ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1713
Committed: Sat May 19 14:21:02 2012 UTC (12 years, 11 months ago) by gezelter
File size: 44861 byte(s)
Log Message:
adding communication and parallel support for fluctuating charges and
polarizability 

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 #ifdef IS_MPI
114
115 MPI::Intracomm row = rowComm.getComm();
116 MPI::Intracomm col = colComm.getComm();
117
118 AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123
124 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129
130 cgPlanIntRow = new Plan<int>(row, nGroups_);
131 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134
135 nAtomsInRow_ = AtomPlanIntRow->getSize();
136 nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 nGroupsInRow_ = cgPlanIntRow->getSize();
138 nGroupsInCol_ = cgPlanIntColumn->getSize();
139
140 // Modify the data storage objects with the correct layouts and sizes:
141 atomRowData.resize(nAtomsInRow_);
142 atomRowData.setStorageLayout(storageLayout_);
143 atomColData.resize(nAtomsInCol_);
144 atomColData.setStorageLayout(storageLayout_);
145 cgRowData.resize(nGroupsInRow_);
146 cgRowData.setStorageLayout(DataStorage::dslPosition);
147 cgColData.resize(nGroupsInCol_);
148 cgColData.setStorageLayout(DataStorage::dslPosition);
149
150 identsRow.resize(nAtomsInRow_);
151 identsCol.resize(nAtomsInCol_);
152
153 AtomPlanIntRow->gather(idents, identsRow);
154 AtomPlanIntColumn->gather(idents, identsCol);
155
156 // allocate memory for the parallel objects
157 atypesRow.resize(nAtomsInRow_);
158 atypesCol.resize(nAtomsInCol_);
159
160 for (int i = 0; i < nAtomsInRow_; i++)
161 atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 for (int i = 0; i < nAtomsInCol_; i++)
163 atypesCol[i] = ff_->getAtomType(identsCol[i]);
164
165 pot_row.resize(nAtomsInRow_);
166 pot_col.resize(nAtomsInCol_);
167
168 AtomRowToGlobal.resize(nAtomsInRow_);
169 AtomColToGlobal.resize(nAtomsInCol_);
170 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172
173 cgRowToGlobal.resize(nGroupsInRow_);
174 cgColToGlobal.resize(nGroupsInCol_);
175 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177
178 massFactorsRow.resize(nAtomsInRow_);
179 massFactorsCol.resize(nAtomsInCol_);
180 AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182
183 groupListRow_.clear();
184 groupListRow_.resize(nGroupsInRow_);
185 for (int i = 0; i < nGroupsInRow_; i++) {
186 int gid = cgRowToGlobal[i];
187 for (int j = 0; j < nAtomsInRow_; j++) {
188 int aid = AtomRowToGlobal[j];
189 if (globalGroupMembership[aid] == gid)
190 groupListRow_[i].push_back(j);
191 }
192 }
193
194 groupListCol_.clear();
195 groupListCol_.resize(nGroupsInCol_);
196 for (int i = 0; i < nGroupsInCol_; i++) {
197 int gid = cgColToGlobal[i];
198 for (int j = 0; j < nAtomsInCol_; j++) {
199 int aid = AtomColToGlobal[j];
200 if (globalGroupMembership[aid] == gid)
201 groupListCol_[i].push_back(j);
202 }
203 }
204
205 excludesForAtom.clear();
206 excludesForAtom.resize(nAtomsInRow_);
207 toposForAtom.clear();
208 toposForAtom.resize(nAtomsInRow_);
209 topoDist.clear();
210 topoDist.resize(nAtomsInRow_);
211 for (int i = 0; i < nAtomsInRow_; i++) {
212 int iglob = AtomRowToGlobal[i];
213
214 for (int j = 0; j < nAtomsInCol_; j++) {
215 int jglob = AtomColToGlobal[j];
216
217 if (excludes->hasPair(iglob, jglob))
218 excludesForAtom[i].push_back(j);
219
220 if (oneTwo->hasPair(iglob, jglob)) {
221 toposForAtom[i].push_back(j);
222 topoDist[i].push_back(1);
223 } else {
224 if (oneThree->hasPair(iglob, jglob)) {
225 toposForAtom[i].push_back(j);
226 topoDist[i].push_back(2);
227 } else {
228 if (oneFour->hasPair(iglob, jglob)) {
229 toposForAtom[i].push_back(j);
230 topoDist[i].push_back(3);
231 }
232 }
233 }
234 }
235 }
236
237 #else
238 excludesForAtom.clear();
239 excludesForAtom.resize(nLocal_);
240 toposForAtom.clear();
241 toposForAtom.resize(nLocal_);
242 topoDist.clear();
243 topoDist.resize(nLocal_);
244
245 for (int i = 0; i < nLocal_; i++) {
246 int iglob = AtomLocalToGlobal[i];
247
248 for (int j = 0; j < nLocal_; j++) {
249 int jglob = AtomLocalToGlobal[j];
250
251 if (excludes->hasPair(iglob, jglob))
252 excludesForAtom[i].push_back(j);
253
254 if (oneTwo->hasPair(iglob, jglob)) {
255 toposForAtom[i].push_back(j);
256 topoDist[i].push_back(1);
