ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1590
Committed: Mon Jul 11 01:39:49 2011 UTC (13 years, 9 months ago) by gezelter
File size: 39310 byte(s)
Log Message:
more bug fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60
61 nGroups_ = info_->getNLocalCutoffGroups();
62 // gather the information for atomtype IDs (atids):
63 idents = info_->getIdentArray();
64 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 cgLocalToGlobal = info_->getGlobalGroupIndices();
66 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67
68 massFactors = info_->getMassFactors();
69
70 PairList* excludes = info_->getExcludedInteractions();
71 PairList* oneTwo = info_->getOneTwoInteractions();
72 PairList* oneThree = info_->getOneThreeInteractions();
73 PairList* oneFour = info_->getOneFourInteractions();
74
75 #ifdef IS_MPI
76
77 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82
83 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88
89 cgCommIntRow = new Communicator<Row,int>(nGroups_);
90 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93
94 nAtomsInRow_ = AtomCommIntRow->getSize();
95 nAtomsInCol_ = AtomCommIntColumn->getSize();
96 nGroupsInRow_ = cgCommIntRow->getSize();
97 nGroupsInCol_ = cgCommIntColumn->getSize();
98
99 // Modify the data storage objects with the correct layouts and sizes:
100 atomRowData.resize(nAtomsInRow_);
101 atomRowData.setStorageLayout(storageLayout_);
102 atomColData.resize(nAtomsInCol_);
103 atomColData.setStorageLayout(storageLayout_);
104 cgRowData.resize(nGroupsInRow_);
105 cgRowData.setStorageLayout(DataStorage::dslPosition);
106 cgColData.resize(nGroupsInCol_);
107 cgColData.setStorageLayout(DataStorage::dslPosition);
108
109 identsRow.resize(nAtomsInRow_);
110 identsCol.resize(nAtomsInCol_);
111
112 AtomCommIntRow->gather(idents, identsRow);
113 AtomCommIntColumn->gather(idents, identsCol);
114
115 // allocate memory for the parallel objects
116 AtomRowToGlobal.resize(nAtomsInRow_);
117 AtomColToGlobal.resize(nAtomsInCol_);
118 cgRowToGlobal.resize(nGroupsInRow_);
119 cgColToGlobal.resize(nGroupsInCol_);
120 massFactorsRow.resize(nAtomsInRow_);
121 massFactorsCol.resize(nAtomsInCol_);
122 pot_row.resize(nAtomsInRow_);
123 pot_col.resize(nAtomsInCol_);
124
125 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127
128 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130
131 AtomCommRealRow->gather(massFactors, massFactorsRow);
132 AtomCommRealColumn->gather(massFactors, massFactorsCol);
133
134 groupListRow_.clear();
135 groupListRow_.resize(nGroupsInRow_);
136 for (int i = 0; i < nGroupsInRow_; i++) {
137 int gid = cgRowToGlobal[i];
138 for (int j = 0; j < nAtomsInRow_; j++) {
139 int aid = AtomRowToGlobal[j];
140 if (globalGroupMembership[aid] == gid)
141 groupListRow_[i].push_back(j);
142 }
143 }
144
145 groupListCol_.clear();
146 groupListCol_.resize(nGroupsInCol_);
147 for (int i = 0; i < nGroupsInCol_; i++) {
148 int gid = cgColToGlobal[i];
149 for (int j = 0; j < nAtomsInCol_; j++) {
150 int aid = AtomColToGlobal[j];
151 if (globalGroupMembership[aid] == gid)
152 groupListCol_[i].push_back(j);
153 }
154 }
155
156 excludesForAtom.clear();
157 excludesForAtom.resize(nAtomsInRow_);
158 toposForAtom.clear();
159 toposForAtom.resize(nAtomsInRow_);
160 topoDist.clear();
161 topoDist.resize(nAtomsInRow_);
162 for (int i = 0; i < nAtomsInRow_; i++) {
163 int iglob = AtomRowToGlobal[i];
164
165 for (int j = 0; j < nAtomsInCol_; j++) {
166 int jglob = AtomColToGlobal[j];
167
168 if (excludes->hasPair(iglob, jglob))
169 excludesForAtom[i].push_back(j);
170
171 if (oneTwo->hasPair(iglob, jglob)) {
172 toposForAtom[i].push_back(j);
173 topoDist[i].push_back(1);
174 } else {
175 if (oneThree->hasPair(iglob, jglob)) {
176 toposForAtom[i].push_back(j);
177 topoDist[i].push_back(2);
178 } else {
179 if (oneFour->hasPair(iglob, jglob)) {
180 toposForAtom[i].push_back(j);
