ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1706
Committed: Fri Apr 27 20:44:16 2012 UTC (13 years ago) by gezelter
File size: 42596 byte(s)
Log Message:
fixed an initialization bug in Dump2XYZ

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include "parallel/ForceMatrixDecomposition.hpp"
43 #include "math/SquareMatrix3.hpp"
44 #include "nonbonded/NonBondedInteraction.hpp"
45 #include "brains/SnapshotManager.hpp"
46 #include "brains/PairList.hpp"
47
48 using namespace std;
49 namespace OpenMD {
50
51 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52
53 // In a parallel computation, row and colum scans must visit all
54 // surrounding cells (not just the 14 upper triangular blocks that
55 // are used when the processor can see all pairs)
56 #ifdef IS_MPI
57 cellOffsets_.clear();
58 cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59 cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60 cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61 cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62 cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63 cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64 cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65 cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66 cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68 cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69 cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71 cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72 cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73 cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74 cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75 cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76 cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77 cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78 cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81 cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82 cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83 cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84 cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 #endif
86 }
87
88
89 /**
90 * distributeInitialData is essentially a copy of the older fortran
91 * SimulationSetup
92 */
93 void ForceMatrixDecomposition::distributeInitialData() {
94 snap_ = sman_->getCurrentSnapshot();
95 storageLayout_ = sman_->getStorageLayout();
96 ff_ = info_->getForceField();
97 nLocal_ = snap_->getNumberOfAtoms();
98
99 nGroups_ = info_->getNLocalCutoffGroups();
100 // gather the information for atomtype IDs (atids):
101 idents = info_->getIdentArray();
102 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103 cgLocalToGlobal = info_->getGlobalGroupIndices();
104 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105
106 massFactors = info_->getMassFactors();
107
108 PairList* excludes = info_->getExcludedInteractions();
109 PairList* oneTwo = info_->getOneTwoInteractions();
110 PairList* oneThree = info_->getOneThreeInteractions();
111 PairList* oneFour = info_->getOneFourInteractions();
112
113 #ifdef IS_MPI
114
115 MPI::Intracomm row = rowComm.getComm();
116 MPI::Intracomm col = colComm.getComm();
117
118 AtomPlanIntRow = new Plan<int>(row, nLocal_);
119 AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120 AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121 AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122 AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123
124 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125 AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126 AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127 AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128 AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129
130 cgPlanIntRow = new Plan<int>(row, nGroups_);
131 cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132 cgPlanIntColumn = new Plan<int>(col, nGroups_);
133 cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134
135 nAtomsInRow_ = AtomPlanIntRow->getSize();
136 nAtomsInCol_ = AtomPlanIntColumn->getSize();
137 nGroupsInRow_ = cgPlanIntRow->getSize();
138 nGroupsInCol_ = cgPlanIntColumn->getSize();
139
140 // Modify the data storage objects with the correct layouts and sizes:
141 atomRowData.resize(nAtomsInRow_);
142 atomRowData.setStorageLayout(storageLayout_);
143 atomColData.resize(nAtomsInCol_);
144 atomColData.setStorageLayout(storageLayout_);
145 cgRowData.resize(nGroupsInRow_);
146 cgRowData.setStorageLayout(DataStorage::dslPosition);
147 cgColData.resize(nGroupsInCol_);
148 cgColData.setStorageLayout(DataStorage::dslPosition);
149
150 identsRow.resize(nAtomsInRow_);