257 } else {
258 if (oneThree->hasPair(iglob, jglob)) {
259 toposForAtom[i].push_back(j);
260 topoDist[i].push_back(2);
261 } else {
262 if (oneFour->hasPair(iglob, jglob)) {
263 toposForAtom[i].push_back(j);
264 topoDist[i].push_back(3);
265 }
266 }
267 }
268 }
269 }
270 #endif
271
272 // allocate memory for the parallel objects
273 atypesLocal.resize(nLocal_);
274
275 for (int i = 0; i < nLocal_; i++)
276 atypesLocal[i] = ff_->getAtomType(idents[i]);
277
278 groupList_.clear();
279 groupList_.resize(nGroups_);
280 for (int i = 0; i < nGroups_; i++) {
281 int gid = cgLocalToGlobal[i];
282 for (int j = 0; j < nLocal_; j++) {
283 int aid = AtomLocalToGlobal[j];
284 if (globalGroupMembership[aid] == gid) {
285 groupList_[i].push_back(j);
286 }
287 }
288 }
289
290
291 createGtypeCutoffMap();
292
293 }
294
295 void ForceMatrixDecomposition::createGtypeCutoffMap() {
296
297 RealType tol = 1e-6;
298 largestRcut_ = 0.0;
299 RealType rc;
300 int atid;
301 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302
303 map<int, RealType> atypeCutoff;
304
305 for (set<AtomType*>::iterator at = atypes.begin();
306 at != atypes.end(); ++at){
307 atid = (*at)->getIdent();
308 if (userChoseCutoff_)
309 atypeCutoff[atid] = userCutoff_;
310 else
311 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 }
313
314 vector<RealType> gTypeCutoffs;
315 // first we do a single loop over the cutoff groups to find the
316 // largest cutoff for any atypes present in this group.
317 #ifdef IS_MPI
318 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 groupRowToGtype.resize(nGroupsInRow_);
320 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 for (vector<int>::iterator ia = atomListRow.begin();
323 ia != atomListRow.end(); ++ia) {
324 int atom1 = (*ia);
325 atid = identsRow[atom1];
326 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 groupCutoffRow[cg1] = atypeCutoff[atid];
328 }
329 }
330
331 bool gTypeFound = false;
332 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 groupRowToGtype[cg1] = gt;
335 gTypeFound = true;
336 }
337 }
338 if (!gTypeFound) {
339 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 }
342
343 }
344 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 groupColToGtype.resize(nGroupsInCol_);
346 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 for (vector<int>::iterator jb = atomListCol.begin();
349 jb != atomListCol.end(); ++jb) {
350 int atom2 = (*jb);
351 atid = identsCol[atom2];
352 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 groupCutoffCol[cg2] = atypeCutoff[atid];
354 }
355 }
356 bool gTypeFound = false;
357 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 groupColToGtype[cg2] = gt;
360 gTypeFound = true;
361 }
362 }
363 if (!gTypeFound) {
364 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 }
367 }
368 #else
369
370 vector<RealType> groupCutoff(nGroups_, 0.0);
371 groupToGtype.resize(nGroups_);
372 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 groupCutoff[cg1] = 0.0;
374 vector<int> atomList = getAtomsInGroupRow(cg1);
375 for (vector<int>::iterator ia = atomList.begin();
376 ia != atomList.end(); ++ia) {
377 int atom1 = (*ia);
378 atid = idents[atom1];
379 if (atypeCutoff[atid] > groupCutoff[cg1])
380 groupCutoff[cg1] = atypeCutoff[atid];
381 }
382
383 bool gTypeFound = false;
384 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 groupToGtype[cg1] = gt;
387 gTypeFound = true;
388 }
389 }
390 if (!gTypeFound) {
391 gTypeCutoffs.push_back( groupCutoff[cg1] );
392 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 }
394 }
395 #endif
396
397 // Now we find the maximum group cutoff value present in the simulation
398
399 RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 gTypeCutoffs.end());
401
402 #ifdef IS_MPI
403 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 MPI::MAX);
405 #endif
406
407 RealType tradRcut = groupMax;
408
409 for (int i = 0; i < gTypeCutoffs.size(); i++) {
410 for (int j = 0; j < gTypeCutoffs.size(); j++) {
411 RealType thisRcut;
412 switch(cutoffPolicy_) {
413 case TRADITIONAL:
414 thisRcut = tradRcut;
415 break;
416 case MIX:
417 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 break;
419 case MAX:
420 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 break;
422 default:
423 sprintf(painCave.errMsg,
424 "ForceMatrixDecomposition::createGtypeCutoffMap "