181 topoDist[i].push_back(3);
182 }
183 }
184 }
185 }
186 }
187
188 #endif
189
190 groupList_.clear();
191 groupList_.resize(nGroups_);
192 for (int i = 0; i < nGroups_; i++) {
193 int gid = cgLocalToGlobal[i];
194 for (int j = 0; j < nLocal_; j++) {
195 int aid = AtomLocalToGlobal[j];
196 if (globalGroupMembership[aid] == gid) {
197 groupList_[i].push_back(j);
198 }
199 }
200 }
201
202 excludesForAtom.clear();
203 excludesForAtom.resize(nLocal_);
204 toposForAtom.clear();
205 toposForAtom.resize(nLocal_);
206 topoDist.clear();
207 topoDist.resize(nLocal_);
208
209 for (int i = 0; i < nLocal_; i++) {
210 int iglob = AtomLocalToGlobal[i];
211
212 for (int j = 0; j < nLocal_; j++) {
213 int jglob = AtomLocalToGlobal[j];
214
215 if (excludes->hasPair(iglob, jglob))
216 excludesForAtom[i].push_back(j);
217
218 if (oneTwo->hasPair(iglob, jglob)) {
219 toposForAtom[i].push_back(j);
220 topoDist[i].push_back(1);
221 } else {
222 if (oneThree->hasPair(iglob, jglob)) {
223 toposForAtom[i].push_back(j);
224 topoDist[i].push_back(2);
225 } else {
226 if (oneFour->hasPair(iglob, jglob)) {
227 toposForAtom[i].push_back(j);
228 topoDist[i].push_back(3);
229 }
230 }
231 }
232 }
233 }
234
235 createGtypeCutoffMap();
236
237 }
238
239 void ForceMatrixDecomposition::createGtypeCutoffMap() {
240
241 RealType tol = 1e-6;
242 RealType rc;
243 int atid;
244 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 map<int, RealType> atypeCutoff;
246
247 for (set<AtomType*>::iterator at = atypes.begin();
248 at != atypes.end(); ++at){
249 atid = (*at)->getIdent();
250 if (userChoseCutoff_)
251 atypeCutoff[atid] = userCutoff_;
252 else
253 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254 }
255
256 vector<RealType> gTypeCutoffs;
257 // first we do a single loop over the cutoff groups to find the
258 // largest cutoff for any atypes present in this group.
259 #ifdef IS_MPI
260 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 groupRowToGtype.resize(nGroupsInRow_);
262 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263 vector<int> atomListRow = getAtomsInGroupRow(cg1);
264 for (vector<int>::iterator ia = atomListRow.begin();
265 ia != atomListRow.end(); ++ia) {
266 int atom1 = (*ia);
267 atid = identsRow[atom1];
268 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
269 groupCutoffRow[cg1] = atypeCutoff[atid];
270 }
271 }
272
273 bool gTypeFound = false;
274 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
275 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
276 groupRowToGtype[cg1] = gt;
277 gTypeFound = true;
278 }
279 }
280 if (!gTypeFound) {
281 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
282 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
283 }
284
285 }
286 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 groupColToGtype.resize(nGroupsInCol_);
288 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290 for (vector<int>::iterator jb = atomListCol.begin();
291 jb != atomListCol.end(); ++jb) {
292 int atom2 = (*jb);
293 atid = identsCol[atom2];
294 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
295 groupCutoffCol[cg2] = atypeCutoff[atid];
296 }
297 }
298 bool gTypeFound = false;
299 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
300 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
301 groupColToGtype[cg2] = gt;
302 gTypeFound = true;
303 }
304 }
305 if (!gTypeFound) {
306 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
307 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
308 }
309 }
310 #else
311
312 vector<RealType> groupCutoff(nGroups_, 0.0);
313 groupToGtype.resize(nGroups_);
314 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315
316 groupCutoff[cg1] = 0.0;
317 vector<int> atomList = getAtomsInGroupRow(cg1);
318
319 for (vector<int>::iterator ia = atomList.begin();
320 ia != atomList.end(); ++ia) {
321 int atom1 = (*ia);
322 atid = idents[atom1];