151 identsCol.resize(nAtomsInCol_);
152
153 AtomPlanIntRow->gather(idents, identsRow);
154 AtomPlanIntColumn->gather(idents, identsCol);
155
156 // allocate memory for the parallel objects
157 atypesRow.resize(nAtomsInRow_);
158 atypesCol.resize(nAtomsInCol_);
159
160 for (int i = 0; i < nAtomsInRow_; i++)
161 atypesRow[i] = ff_->getAtomType(identsRow[i]);
162 for (int i = 0; i < nAtomsInCol_; i++)
163 atypesCol[i] = ff_->getAtomType(identsCol[i]);
164
165 pot_row.resize(nAtomsInRow_);
166 pot_col.resize(nAtomsInCol_);
167
168 AtomRowToGlobal.resize(nAtomsInRow_);
169 AtomColToGlobal.resize(nAtomsInCol_);
170 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171 AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172
173 cgRowToGlobal.resize(nGroupsInRow_);
174 cgColToGlobal.resize(nGroupsInCol_);
175 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176 cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177
178 massFactorsRow.resize(nAtomsInRow_);
179 massFactorsCol.resize(nAtomsInCol_);
180 AtomPlanRealRow->gather(massFactors, massFactorsRow);
181 AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182
183 groupListRow_.clear();
184 groupListRow_.resize(nGroupsInRow_);
185 for (int i = 0; i < nGroupsInRow_; i++) {
186 int gid = cgRowToGlobal[i];
187 for (int j = 0; j < nAtomsInRow_; j++) {
188 int aid = AtomRowToGlobal[j];
189 if (globalGroupMembership[aid] == gid)
190 groupListRow_[i].push_back(j);
191 }
192 }
193
194 groupListCol_.clear();
195 groupListCol_.resize(nGroupsInCol_);
196 for (int i = 0; i < nGroupsInCol_; i++) {
197 int gid = cgColToGlobal[i];
198 for (int j = 0; j < nAtomsInCol_; j++) {
199 int aid = AtomColToGlobal[j];
200 if (globalGroupMembership[aid] == gid)
201 groupListCol_[i].push_back(j);
202 }
203 }
204
205 excludesForAtom.clear();
206 excludesForAtom.resize(nAtomsInRow_);
207 toposForAtom.clear();
208 toposForAtom.resize(nAtomsInRow_);
209 topoDist.clear();
210 topoDist.resize(nAtomsInRow_);
211 for (int i = 0; i < nAtomsInRow_; i++) {
212 int iglob = AtomRowToGlobal[i];
213
214 for (int j = 0; j < nAtomsInCol_; j++) {
215 int jglob = AtomColToGlobal[j];
216
217 if (excludes->hasPair(iglob, jglob))
218 excludesForAtom[i].push_back(j);
219
220 if (oneTwo->hasPair(iglob, jglob)) {
221 toposForAtom[i].push_back(j);
222 topoDist[i].push_back(1);
223 } else {
224 if (oneThree->hasPair(iglob, jglob)) {
225 toposForAtom[i].push_back(j);
226 topoDist[i].push_back(2);
227 } else {
228 if (oneFour->hasPair(iglob, jglob)) {
229 toposForAtom[i].push_back(j);
230 topoDist[i].push_back(3);
231 }
232 }
233 }
234 }
235 }
236
237 #else
238 excludesForAtom.clear();
239 excludesForAtom.resize(nLocal_);
240 toposForAtom.clear();
241 toposForAtom.resize(nLocal_);
242 topoDist.clear();
243 topoDist.resize(nLocal_);
244
245 for (int i = 0; i < nLocal_; i++) {
246 int iglob = AtomLocalToGlobal[i];
247
248 for (int j = 0; j < nLocal_; j++) {
249 int jglob = AtomLocalToGlobal[j];
250
251 if (excludes->hasPair(iglob, jglob))
252 excludesForAtom[i].push_back(j);
253
254 if (oneTwo->hasPair(iglob, jglob)) {
255 toposForAtom[i].push_back(j);
256 topoDist[i].push_back(1);
257 } else {
258 if (oneThree->hasPair(iglob, jglob)) {
259 toposForAtom[i].push_back(j);
260 topoDist[i].push_back(2);
261 } else {
262 if (oneFour->hasPair(iglob, jglob)) {
263 toposForAtom[i].push_back(j);
264 topoDist[i].push_back(3);
265 }
266 }
267 }
268 }
269 }
270 #endif
271
272 // allocate memory for the parallel objects
273 atypesLocal.resize(nLocal_);
274
275 for (int i = 0; i < nLocal_; i++)
276 atypesLocal[i] = ff_->getAtomType(idents[i]);
277
278 groupList_.clear();
279 groupList_.resize(nGroups_);
280 for (int i = 0; i < nGroups_; i++) {
281 int gid = cgLocalToGlobal[i];
282 for (int j = 0; j < nLocal_; j++) {
283 int aid = AtomLocalToGlobal[j];
284 if (globalGroupMembership[aid] == gid) {
285 groupList_[i].push_back(j);
286 }
287 }
288 }
289
290
291 createGtypeCutoffMap();
292
293 }
294
295 void ForceMatrixDecomposition::createGtypeCutoffMap() {
296
297 RealType tol = 1e-6;
298 largestRcut_ = 0.0;
299 RealType rc;
300 int atid;
301 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302
303 map<int, RealType> atypeCutoff;
304
305 for (set<AtomType*>::iterator at = atypes.begin();
306 at != atypes.end(); ++at){
307 atid = (*at)->getIdent();
308 if (userChoseCutoff_)
309 atypeCutoff[atid] = userCutoff_;
310 else
311 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 }
313
314 vector<RealType> gTypeCutoffs;
315 // first we do a single loop over the cutoff groups to find the
316 // largest cutoff for any atypes present in this group.