425 "hit an unknown cutoff policy!\n");
426 painCave.severity = OPENMD_ERROR;
427 painCave.isFatal = 1;
428 simError();
429 break;
430 }
431
432 pair<int,int> key = make_pair(i,j);
433 gTypeCutoffMap[key].first = thisRcut;
434 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 // sanity check
438
439 if (userChoseCutoff_) {
440 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 sprintf(painCave.errMsg,
442 "ForceMatrixDecomposition::createGtypeCutoffMap "
443 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 painCave.severity = OPENMD_ERROR;
445 painCave.isFatal = 1;
446 simError();
447 }
448 }
449 }
450 }
451 }
452
453
454 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 int i, j;
456 #ifdef IS_MPI
457 i = groupRowToGtype[cg1];
458 j = groupColToGtype[cg2];
459 #else
460 i = groupToGtype[cg1];
461 j = groupToGtype[cg2];
462 #endif
463 return gTypeCutoffMap[make_pair(i,j)];
464 }
465
466 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 if (toposForAtom[atom1][j] == atom2)
469 return topoDist[atom1][j];
470 }
471 return 0;
472 }
473
474 void ForceMatrixDecomposition::zeroWorkArrays() {
475 pairwisePot = 0.0;
476 embeddingPot = 0.0;
477
478 #ifdef IS_MPI
479 if (storageLayout_ & DataStorage::dslForce) {
480 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 }
483
484 if (storageLayout_ & DataStorage::dslTorque) {
485 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 }
488
489 fill(pot_row.begin(), pot_row.end(),
490 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491
492 fill(pot_col.begin(), pot_col.end(),
493 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
494
495 if (storageLayout_ & DataStorage::dslParticlePot) {
496 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 0.0);
498 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 0.0);
500 }
501
502 if (storageLayout_ & DataStorage::dslDensity) {
503 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 }
506
507 if (storageLayout_ & DataStorage::dslFunctional) {
508 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 0.0);
510 fill(atomColData.functional.begin(), atomColData.functional.end(),
511 0.0);
512 }
513
514 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
515 fill(atomRowData.functionalDerivative.begin(),
516 atomRowData.functionalDerivative.end(), 0.0);
517 fill(atomColData.functionalDerivative.begin(),
518 atomColData.functionalDerivative.end(), 0.0);
519 }
520
521 if (storageLayout_ & DataStorage::dslSkippedCharge) {
522 fill(atomRowData.skippedCharge.begin(),
523 atomRowData.skippedCharge.end(), 0.0);
524 fill(atomColData.skippedCharge.begin(),
525 atomColData.skippedCharge.end(), 0.0);
526 }
527
528 if (storageLayout_ & DataStorage::dslElectricField) {
529 fill(atomRowData.electricField.begin(),
530 atomRowData.electricField.end(), V3Zero);
531 fill(atomColData.electricField.begin(),
532 atomColData.electricField.end(), V3Zero);
533 }
534 if (storageLayout_ & DataStorage::dslFlucQForce) {
535 fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
536 0.0);
537 fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
538 0.0);
539 }
540
541 #endif
542 // even in parallel, we need to zero out the local arrays:
543
544 if (storageLayout_ & DataStorage::dslParticlePot) {
545 fill(snap_->atomData.particlePot.begin(),
546 snap_->atomData.particlePot.end(), 0.0);
547 }
548
549 if (storageLayout_ & DataStorage::dslDensity) {
550 fill(snap_->atomData.density.begin(),
551 snap_->atomData.density.end(), 0.0);
552 }
553
554 if (storageLayout_ & DataStorage::dslFunctional) {
555 fill(snap_->atomData.functional.begin(),
556 snap_->atomData.functional.end(), 0.0);
557 }
558
559 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
560 fill(snap_->atomData.functionalDerivative.begin(),
561 snap_->atomData.functionalDerivative.end(), 0.0);
562 }
563
564 if (storageLayout_ & DataStorage::dslSkippedCharge) {
565 fill(snap_->atomData.skippedCharge.begin(),
566 snap_->atomData.skippedCharge.end(), 0.0);
567 }
568
569 if (storageLayout_ & DataStorage::dslElectricField) {
570 fill(snap_->atomData.electricField.begin(),
571 snap_->atomData.electricField.end(), V3Zero);
572 }
573 }
574
575
576 void ForceMatrixDecomposition::distributeData() {
577 snap_ = sman_->getCurrentSnapshot();
578 storageLayout_ = sman_->getStorageLayout();