323 if (atypeCutoff[atid] > groupCutoff[cg1]) {
324 groupCutoff[cg1] = atypeCutoff[atid];
325 }
326 }
327
328 bool gTypeFound = false;
329 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
330 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
331 groupToGtype[cg1] = gt;
332 gTypeFound = true;
333 }
334 }
335 if (!gTypeFound) {
336 gTypeCutoffs.push_back( groupCutoff[cg1] );
337 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
338 }
339 }
340 #endif
341
342 // Now we find the maximum group cutoff value present in the simulation
343
344 RealType groupMax = *max_element(gTypeCutoffs.begin(),
345 gTypeCutoffs.end());
346
347 #ifdef IS_MPI
348 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
349 MPI::MAX);
350 #endif
351
352 RealType tradRcut = groupMax;
353
354 for (int i = 0; i < gTypeCutoffs.size(); i++) {
355 for (int j = 0; j < gTypeCutoffs.size(); j++) {
356 RealType thisRcut;
357 switch(cutoffPolicy_) {
358 case TRADITIONAL:
359 thisRcut = tradRcut;
360 break;
361 case MIX:
362 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
363 break;
364 case MAX:
365 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
366 break;
367 default:
368 sprintf(painCave.errMsg,
369 "ForceMatrixDecomposition::createGtypeCutoffMap "
370 "hit an unknown cutoff policy!\n");
371 painCave.severity = OPENMD_ERROR;
372 painCave.isFatal = 1;
373 simError();
374 break;
375 }
376
377 pair<int,int> key = make_pair(i,j);
378 gTypeCutoffMap[key].first = thisRcut;
379
380 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
381
382 gTypeCutoffMap[key].second = thisRcut*thisRcut;
383
384 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
385
386 // sanity check
387
388 if (userChoseCutoff_) {
389 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
390 sprintf(painCave.errMsg,
391 "ForceMatrixDecomposition::createGtypeCutoffMap "
392 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
393 painCave.severity = OPENMD_ERROR;
394 painCave.isFatal = 1;
395 simError();
396 }
397 }
398 }
399 }
400 }
401
402
403 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
404 int i, j;
405 #ifdef IS_MPI
406 i = groupRowToGtype[cg1];
407 j = groupColToGtype[cg2];
408 #else
409 i = groupToGtype[cg1];
410 j = groupToGtype[cg2];
411 #endif
412 return gTypeCutoffMap[make_pair(i,j)];
413 }
414
415 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
416 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
417 if (toposForAtom[atom1][j] == atom2)
418 return topoDist[atom1][j];
419 }
420 return 0;
421 }
422
423 void ForceMatrixDecomposition::zeroWorkArrays() {
424 pairwisePot = 0.0;
425 embeddingPot = 0.0;
426
427 #ifdef IS_MPI
428 if (storageLayout_ & DataStorage::dslForce) {
429 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
430 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
431 }
432
433 if (storageLayout_ & DataStorage::dslTorque) {
434 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
435 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
436 }
437
438 fill(pot_row.begin(), pot_row.end(),
439 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
440
441 fill(pot_col.begin(), pot_col.end(),
442 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
443
444 if (storageLayout_ & DataStorage::dslParticlePot) {
445 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
446 0.0);
447 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
448 0.0);
449 }
450
451 if (storageLayout_ & DataStorage::dslDensity) {
452 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
453 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
454 }
455
456 if (storageLayout_ & DataStorage::dslFunctional) {
457 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
458 0.0);
459 fill(atomColData.functional.begin(), atomColData.functional.end(),
460 0.0);
461 }
462
463 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
464 fill(atomRowData.functionalDerivative.begin(),