317 #ifdef IS_MPI
318 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 groupRowToGtype.resize(nGroupsInRow_);
320 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321 vector<int> atomListRow = getAtomsInGroupRow(cg1);
322 for (vector<int>::iterator ia = atomListRow.begin();
323 ia != atomListRow.end(); ++ia) {
324 int atom1 = (*ia);
325 atid = identsRow[atom1];
326 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327 groupCutoffRow[cg1] = atypeCutoff[atid];
328 }
329 }
330
331 bool gTypeFound = false;
332 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334 groupRowToGtype[cg1] = gt;
335 gTypeFound = true;
336 }
337 }
338 if (!gTypeFound) {
339 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341 }
342
343 }
344 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 groupColToGtype.resize(nGroupsInCol_);
346 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348 for (vector<int>::iterator jb = atomListCol.begin();
349 jb != atomListCol.end(); ++jb) {
350 int atom2 = (*jb);
351 atid = identsCol[atom2];
352 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353 groupCutoffCol[cg2] = atypeCutoff[atid];
354 }
355 }
356 bool gTypeFound = false;
357 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359 groupColToGtype[cg2] = gt;
360 gTypeFound = true;
361 }
362 }
363 if (!gTypeFound) {
364 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366 }
367 }
368 #else
369
370 vector<RealType> groupCutoff(nGroups_, 0.0);
371 groupToGtype.resize(nGroups_);
372 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373 groupCutoff[cg1] = 0.0;
374 vector<int> atomList = getAtomsInGroupRow(cg1);
375 for (vector<int>::iterator ia = atomList.begin();
376 ia != atomList.end(); ++ia) {
377 int atom1 = (*ia);
378 atid = idents[atom1];
379 if (atypeCutoff[atid] > groupCutoff[cg1])
380 groupCutoff[cg1] = atypeCutoff[atid];
381 }
382
383 bool gTypeFound = false;
384 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386 groupToGtype[cg1] = gt;
387 gTypeFound = true;
388 }
389 }
390 if (!gTypeFound) {
391 gTypeCutoffs.push_back( groupCutoff[cg1] );
392 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393 }
394 }
395 #endif
396
397 // Now we find the maximum group cutoff value present in the simulation
398
399 RealType groupMax = *max_element(gTypeCutoffs.begin(),
400 gTypeCutoffs.end());
401
402 #ifdef IS_MPI
403 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404 MPI::MAX);
405 #endif
406
407 RealType tradRcut = groupMax;
408
409 for (int i = 0; i < gTypeCutoffs.size(); i++) {
410 for (int j = 0; j < gTypeCutoffs.size(); j++) {
411 RealType thisRcut;
412 switch(cutoffPolicy_) {
413 case TRADITIONAL:
414 thisRcut = tradRcut;
415 break;
416 case MIX:
417 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 break;
419 case MAX:
420 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 break;
422 default:
423 sprintf(painCave.errMsg,
424 "ForceMatrixDecomposition::createGtypeCutoffMap "
425 "hit an unknown cutoff policy!\n");
426 painCave.severity = OPENMD_ERROR;
427 painCave.isFatal = 1;
428 simError();
429 break;
430 }
431
432 pair<int,int> key = make_pair(i,j);
433 gTypeCutoffMap[key].first = thisRcut;
434 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435 gTypeCutoffMap[key].second = thisRcut*thisRcut;
436 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437 // sanity check
438
439 if (userChoseCutoff_) {
440 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441 sprintf(painCave.errMsg,
442 "ForceMatrixDecomposition::createGtypeCutoffMap "
443 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 painCave.severity = OPENMD_ERROR;
445 painCave.isFatal = 1;
446 simError();
447 }
448 }
449 }
450 }
451 }
452
453
454 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 int i, j;
456 #ifdef IS_MPI
457 i = groupRowToGtype[cg1];
458 j = groupColToGtype[cg2];
459 #else
460 i = groupToGtype[cg1];
461 j = groupToGtype[cg2];
462 #endif
463 return gTypeCutoffMap[make_pair(i,j)];
464 }
465
466 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468 if (toposForAtom[atom1][j] == atom2)
469 return topoDist[atom1][j];
470 }
471 return 0;
472 }
473
474 void ForceMatrixDecomposition::zeroWorkArrays() {
475 pairwisePot = 0.0;
476 embeddingPot = 0.0;
477
478 #ifdef IS_MPI
479 if (storageLayout_ & DataStorage::dslForce) {
480 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482 }
483
484 if (storageLayout_ & DataStorage::dslTorque) {
485 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487 }
488
489 fill(pot_row.begin(), pot_row.end(),
490 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491
492 fill(pot_col.begin(), pot_col.end(),
493 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
494