579 #ifdef IS_MPI
580
581 // gather up the atomic positions
582 AtomPlanVectorRow->gather(snap_->atomData.position,
583 atomRowData.position);
584 AtomPlanVectorColumn->gather(snap_->atomData.position,
585 atomColData.position);
586
587 // gather up the cutoff group positions
588
589 cgPlanVectorRow->gather(snap_->cgData.position,
590 cgRowData.position);
591
592 cgPlanVectorColumn->gather(snap_->cgData.position,
593 cgColData.position);
594
595
596 // if needed, gather the atomic rotation matrices
597 if (storageLayout_ & DataStorage::dslAmat) {
598 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
599 atomRowData.aMat);
600 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
601 atomColData.aMat);
602 }
603
604 // if needed, gather the atomic eletrostatic frames
605 if (storageLayout_ & DataStorage::dslElectroFrame) {
606 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
607 atomRowData.electroFrame);
608 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
609 atomColData.electroFrame);
610 }
611
612 // if needed, gather the atomic fluctuating charge values
613 if (storageLayout_ & DataStorage::dslFlucQPosition) {
614 AtomPlanRealRow->gather(snap_->atomData.flucQPos,
615 atomRowData.flucQPos);
616 AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
617 atomColData.flucQPos);
618 }
619
620 #endif
621 }
622
623 /* collects information obtained during the pre-pair loop onto local
624 * data structures.
625 */
626 void ForceMatrixDecomposition::collectIntermediateData() {
627 snap_ = sman_->getCurrentSnapshot();
628 storageLayout_ = sman_->getStorageLayout();
629 #ifdef IS_MPI
630
631 if (storageLayout_ & DataStorage::dslDensity) {
632
633 AtomPlanRealRow->scatter(atomRowData.density,
634 snap_->atomData.density);
635
636 int n = snap_->atomData.density.size();
637 vector<RealType> rho_tmp(n, 0.0);
638 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
639 for (int i = 0; i < n; i++)
640 snap_->atomData.density[i] += rho_tmp[i];
641 }
642
643 if (storageLayout_ & DataStorage::dslElectricField) {
644
645 AtomPlanVectorRow->scatter(atomRowData.electricField,
646 snap_->atomData.electricField);
647
648 int n = snap_->atomData.electricField.size();
649 vector<Vector3d> field_tmp(n, V3Zero);
650 AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
651 for (int i = 0; i < n; i++)
652 snap_->atomData.electricField[i] += field_tmp[i];
653 }
654 #endif
655 }
656
657 /*
658 * redistributes information obtained during the pre-pair loop out to
659 * row and column-indexed data structures
660 */
661 void ForceMatrixDecomposition::distributeIntermediateData() {
662 snap_ = sman_->getCurrentSnapshot();
663 storageLayout_ = sman_->getStorageLayout();
664 #ifdef IS_MPI
665 if (storageLayout_ & DataStorage::dslFunctional) {
666 AtomPlanRealRow->gather(snap_->atomData.functional,
667 atomRowData.functional);
668 AtomPlanRealColumn->gather(snap_->atomData.functional,
669 atomColData.functional);
670 }
671
672 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
673 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
674 atomRowData.functionalDerivative);
675 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
676 atomColData.functionalDerivative);
677 }
678 #endif
679 }
680
681
682 void ForceMatrixDecomposition::collectData() {
683 snap_ = sman_->getCurrentSnapshot();
684 storageLayout_ = sman_->getStorageLayout();
685 #ifdef IS_MPI
686 int n = snap_->atomData.force.size();
687 vector<Vector3d> frc_tmp(n, V3Zero);
688
689 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
690 for (int i = 0; i < n; i++) {
691 snap_->atomData.force[i] += frc_tmp[i];
692 frc_tmp[i] = 0.0;
693 }
694
695 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
696 for (int i = 0; i < n; i++) {
697 snap_->atomData.force[i] += frc_tmp[i];
698 }
699
700 if (storageLayout_ & DataStorage::dslTorque) {
701
702 int nt = snap_->atomData.torque.size();
703 vector<Vector3d> trq_tmp(nt, V3Zero);
704
705 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
706 for (int i = 0; i < nt; i++) {
707 snap_->atomData.torque[i] += trq_tmp[i];
708 trq_tmp[i] = 0.0;
709 }
710
711 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
712 for (int i = 0; i < nt; i++)
713 snap_->atomData.torque[i] += trq_tmp[i];
714 }
715
716 if (storageLayout_ & DataStorage::dslSkippedCharge) {