465 atomRowData.functionalDerivative.end(), 0.0);
466 fill(atomColData.functionalDerivative.begin(),
467 atomColData.functionalDerivative.end(), 0.0);
468 }
469
470 if (storageLayout_ & DataStorage::dslSkippedCharge) {
471 fill(atomRowData.skippedCharge.begin(),
472 atomRowData.skippedCharge.end(), 0.0);
473 fill(atomColData.skippedCharge.begin(),
474 atomColData.skippedCharge.end(), 0.0);
475 }
476
477 #endif
478 // even in parallel, we need to zero out the local arrays:
479
480 if (storageLayout_ & DataStorage::dslParticlePot) {
481 fill(snap_->atomData.particlePot.begin(),
482 snap_->atomData.particlePot.end(), 0.0);
483 }
484
485 if (storageLayout_ & DataStorage::dslDensity) {
486 fill(snap_->atomData.density.begin(),
487 snap_->atomData.density.end(), 0.0);
488 }
489 if (storageLayout_ & DataStorage::dslFunctional) {
490 fill(snap_->atomData.functional.begin(),
491 snap_->atomData.functional.end(), 0.0);
492 }
493 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
494 fill(snap_->atomData.functionalDerivative.begin(),
495 snap_->atomData.functionalDerivative.end(), 0.0);
496 }
497 if (storageLayout_ & DataStorage::dslSkippedCharge) {
498 fill(snap_->atomData.skippedCharge.begin(),
499 snap_->atomData.skippedCharge.end(), 0.0);
500 }
501
502 }
503
504
505 void ForceMatrixDecomposition::distributeData() {
506 snap_ = sman_->getCurrentSnapshot();
507 storageLayout_ = sman_->getStorageLayout();
508 #ifdef IS_MPI
509
510 // gather up the atomic positions
511 AtomCommVectorRow->gather(snap_->atomData.position,
512 atomRowData.position);
513 AtomCommVectorColumn->gather(snap_->atomData.position,
514 atomColData.position);
515
516 // gather up the cutoff group positions
517 cgCommVectorRow->gather(snap_->cgData.position,
518 cgRowData.position);
519 cgCommVectorColumn->gather(snap_->cgData.position,
520 cgColData.position);
521
522 // if needed, gather the atomic rotation matrices
523 if (storageLayout_ & DataStorage::dslAmat) {
524 AtomCommMatrixRow->gather(snap_->atomData.aMat,
525 atomRowData.aMat);
526 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
527 atomColData.aMat);
528 }
529
530 // if needed, gather the atomic eletrostatic frames
531 if (storageLayout_ & DataStorage::dslElectroFrame) {
532 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
533 atomRowData.electroFrame);
534 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
535 atomColData.electroFrame);
536 }
537
538 #endif
539 }
540
541 /* collects information obtained during the pre-pair loop onto local
542 * data structures.
543 */
544 void ForceMatrixDecomposition::collectIntermediateData() {
545 snap_ = sman_->getCurrentSnapshot();
546 storageLayout_ = sman_->getStorageLayout();
547 #ifdef IS_MPI
548
549 if (storageLayout_ & DataStorage::dslDensity) {
550
551 AtomCommRealRow->scatter(atomRowData.density,
552 snap_->atomData.density);
553
554 int n = snap_->atomData.density.size();
555 vector<RealType> rho_tmp(n, 0.0);
556 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
557 for (int i = 0; i < n; i++)
558 snap_->atomData.density[i] += rho_tmp[i];
559 }
560 #endif
561 }
562
563 /*
564 * redistributes information obtained during the pre-pair loop out to
565 * row and column-indexed data structures
566 */
567 void ForceMatrixDecomposition::distributeIntermediateData() {
568 snap_ = sman_->getCurrentSnapshot();
569 storageLayout_ = sman_->getStorageLayout();
570 #ifdef IS_MPI
571 if (storageLayout_ & DataStorage::dslFunctional) {
572 AtomCommRealRow->gather(snap_->atomData.functional,
573 atomRowData.functional);
574 AtomCommRealColumn->gather(snap_->atomData.functional,
575 atomColData.functional);
576 }
577
578 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
579 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
580 atomRowData.functionalDerivative);
581 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