495 if (storageLayout_ & DataStorage::dslParticlePot) {
496 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497 0.0);
498 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499 0.0);
500 }
501
502 if (storageLayout_ & DataStorage::dslDensity) {
503 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505 }
506
507 if (storageLayout_ & DataStorage::dslFunctional) {
508 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509 0.0);
510 fill(atomColData.functional.begin(), atomColData.functional.end(),
511 0.0);
512 }
513
514 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
515 fill(atomRowData.functionalDerivative.begin(),
516 atomRowData.functionalDerivative.end(), 0.0);
517 fill(atomColData.functionalDerivative.begin(),
518 atomColData.functionalDerivative.end(), 0.0);
519 }
520
521 if (storageLayout_ & DataStorage::dslSkippedCharge) {
522 fill(atomRowData.skippedCharge.begin(),
523 atomRowData.skippedCharge.end(), 0.0);
524 fill(atomColData.skippedCharge.begin(),
525 atomColData.skippedCharge.end(), 0.0);
526 }
527
528 #endif
529 // even in parallel, we need to zero out the local arrays:
530
531 if (storageLayout_ & DataStorage::dslParticlePot) {
532 fill(snap_->atomData.particlePot.begin(),
533 snap_->atomData.particlePot.end(), 0.0);
534 }
535
536 if (storageLayout_ & DataStorage::dslDensity) {
537 fill(snap_->atomData.density.begin(),
538 snap_->atomData.density.end(), 0.0);
539 }
540
541 if (storageLayout_ & DataStorage::dslFunctional) {
542 fill(snap_->atomData.functional.begin(),
543 snap_->atomData.functional.end(), 0.0);
544 }
545
546 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
547 fill(snap_->atomData.functionalDerivative.begin(),
548 snap_->atomData.functionalDerivative.end(), 0.0);
549 }
550
551 if (storageLayout_ & DataStorage::dslSkippedCharge) {
552 fill(snap_->atomData.skippedCharge.begin(),
553 snap_->atomData.skippedCharge.end(), 0.0);
554 }
555 }
556
557
558 void ForceMatrixDecomposition::distributeData() {
559 snap_ = sman_->getCurrentSnapshot();
560 storageLayout_ = sman_->getStorageLayout();
561 #ifdef IS_MPI
562
563 // gather up the atomic positions
564 AtomPlanVectorRow->gather(snap_->atomData.position,
565 atomRowData.position);
566 AtomPlanVectorColumn->gather(snap_->atomData.position,
567 atomColData.position);
568
569 // gather up the cutoff group positions
570
571 cgPlanVectorRow->gather(snap_->cgData.position,
572 cgRowData.position);
573
574 cgPlanVectorColumn->gather(snap_->cgData.position,
575 cgColData.position);
576
577
578 // if needed, gather the atomic rotation matrices
579 if (storageLayout_ & DataStorage::dslAmat) {
580 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
581 atomRowData.aMat);
582 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
583 atomColData.aMat);
584 }
585
586 // if needed, gather the atomic eletrostatic frames
587 if (storageLayout_ & DataStorage::dslElectroFrame) {
588 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
589 atomRowData.electroFrame);
590 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
591 atomColData.electroFrame);
592 }
593
594 #endif
595 }
596
597 /* collects information obtained during the pre-pair loop onto local
598 * data structures.
599 */
600 void ForceMatrixDecomposition::collectIntermediateData() {
601 snap_ = sman_->getCurrentSnapshot();
602 storageLayout_ = sman_->getStorageLayout();
603 #ifdef IS_MPI
604
605 if (storageLayout_ & DataStorage::dslDensity) {
606
607 AtomPlanRealRow->scatter(atomRowData.density,
608 snap_->atomData.density);
609
610 int n = snap_->atomData.density.size();
611 vector<RealType> rho_tmp(n, 0.0);
612 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
613 for (int i = 0; i < n; i++)
614 snap_->atomData.density[i] += rho_tmp[i];
615 }
616 #endif
617 }
618
619 /*
620 * redistributes information obtained during the pre-pair loop out to
621 * row and column-indexed data structures
622 */
623 void ForceMatrixDecomposition::distributeIntermediateData() {
624 snap_ = sman_->getCurrentSnapshot();
625 storageLayout_ = sman_->getStorageLayout();
626 #ifdef IS_MPI
627 if (storageLayout_ & DataStorage::dslFunctional) {
628 AtomPlanRealRow->gather(snap_->atomData.functional,
629 atomRowData.functional);
630 AtomPlanRealColumn->gather(snap_->atomData.functional,
631 atomColData.functional);
632 }
633
634 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
635 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
636 atomRowData.functionalDerivative);
637 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
638 atomColData.functionalDerivative);
639 }
640 #endif
641 }
642
643
644 void ForceMatrixDecomposition::collectData() {
645 snap_ = sman_->getCurrentSnapshot();
646 storageLayout_ = sman_->getStorageLayout();