717
718 int ns = snap_->atomData.skippedCharge.size();
719 vector<RealType> skch_tmp(ns, 0.0);
720
721 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
722 for (int i = 0; i < ns; i++) {
723 snap_->atomData.skippedCharge[i] += skch_tmp[i];
724 skch_tmp[i] = 0.0;
725 }
726
727 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
728 for (int i = 0; i < ns; i++)
729 snap_->atomData.skippedCharge[i] += skch_tmp[i];
730
731 }
732
733 if (storageLayout_ & DataStorage::dslFlucQForce) {
734
735 int nq = snap_->atomData.flucQFrc.size();
736 vector<RealType> fqfrc_tmp(nq, 0.0);
737
738 AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
739 for (int i = 0; i < nq; i++) {
740 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
741 fqfrc_tmp[i] = 0.0;
742 }
743
744 AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
745 for (int i = 0; i < nq; i++)
746 snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
747
748 }
749
750 nLocal_ = snap_->getNumberOfAtoms();
751
752 vector<potVec> pot_temp(nLocal_,
753 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
754
755 // scatter/gather pot_row into the members of my column
756
757 AtomPlanPotRow->scatter(pot_row, pot_temp);
758
759 for (int ii = 0; ii < pot_temp.size(); ii++ )
760 pairwisePot += pot_temp[ii];
761
762 fill(pot_temp.begin(), pot_temp.end(),
763 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
764
765 AtomPlanPotColumn->scatter(pot_col, pot_temp);
766
767 for (int ii = 0; ii < pot_temp.size(); ii++ )
768 pairwisePot += pot_temp[ii];
769
770 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
771 RealType ploc1 = pairwisePot[ii];
772 RealType ploc2 = 0.0;
773 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
774 pairwisePot[ii] = ploc2;
775 }
776
777 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
778 RealType ploc1 = embeddingPot[ii];
779 RealType ploc2 = 0.0;
780 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
781 embeddingPot[ii] = ploc2;
782 }
783
784 #endif
785
786 }
787
788 int ForceMatrixDecomposition::getNAtomsInRow() {
789 #ifdef IS_MPI
790 return nAtomsInRow_;
791 #else
792 return nLocal_;
793 #endif
794 }
795
796 /**
797 * returns the list of atoms belonging to this group.
798 */
799 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
800 #ifdef IS_MPI
801 return groupListRow_[cg1];
802 #else
803 return groupList_[cg1];
804 #endif
805 }
806
807 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
808 #ifdef IS_MPI
809 return groupListCol_[cg2];
810 #else
811 return groupList_[cg2];
812 #endif
813 }
814
815 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
816 Vector3d d;
817
818 #ifdef IS_MPI
819 d = cgColData.position[cg2] - cgRowData.position[cg1];
820 #else
821 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
822 #endif
823
824 snap_->wrapVector(d);
825 return d;
826 }
827
828
829 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
830
831 Vector3d d;
832
833 #ifdef IS_MPI
834 d = cgRowData.position[cg1] - atomRowData.position[atom1];
835 #else
836 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
837 #endif
838
839 snap_->wrapVector(d);
840 return d;
841 }
842
843 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
844 Vector3d d;
845
846 #ifdef IS_MPI
847 d = cgColData.position[cg2] - atomColData.position[atom2];
848 #else
849 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
850 #endif
851
852 snap_->wrapVector(d);
853 return d;
854 }
855
856 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
857 #ifdef IS_MPI
858 return massFactorsRow[atom1];
859 #else
860 return massFactors[atom1];
861 #endif
862 }
863
864 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
865 #ifdef IS_MPI
866 return massFactorsCol[atom2];
867 #else
868 return massFactors[atom2];
869 #endif
870
871 }
872
873 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
874 Vector3d d;
875
876 #ifdef IS_MPI
877 d = atomColData.position[atom2] - atomRowData.position[atom1];
878 #else
879 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
880 #endif
881
882 snap_->wrapVector(d);
883 return d;
884 }
885
886 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
887 return excludesForAtom[atom1];
888 }
889
890 /**
891 * We need to exclude some overcounted interactions that result from
892 * the parallel decomposition.
