1324 scaled = invHmat * rs;
1325
1326 // wrap the vector back into the unit box by subtracting integer box
1327 // numbers
1328 for (int j = 0; j < 3; j++) {
1329 scaled[j] -= roundMe(scaled[j]);
1330 scaled[j] += 0.5;
1331 }
1332
1333 // find xyz-indices of cell that cutoffGroup is in.
1334 whichCell.x() = nCells_.x() * scaled.x();
1335 whichCell.y() = nCells_.y() * scaled.y();
1336 whichCell.z() = nCells_.z() * scaled.z();
1337
1338 // find single index of this cell:
1339 cellIndex = Vlinear(whichCell, nCells_);
1340
1341 // add this cutoff group to the list of groups in this cell;
1342 cellList_[cellIndex].push_back(i);
1343 }
1344
1345 #endif
1346
1347 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1348 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1349 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1350 Vector3i m1v(m1x, m1y, m1z);
1351 int m1 = Vlinear(m1v, nCells_);
1352
1353 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1354 os != cellOffsets_.end(); ++os) {
1355
1356 Vector3i m2v = m1v + (*os);
1357
1358
1359 if (m2v.x() >= nCells_.x()) {
1360 m2v.x() = 0;
1361 } else if (m2v.x() < 0) {
1362 m2v.x() = nCells_.x() - 1;
1363 }
1364
1365 if (m2v.y() >= nCells_.y()) {
1366 m2v.y() = 0;
1367 } else if (m2v.y() < 0) {
1368 m2v.y() = nCells_.y() - 1;
1369 }
1370
1371 if (m2v.z() >= nCells_.z()) {
1372 m2v.z() = 0;
1373 } else if (m2v.z() < 0) {
1374 m2v.z() = nCells_.z() - 1;
1375 }
1376
1377 int m2 = Vlinear (m2v, nCells_);
1378
1379 #ifdef IS_MPI
1380 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1381 j1 != cellListRow_[m1].end(); ++j1) {
1382 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1383 j2 != cellListCol_[m2].end(); ++j2) {
1384
1385 // In parallel, we need to visit *all* pairs of row
1386 // & column indicies and will divide labor in the
1387 // force evaluation later.
1388 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1389 snap_->wrapVector(dr);
1390 cuts = getGroupCutoffs( (*j1), (*j2) );
1391 if (dr.lengthSquare() < cuts.third) {
1392 neighborList.push_back(make_pair((*j1), (*j2)));
1393 }
1394 }
1395 }
1396 #else
1397 for (vector<int>::iterator j1 = cellList_[m1].begin();
1398 j1 != cellList_[m1].end(); ++j1) {
1399 for (vector<int>::iterator j2 = cellList_[m2].begin();
1400 j2 != cellList_[m2].end(); ++j2) {
1401
1402 // Always do this if we're in different cells or if
1403 // we're in the same cell and the global index of
1404 // the j2 cutoff group is greater than or equal to
1405 // the j1 cutoff group. Note that Rappaport's code
1406 // has a "less than" conditional here, but that
1407 // deals with atom-by-atom computation. OpenMD
1408 // allows atoms within a single cutoff group to
1409 // interact with each other.
1410
1411
1412
1413 if (m2 != m1 || (*j2) >= (*j1) ) {
1414
1415 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1416 snap_->wrapVector(dr);
1417 cuts = getGroupCutoffs( (*j1), (*j2) );
1418 if (dr.lengthSquare() < cuts.third) {
1419 neighborList.push_back(make_pair((*j1), (*j2)));
1420 }
1421 }
1422 }
1423 }
1424 #endif
1425 }
1426 }
1427 }
1428 }
1429 } else {
1430 // branch to do all cutoff group pairs
1431 #ifdef IS_MPI
1432 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1433 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1434 dr = cgColData.position[j2] - cgRowData.position[j1];
1435 snap_->wrapVector(dr);
1436 cuts = getGroupCutoffs( j1, j2 );
1437 if (dr.lengthSquare() < cuts.third) {
1438 neighborList.push_back(make_pair(j1, j2));
1439 }
1440 }
1441 }
1442 #else
1443 // include all groups here.
1444 for (int j1 = 0; j1 < nGroups_; j1++) {
1445 // include self group interactions j2 == j1
1446 for (int j2 = j1; j2 < nGroups_; j2++) {
1447 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1448 snap_->wrapVector(dr);
1449 cuts = getGroupCutoffs( j1, j2 );
1450 if (dr.lengthSquare() < cuts.third) {
1451 neighborList.push_back(make_pair(j1, j2));
1452 }
1453 }
1454 }
1455 #endif
1456 }
1457
1458 // save the local cutoff group positions for the check that is
1459 // done on each loop:
1460 saved_CG_positions_.clear();
1461 for (int i = 0; i < nGroups_; i++)
1462 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1463
1464 return neighborList;
1465 }
1466 } //end namespace OpenMD