647 #ifdef IS_MPI
648 int n = snap_->atomData.force.size();
649 vector<Vector3d> frc_tmp(n, V3Zero);
650
651 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
652 for (int i = 0; i < n; i++) {
653 snap_->atomData.force[i] += frc_tmp[i];
654 frc_tmp[i] = 0.0;
655 }
656
657 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
658 for (int i = 0; i < n; i++) {
659 snap_->atomData.force[i] += frc_tmp[i];
660 }
661
662 if (storageLayout_ & DataStorage::dslTorque) {
663
664 int nt = snap_->atomData.torque.size();
665 vector<Vector3d> trq_tmp(nt, V3Zero);
666
667 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
668 for (int i = 0; i < nt; i++) {
669 snap_->atomData.torque[i] += trq_tmp[i];
670 trq_tmp[i] = 0.0;
671 }
672
673 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
674 for (int i = 0; i < nt; i++)
675 snap_->atomData.torque[i] += trq_tmp[i];
676 }
677
678 if (storageLayout_ & DataStorage::dslSkippedCharge) {
679
680 int ns = snap_->atomData.skippedCharge.size();
681 vector<RealType> skch_tmp(ns, 0.0);
682
683 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
684 for (int i = 0; i < ns; i++) {
685 snap_->atomData.skippedCharge[i] += skch_tmp[i];
686 skch_tmp[i] = 0.0;
687 }
688
689 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
690 for (int i = 0; i < ns; i++)
691 snap_->atomData.skippedCharge[i] += skch_tmp[i];
692
693 }
694
695 nLocal_ = snap_->getNumberOfAtoms();
696
697 vector<potVec> pot_temp(nLocal_,
698 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
699
700 // scatter/gather pot_row into the members of my column
701
702 AtomPlanPotRow->scatter(pot_row, pot_temp);
703
704 for (int ii = 0; ii < pot_temp.size(); ii++ )
705 pairwisePot += pot_temp[ii];
706
707 fill(pot_temp.begin(), pot_temp.end(),
708 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
709
710 AtomPlanPotColumn->scatter(pot_col, pot_temp);
711
712 for (int ii = 0; ii < pot_temp.size(); ii++ )
713 pairwisePot += pot_temp[ii];
714
715 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
716 RealType ploc1 = pairwisePot[ii];
717 RealType ploc2 = 0.0;
718 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
719 pairwisePot[ii] = ploc2;
720 }
721
722 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
723 RealType ploc1 = embeddingPot[ii];
724 RealType ploc2 = 0.0;
725 MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
726 embeddingPot[ii] = ploc2;
727 }
728
729 #endif
730
731 }
732
733 int ForceMatrixDecomposition::getNAtomsInRow() {
734 #ifdef IS_MPI
735 return nAtomsInRow_;
736 #else
737 return nLocal_;
738 #endif
739 }
740
741 /**
742 * returns the list of atoms belonging to this group.
743 */
744 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
745 #ifdef IS_MPI
746 return groupListRow_[cg1];
747 #else
748 return groupList_[cg1];
749 #endif
750 }
751
752 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
753 #ifdef IS_MPI
754 return groupListCol_[cg2];
755 #else
756 return groupList_[cg2];
757 #endif
758 }
759
760 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
761 Vector3d d;
762
763 #ifdef IS_MPI
764 d = cgColData.position[cg2] - cgRowData.position[cg1];
765 #else
766 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
767 #endif
768
769 snap_->wrapVector(d);
770 return d;
771 }
772
773
774 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
775
776 Vector3d d;
777
778 #ifdef IS_MPI
779 d = cgRowData.position[cg1] - atomRowData.position[atom1];
780 #else
781 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
782 #endif
783
784 snap_->wrapVector(d);
785 return d;
786 }
787
788 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
789 Vector3d d;
790
791 #ifdef IS_MPI
792 d = cgColData.position[cg2] - atomColData.position[atom2];
793 #else
794 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
795 #endif
796
797 snap_->wrapVector(d);
798 return d;
799 }
800
801 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
802 #ifdef IS_MPI
803 return massFactorsRow[atom1];
804 #else
805 return massFactors[atom1];
806 #endif
807 }
808
809 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
810 #ifdef IS_MPI
811 return massFactorsCol[atom2];
812 #else
813 return massFactors[atom2];
814 #endif
815
816 }
817
818 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
819 Vector3d d;
820
821 #ifdef IS_MPI
822 d = atomColData.position[atom2] - atomRowData.position[atom1];
823 #else
824 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
825 #endif
826
827 snap_->wrapVector(d);
828 return d;
829 }
830
831 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
832 return excludesForAtom[atom1];
833 }
834
835 /**
836 * We need to exclude some overcounted interactions that result from
837 * the parallel decomposition.