893 */
894 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
895 int unique_id_1, unique_id_2;
896
897 #ifdef IS_MPI
898 // in MPI, we have to look up the unique IDs for each atom
899 unique_id_1 = AtomRowToGlobal[atom1];
900 unique_id_2 = AtomColToGlobal[atom2];
901 #else
902 unique_id_1 = AtomLocalToGlobal[atom1];
903 unique_id_2 = AtomLocalToGlobal[atom2];
904 #endif
905
906 if (unique_id_1 == unique_id_2) return true;
907
908 #ifdef IS_MPI
909 // this prevents us from doing the pair on multiple processors
910 if (unique_id_1 < unique_id_2) {
911 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
912 } else {
913 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
914 }
915 #endif
916
917 return false;
918 }
919
920 /**
921 * We need to handle the interactions for atoms who are involved in
922 * the same rigid body as well as some short range interactions
923 * (bonds, bends, torsions) differently from other interactions.
924 * We'll still visit the pairwise routines, but with a flag that
925 * tells those routines to exclude the pair from direct long range
926 * interactions. Some indirect interactions (notably reaction
927 * field) must still be handled for these pairs.
928 */
929 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
930
931 // excludesForAtom was constructed to use row/column indices in the MPI
932 // version, and to use local IDs in the non-MPI version:
933
934 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
935 i != excludesForAtom[atom1].end(); ++i) {
936 if ( (*i) == atom2 ) return true;
937 }
938
939 return false;
940 }
941
942
943 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
944 #ifdef IS_MPI
945 atomRowData.force[atom1] += fg;
946 #else
947 snap_->atomData.force[atom1] += fg;
948 #endif
949 }
950
951 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
952 #ifdef IS_MPI
953 atomColData.force[atom2] += fg;
954 #else
955 snap_->atomData.force[atom2] += fg;
956 #endif
957 }
958
959 // filling interaction blocks with pointers
960 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
961 int atom1, int atom2) {
962
963 idat.excluded = excludeAtomPair(atom1, atom2);
964
965 #ifdef IS_MPI
966 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
967 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
968 // ff_->getAtomType(identsCol[atom2]) );
969
970 if (storageLayout_ & DataStorage::dslAmat) {
971 idat.A1 = &(atomRowData.aMat[atom1]);
972 idat.A2 = &(atomColData.aMat[atom2]);
973 }
974
975 if (storageLayout_ & DataStorage::dslElectroFrame) {
976 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
977 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
978 }
979
980 if (storageLayout_ & DataStorage::dslTorque) {
981 idat.t1 = &(atomRowData.torque[atom1]);
982 idat.t2 = &(atomColData.torque[atom2]);
983 }
984
985 if (storageLayout_ & DataStorage::dslDensity) {
986 idat.rho1 = &(atomRowData.density[atom1]);
987 idat.rho2 = &(atomColData.density[atom2]);
988 }
989
990 if (storageLayout_ & DataStorage::dslFunctional) {
991 idat.frho1 = &(atomRowData.functional[atom1]);
992 idat.frho2 = &(atomColData.functional[atom2]);
993 }
994
995 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
996 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
997 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
998 }
999
1000 if (storageLayout_ & DataStorage::dslParticlePot) {
1001 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1002 idat.particlePot2 = &(atomColData.particlePot[atom2]);
1003 }
1004
1005 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1006 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1007 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1008 }
1009
1010 #else
1011
1012
1013 // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1014 // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1015 // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1016
1017 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1018 //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1019 // ff_->getAtomType(idents[atom2]) );
1020
1021 if (storageLayout_ & DataStorage::dslAmat) {
1022 idat.A1 = &(snap_->atomData.aMat[atom1]);
1023 idat.A2 = &(snap_->atomData.aMat[atom2]);
1024 }
1025
1026 if (storageLayout_ & DataStorage::dslElectroFrame) {
1027 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1028 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1029 }
1030
1031 if (storageLayout_ & DataStorage::dslTorque) {
1032 idat.t1 = &(snap_->atomData.torque[atom1]);
1033 idat.t2 = &(snap_->atomData.torque[atom2]);
1034 }
1035
1036 if (storageLayout_ & DataStorage::dslDensity) {
1037 idat.rho1 = &(snap_->atomData.density[atom1]);
1038 idat.rho2 = &(snap_->atomData.density[atom2]);
1039 }
1040
1041 if (storageLayout_ & DataStorage::dslFunctional) {
1042 idat.frho1 = &(snap_->atomData.functional[atom1]);
1043 idat.frho2 = &(snap_->atomData.functional[atom2]);
1044 }
1045
1046 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1047 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1048 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1049 }
1050
1051 if (storageLayout_ & DataStorage::dslParticlePot) {
1052 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1053 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1054 }
1055
1056 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1057 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1058 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1059 }
1060 #endif
1061 }
1062
1063
1064 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1065 #ifdef IS_MPI
1066 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1067 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1068
1069 atomRowData.force[atom1] += *(idat.f1);
1070 atomColData.force[atom2] -= *(idat.f1);
1071
1072 // should particle pot be done here also?