838 */
839 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
840 int unique_id_1, unique_id_2;
841
842 #ifdef IS_MPI
843 // in MPI, we have to look up the unique IDs for each atom
844 unique_id_1 = AtomRowToGlobal[atom1];
845 unique_id_2 = AtomColToGlobal[atom2];
846 #else
847 unique_id_1 = AtomLocalToGlobal[atom1];
848 unique_id_2 = AtomLocalToGlobal[atom2];
849 #endif
850
851 if (unique_id_1 == unique_id_2) return true;
852
853 #ifdef IS_MPI
854 // this prevents us from doing the pair on multiple processors
855 if (unique_id_1 < unique_id_2) {
856 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
857 } else {
858 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
859 }
860 #endif
861
862 return false;
863 }
864
865 /**
866 * We need to handle the interactions for atoms who are involved in
867 * the same rigid body as well as some short range interactions
868 * (bonds, bends, torsions) differently from other interactions.
869 * We'll still visit the pairwise routines, but with a flag that
870 * tells those routines to exclude the pair from direct long range
871 * interactions. Some indirect interactions (notably reaction
872 * field) must still be handled for these pairs.
873 */
874 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
875
876 // excludesForAtom was constructed to use row/column indices in the MPI
877 // version, and to use local IDs in the non-MPI version:
878
879 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
880 i != excludesForAtom[atom1].end(); ++i) {
881 if ( (*i) == atom2 ) return true;
882 }
883
884 return false;
885 }
886
887
888 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
889 #ifdef IS_MPI
890 atomRowData.force[atom1] += fg;
891 #else
892 snap_->atomData.force[atom1] += fg;
893 #endif
894 }
895
896 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
897 #ifdef IS_MPI
898 atomColData.force[atom2] += fg;
899 #else
900 snap_->atomData.force[atom2] += fg;
901 #endif
902 }
903
904 // filling interaction blocks with pointers
905 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
906 int atom1, int atom2) {
907
908 idat.excluded = excludeAtomPair(atom1, atom2);
909
910 #ifdef IS_MPI
911 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
912 //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
913 // ff_->getAtomType(identsCol[atom2]) );
914
915 if (storageLayout_ & DataStorage::dslAmat) {
916 idat.A1 = &(atomRowData.aMat[atom1]);
917 idat.A2 = &(atomColData.aMat[atom2]);
918 }
919
920 if (storageLayout_ & DataStorage::dslElectroFrame) {
921 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
922 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
923 }
924
925 if (storageLayout_ & DataStorage::dslTorque) {
926 idat.t1 = &(atomRowData.torque[atom1]);
927 idat.t2 = &(atomColData.torque[atom2]);
928 }
929
930 if (storageLayout_ & DataStorage::dslDensity) {
931 idat.rho1 = &(atomRowData.density[atom1]);
932 idat.rho2 = &(atomColData.density[atom2]);
933 }
934
935 if (storageLayout_ & DataStorage::dslFunctional) {
936 idat.frho1 = &(atomRowData.functional[atom1]);
937 idat.frho2 = &(atomColData.functional[atom2]);
938 }
939
940 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
941 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
942 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
943 }
944
945 if (storageLayout_ & DataStorage::dslParticlePot) {
946 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
947 idat.particlePot2 = &(atomColData.particlePot[atom2]);
948 }
949
950 if (storageLayout_ & DataStorage::dslSkippedCharge) {
951 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
952 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
953 }
954
955 #else
956
957
958 // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
959 // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
960 // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
961
962 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
963 //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
964 // ff_->getAtomType(idents[atom2]) );
965
966 if (storageLayout_ & DataStorage::dslAmat) {
967 idat.A1 = &(snap_->atomData.aMat[atom1]);
968 idat.A2 = &(snap_->atomData.aMat[atom2]);
969 }
970
971 if (storageLayout_ & DataStorage::dslElectroFrame) {
972 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
973 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
974 }
975
976 if (storageLayout_ & DataStorage::dslTorque) {
977 idat.t1 = &(snap_->atomData.torque[atom1]);
978 idat.t2 = &(snap_->atomData.torque[atom2]);
979 }
980
981 if (storageLayout_ & DataStorage::dslDensity) {
982 idat.rho1 = &(snap_->atomData.density[atom1]);
983 idat.rho2 = &(snap_->atomData.density[atom2]);
984 }
985
986 if (storageLayout_ & DataStorage::dslFunctional) {
987 idat.frho1 = &(snap_->atomData.functional[atom1]);
988 idat.frho2 = &(snap_->atomData.functional[atom2]);
989 }
990
991 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
992 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
993 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
994 }
995
996 if (storageLayout_ & DataStorage::dslParticlePot) {
997 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
998 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
999 }
1000
1001 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1002 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1003 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1004 }
1005 #endif
1006 }
1007
1008
1009 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1010 #ifdef IS_MPI
1011 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1012 pot_col[atom2] += RealType(0.5) * *(idat.pot);
1013
1014 atomRowData.force[atom1] += *(idat.f1);
1015 atomColData.force[atom2] -= *(idat.f1);
1016 #else
1017 pairwisePot += *(idat.pot);
1018
1019 snap_->atomData.force[atom1] += *(idat.f1);
1020 snap_->atomData.force[atom2] -= *(idat.f1);
1021 #endif
1022
1023 }
1024
1025 /*
1026 * buildNeighborList
1027 *
1028 * first element of pair is row-indexed CutoffGroup
1029 * second element of pair is column-indexed CutoffGroup
1030 */
1031 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1032
1033 vector<pair<int, int> > neighborList;
1034 groupCutoffs cuts;
1035 bool doAllPairs = false;
1036
1037 #ifdef IS_MPI
1038 cellListRow_.clear();
1039 cellListCol_.clear();
1040 #else
1041 cellList_.clear();
1042 #endif
1043
1044 RealType rList_ = (largestRcut_ + skinThickness_);
1045 RealType rl2 = rList_ * rList_;
1046 Snapshot* snap_ = sman_->getCurrentSnapshot();
1047 Mat3x3d Hmat = snap_->getHmat();
1048 Vector3d Hx = Hmat.getColumn(0);
1049 Vector3d Hy = Hmat.getColumn(1);
1050 Vector3d Hz = Hmat.getColumn(2);
1051
1052 nCells_.x() = (int) ( Hx.length() )/ rList_;
1053 nCells_.y() = (int) ( Hy.length() )/ rList_;
1054 nCells_.z() = (int) ( Hz.length() )/ rList_;
1055
1056 // handle small boxes where the cell offsets can end up repeating cells
1057
1058 if (nCells_.x() < 3) doAllPairs = true;
1059 if (nCells_.y() < 3) doAllPairs = true;
1060 if (nCells_.z() < 3) doAllPairs = true;
1061
1062 Mat3x3d invHmat = snap_->getInvHmat();
1063 Vector3d rs, scaled, dr;
1064 Vector3i whichCell;
1065 int cellIndex;
1066 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1067
1068 #ifdef IS_MPI
1069 cellListRow_.resize(nCtot);
1070 cellListCol_.resize(nCtot);
1071 #else
1072 cellList_.resize(nCtot);
1073 #endif
1074
1075 if (!doAllPairs) {
1076 #ifdef IS_MPI
1077
1078 for (int i = 0; i < nGroupsInRow_; i++) {
1079 rs = cgRowData.position[i];
1080
1081 // scaled positions relative to the box vectors
1082 scaled = invHmat * rs;
1083
1084 // wrap the vector back into the unit box by subtracting integer box
1085 // numbers
1086 for (int j = 0; j < 3; j++) {
1087 scaled[j] -= roundMe(scaled[j]);
1088 scaled[j] += 0.5;
1089 }
1090
1091 // find xyz-indices of cell that cutoffGroup is in.
1092 whichCell.x() = nCells_.x() * scaled.x();
1093 whichCell.y() = nCells_.y() * scaled.y();
1094 whichCell.z() = nCells_.z() * scaled.z();
1095
1096 // find single index of this cell:
1097 cellIndex = Vlinear(whichCell, nCells_);
1098
1099 // add this cutoff group to the list of groups in this cell;
1100 cellListRow_[cellIndex].push_back(i);
1101 }
1102 for (int i = 0; i < nGroupsInCol_; i++) {
1103 rs = cgColData.position[i];
1104
1105 // scaled positions relative to the box vectors
1106 scaled = invHmat * rs;
1107
1108 // wrap the vector back into the unit box by subtracting integer box
1109 // numbers
1110 for (int j = 0; j < 3; j++) {
1111 scaled[j] -= roundMe(scaled[j]);
1112 scaled[j] += 0.5;
1113 }
1114
1115 // find xyz-indices of cell that cutoffGroup is in.
1116 whichCell.x() = nCells_.x() * scaled.x();
1117 whichCell.y() = nCells_.y() * scaled.y();
1118 whichCell.z() = nCells_.z() * scaled.z();
1119
1120 // find single index of this cell:
1121 cellIndex = Vlinear(whichCell, nCells_);
1122
1123 // add this cutoff group to the list of groups in this cell;
1124 cellListCol_[cellIndex].push_back(i);
1125 }
1126
1127 #else
1128 for (int i = 0; i < nGroups_; i++) {
1129 rs = snap_->cgData.position[i];
1130
1131 // scaled positions relative to the box vectors
1132 scaled = invHmat * rs;
1133
1134 // wrap the vector back into the unit box by subtracting integer box
1135 // numbers
1136 for (int j = 0; j < 3; j++) {
1137 scaled[j] -= roundMe(scaled[j]);
1138 scaled[j] += 0.5;
1139 }
1140
1141 // find xyz-indices of cell that cutoffGroup is in.