1073 #else
1074 pairwisePot += *(idat.pot);
1075
1076 snap_->atomData.force[atom1] += *(idat.f1);
1077 snap_->atomData.force[atom2] -= *(idat.f1);
1078
1079 if (idat.doParticlePot) {
1080 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1081 snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1082 }
1083
1084 #endif
1085
1086 }
1087
1088 /*
1089 * buildNeighborList
1090 *
1091 * first element of pair is row-indexed CutoffGroup
1092 * second element of pair is column-indexed CutoffGroup
1093 */
1094 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1095
1096 vector<pair<int, int> > neighborList;
1097 groupCutoffs cuts;
1098 bool doAllPairs = false;
1099
1100 #ifdef IS_MPI
1101 cellListRow_.clear();
1102 cellListCol_.clear();
1103 #else
1104 cellList_.clear();
1105 #endif
1106
1107 RealType rList_ = (largestRcut_ + skinThickness_);
1108 RealType rl2 = rList_ * rList_;
1109 Snapshot* snap_ = sman_->getCurrentSnapshot();
1110 Mat3x3d Hmat = snap_->getHmat();
1111 Vector3d Hx = Hmat.getColumn(0);
1112 Vector3d Hy = Hmat.getColumn(1);
1113 Vector3d Hz = Hmat.getColumn(2);
1114
1115 nCells_.x() = (int) ( Hx.length() )/ rList_;
1116 nCells_.y() = (int) ( Hy.length() )/ rList_;
1117 nCells_.z() = (int) ( Hz.length() )/ rList_;
1118
1119 // handle small boxes where the cell offsets can end up repeating cells
1120
1121 if (nCells_.x() < 3) doAllPairs = true;
1122 if (nCells_.y() < 3) doAllPairs = true;
1123 if (nCells_.z() < 3) doAllPairs = true;
1124
1125 Mat3x3d invHmat = snap_->getInvHmat();
1126 Vector3d rs, scaled, dr;
1127 Vector3i whichCell;
1128 int cellIndex;
1129 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1130
1131 #ifdef IS_MPI
1132 cellListRow_.resize(nCtot);
1133 cellListCol_.resize(nCtot);
1134 #else
1135 cellList_.resize(nCtot);
1136 #endif
1137
1138 if (!doAllPairs) {
1139 #ifdef IS_MPI
1140
1141 for (int i = 0; i < nGroupsInRow_; i++) {
1142 rs = cgRowData.position[i];
1143
1144 // scaled positions relative to the box vectors
1145 scaled = invHmat * rs;
1146
1147 // wrap the vector back into the unit box by subtracting integer box
1148 // numbers
1149 for (int j = 0; j < 3; j++) {
1150 scaled[j] -= roundMe(scaled[j]);
1151 scaled[j] += 0.5;
1152 }
1153
1154 // find xyz-indices of cell that cutoffGroup is in.
1155 whichCell.x() = nCells_.x() * scaled.x();
1156 whichCell.y() = nCells_.y() * scaled.y();
1157 whichCell.z() = nCells_.z() * scaled.z();
1158
1159 // find single index of this cell:
1160 cellIndex = Vlinear(whichCell, nCells_);
1161
1162 // add this cutoff group to the list of groups in this cell;
1163 cellListRow_[cellIndex].push_back(i);
1164 }
1165 for (int i = 0; i < nGroupsInCol_; i++) {
1166 rs = cgColData.position[i];
1167
1168 // scaled positions relative to the box vectors
1169 scaled = invHmat * rs;
1170
1171 // wrap the vector back into the unit box by subtracting integer box
1172 // numbers
1173 for (int j = 0; j < 3; j++) {
1174 scaled[j] -= roundMe(scaled[j]);
1175 scaled[j] += 0.5;
1176 }
1177
1178 // find xyz-indices of cell that cutoffGroup is in.
1179 whichCell.x() = nCells_.x() * scaled.x();
1180 whichCell.y() = nCells_.y() * scaled.y();
1181 whichCell.z() = nCells_.z() * scaled.z();
1182
1183 // find single index of this cell:
1184 cellIndex = Vlinear(whichCell, nCells_);
1185
1186 // add this cutoff group to the list of groups in this cell;
1187 cellListCol_[cellIndex].push_back(i);
1188 }
1189
1190 #else
1191 for (int i = 0; i < nGroups_; i++) {
1192 rs = snap_->cgData.position[i];
1193
1194 // scaled positions relative to the box vectors
1195 scaled = invHmat * rs;
1196
1197 // wrap the vector back into the unit box by subtracting integer box
1198 // numbers
1199 for (int j = 0; j < 3; j++) {
1200 scaled[j] -= roundMe(scaled[j]);
1201 scaled[j] += 0.5;
1202 }
1203
1204 // find xyz-indices of cell that cutoffGroup is in.
1205 whichCell.x() = nCells_.x() * scaled.x();
1206 whichCell.y() = nCells_.y() * scaled.y();
1207 whichCell.z() = nCells_.z() * scaled.z();
1208
1209 // find single index of this cell:
1210 cellIndex = Vlinear(whichCell, nCells_);
1211
1212 // add this cutoff group to the list of groups in this cell;
1213 cellList_[cellIndex].push_back(i);
1214 }
1215
1216 #endif
1217
1218 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1219 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1220 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1221 Vector3i m1v(m1x, m1y, m1z);
1222 int m1 = Vlinear(m1v, nCells_);
1223
1224 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1225 os != cellOffsets_.end(); ++os) {
1226
1227 Vector3i m2v = m1v + (*os);
1228
1229
1230 if (m2v.x() >= nCells_.x()) {
1231 m2v.x() = 0;
1232 } else if (m2v.x() < 0) {
1233 m2v.x() = nCells_.x() - 1;
1234 }
1235
1236 if (m2v.y() >= nCells_.y()) {
1237 m2v.y() = 0;
1238 } else if (m2v.y() < 0) {
1239 m2v.y() = nCells_.y() - 1;
1240 }
1241
1242 if (m2v.z() >= nCells_.z()) {
1243 m2v.z() = 0;
1244 } else if (m2v.z() < 0) {
1245 m2v.z() = nCells_.z() - 1;
1246 }
1247
1248 int m2 = Vlinear (m2v, nCells_);
1249
1250 #ifdef IS_MPI
1251 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1252 j1 != cellListRow_[m1].end(); ++j1) {
1253 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1254 j2 != cellListCol_[m2].end(); ++j2) {
1255
1256 // In parallel, we need to visit *all* pairs of row
1257 // & column indicies and will divide labor in the
1258 // force evaluation later.
1259 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1260 snap_->wrapVector(dr);
1261 cuts = getGroupCutoffs( (*j1), (*j2) );
1262 if (dr.lengthSquare() < cuts.third) {
1263 neighborList.push_back(make_pair((*j1), (*j2)));
1264 }
1265 }
1266 }
1267 #else
1268 for (vector<int>::iterator j1 = cellList_[m1].begin();
1269 j1 != cellList_[m1].end(); ++j1) {
1270 for (vector<int>::iterator j2 = cellList_[m2].begin();
1271 j2 != cellList_[m2].end(); ++j2) {
1272
1273 // Always do this if we're in different cells or if
1274 // we're in the same cell and the global index of
1275 // the j2 cutoff group is greater than or equal to
1276 // the j1 cutoff group. Note that Rappaport's code
1277 // has a "less than" conditional here, but that
1278 // deals with atom-by-atom computation. OpenMD
1279 // allows atoms within a single cutoff group to
1280 // interact with each other.
1281
1282
1283
1284 if (m2 != m1 || (*j2) >= (*j1) ) {
1285
1286 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1287 snap_->wrapVector(dr);
1288 cuts = getGroupCutoffs( (*j1), (*j2) );
1289 if (dr.lengthSquare() < cuts.third) {
1290 neighborList.push_back(make_pair((*j1), (*j2)));
1291 }
1292 }
1293 }
1294 }
1295 #endif
1296 }
1297 }
1298 }
1299 }
1300 } else {
1301 // branch to do all cutoff group pairs
1302 #ifdef IS_MPI
1303 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1304 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1305 dr = cgColData.position[j2] - cgRowData.position[j1];
1306 snap_->wrapVector(dr);
1307 cuts = getGroupCutoffs( j1, j2 );
1308 if (dr.lengthSquare() < cuts.third) {
1309 neighborList.push_back(make_pair(j1, j2));
1310 }
1311 }
1312 }
1313 #else
1314 // include all groups here.
1315 for (int j1 = 0; j1 < nGroups_; j1++) {
1316 // include self group interactions j2 == j1
1317 for (int j2 = j1; j2 < nGroups_; j2++) {
1318 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1319 snap_->wrapVector(dr);
1320 cuts = getGroupCutoffs( j1, j2 );
1321 if (dr.lengthSquare() < cuts.third) {
1322 neighborList.push_back(make_pair(j1, j2));
1323 }
1324 }
1325 }
1326 #endif
1327 }
1328
1329 // save the local cutoff group positions for the check that is
1330 // done on each loop:
1331 saved_CG_positions_.clear();
1332 for (int i = 0; i < nGroups_; i++)
1333 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1334
1335 return neighborList;
1336 }
1337 } //end namespace OpenMD