1142 whichCell.x() = nCells_.x() * scaled.x();
1143 whichCell.y() = nCells_.y() * scaled.y();
1144 whichCell.z() = nCells_.z() * scaled.z();
1145
1146 // find single index of this cell:
1147 cellIndex = Vlinear(whichCell, nCells_);
1148
1149 // add this cutoff group to the list of groups in this cell;
1150 cellList_[cellIndex].push_back(i);
1151 }
1152
1153 #endif
1154
1155 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1156 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1157 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1158 Vector3i m1v(m1x, m1y, m1z);
1159 int m1 = Vlinear(m1v, nCells_);
1160
1161 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1162 os != cellOffsets_.end(); ++os) {
1163
1164 Vector3i m2v = m1v + (*os);
1165
1166
1167 if (m2v.x() >= nCells_.x()) {
1168 m2v.x() = 0;
1169 } else if (m2v.x() < 0) {
1170 m2v.x() = nCells_.x() - 1;
1171 }
1172
1173 if (m2v.y() >= nCells_.y()) {
1174 m2v.y() = 0;
1175 } else if (m2v.y() < 0) {
1176 m2v.y() = nCells_.y() - 1;
1177 }
1178
1179 if (m2v.z() >= nCells_.z()) {
1180 m2v.z() = 0;
1181 } else if (m2v.z() < 0) {
1182 m2v.z() = nCells_.z() - 1;
1183 }
1184
1185 int m2 = Vlinear (m2v, nCells_);
1186
1187 #ifdef IS_MPI
1188 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1189 j1 != cellListRow_[m1].end(); ++j1) {
1190 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1191 j2 != cellListCol_[m2].end(); ++j2) {
1192
1193 // In parallel, we need to visit *all* pairs of row
1194 // & column indicies and will divide labor in the
1195 // force evaluation later.
1196 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1197 snap_->wrapVector(dr);
1198 cuts = getGroupCutoffs( (*j1), (*j2) );
1199 if (dr.lengthSquare() < cuts.third) {
1200 neighborList.push_back(make_pair((*j1), (*j2)));
1201 }
1202 }
1203 }
1204 #else
1205 for (vector<int>::iterator j1 = cellList_[m1].begin();
1206 j1 != cellList_[m1].end(); ++j1) {
1207 for (vector<int>::iterator j2 = cellList_[m2].begin();
1208 j2 != cellList_[m2].end(); ++j2) {
1209
1210 // Always do this if we're in different cells or if
1211 // we're in the same cell and the global index of
1212 // the j2 cutoff group is greater than or equal to
1213 // the j1 cutoff group. Note that Rappaport's code
1214 // has a "less than" conditional here, but that
1215 // deals with atom-by-atom computation. OpenMD
1216 // allows atoms within a single cutoff group to
1217 // interact with each other.
1218
1219
1220
1221 if (m2 != m1 || (*j2) >= (*j1) ) {
1222
1223 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1224 snap_->wrapVector(dr);
1225 cuts = getGroupCutoffs( (*j1), (*j2) );
1226 if (dr.lengthSquare() < cuts.third) {
1227 neighborList.push_back(make_pair((*j1), (*j2)));
1228 }
1229 }
1230 }
1231 }
1232 #endif
1233 }
1234 }
1235 }
1236 }
1237 } else {
1238 // branch to do all cutoff group pairs
1239 #ifdef IS_MPI
1240 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1241 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1242 dr = cgColData.position[j2] - cgRowData.position[j1];
1243 snap_->wrapVector(dr);
1244 cuts = getGroupCutoffs( j1, j2 );
1245 if (dr.lengthSquare() < cuts.third) {
1246 neighborList.push_back(make_pair(j1, j2));
1247 }
1248 }
1249 }
1250 #else
1251 // include all groups here.
1252 for (int j1 = 0; j1 < nGroups_; j1++) {
1253 // include self group interactions j2 == j1
1254 for (int j2 = j1; j2 < nGroups_; j2++) {
1255 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1256 snap_->wrapVector(dr);
1257 cuts = getGroupCutoffs( j1, j2 );
1258 if (dr.lengthSquare() < cuts.third) {
1259 neighborList.push_back(make_pair(j1, j2));
1260 }
1261 }
1262 }
1263 #endif
1264 }
1265
1266 // save the local cutoff group positions for the check that is
1267 // done on each loop:
1268 saved_CG_positions_.clear();
1269 for (int i = 0; i < nGroups_; i++)
1270 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1271
1272 return neighborList;
1273 }
1274 } //end namespace OpenMD