582 atomColData.functionalDerivative);
583 }
584 #endif
585 }
586
587
588 void ForceMatrixDecomposition::collectData() {
589 snap_ = sman_->getCurrentSnapshot();
590 storageLayout_ = sman_->getStorageLayout();
591 #ifdef IS_MPI
592 int n = snap_->atomData.force.size();
593 vector<Vector3d> frc_tmp(n, V3Zero);
594
595 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
596 for (int i = 0; i < n; i++) {
597 snap_->atomData.force[i] += frc_tmp[i];
598 frc_tmp[i] = 0.0;
599 }
600
601 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
602 for (int i = 0; i < n; i++)
603 snap_->atomData.force[i] += frc_tmp[i];
604
605 if (storageLayout_ & DataStorage::dslTorque) {
606
607 int nt = snap_->atomData.torque.size();
608 vector<Vector3d> trq_tmp(nt, V3Zero);
609
610 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
611 for (int i = 0; i < nt; i++) {
612 snap_->atomData.torque[i] += trq_tmp[i];
613 trq_tmp[i] = 0.0;
614 }
615
616 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
617 for (int i = 0; i < nt; i++)
618 snap_->atomData.torque[i] += trq_tmp[i];
619 }
620
621 if (storageLayout_ & DataStorage::dslSkippedCharge) {
622
623 int ns = snap_->atomData.skippedCharge.size();
624 vector<RealType> skch_tmp(ns, 0.0);
625
626 AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
627 for (int i = 0; i < ns; i++) {
628 snap_->atomData.skippedCharge[i] += skch_tmp[i];
629 skch_tmp[i] = 0.0;
630 }
631
632 AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
633 for (int i = 0; i < ns; i++)
634 snap_->atomData.skippedCharge[i] += skch_tmp[i];
635 }
636
637 nLocal_ = snap_->getNumberOfAtoms();
638
639 vector<potVec> pot_temp(nLocal_,
640 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
641
642 // scatter/gather pot_row into the members of my column
643
644 AtomCommPotRow->scatter(pot_row, pot_temp);
645
646 for (int ii = 0; ii < pot_temp.size(); ii++ )
647 pairwisePot += pot_temp[ii];
648
649 fill(pot_temp.begin(), pot_temp.end(),
650 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
651
652 AtomCommPotColumn->scatter(pot_col, pot_temp);
653
654 for (int ii = 0; ii < pot_temp.size(); ii++ )
655 pairwisePot += pot_temp[ii];
656 #endif
657
658 }
659
660 int ForceMatrixDecomposition::getNAtomsInRow() {
661 #ifdef IS_MPI
662 return nAtomsInRow_;
663 #else
664 return nLocal_;
665 #endif
666 }
667
668 /**
669 * returns the list of atoms belonging to this group.
670 */
671 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
672 #ifdef IS_MPI
673 return groupListRow_[cg1];
674 #else
675 return groupList_[cg1];
676 #endif
677 }
678
679 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
680 #ifdef IS_MPI
681 return groupListCol_[cg2];
682 #else
683 return groupList_[cg2];
684 #endif
685 }
686
687 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
688 Vector3d d;
689
690 #ifdef IS_MPI
691 d = cgColData.position[cg2] - cgRowData.position[cg1];
692 #else
693 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
694 #endif
695
696 snap_->wrapVector(d);
697 return d;
698 }
699
700
701 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
702
703 Vector3d d;
704
705 #ifdef IS_MPI
706 d = cgRowData.position[cg1] - atomRowData.position[atom1];
707 #else
708 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
709 #endif
710
711 snap_->wrapVector(d);
712 return d;
713 }
714
715 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
716 Vector3d d;
717
718 #ifdef IS_MPI
719 d = cgColData.position[cg2] - atomColData.position[atom2];
720 #else
721 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
722 #endif
723
724 snap_->wrapVector(d);
725 return d;
726 }
727
728 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
729 #ifdef IS_MPI
730 return massFactorsRow[atom1];
731 #else
732 return massFactors[atom1];
733 #endif
734 }
735
736 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
737 #ifdef IS_MPI
738 return massFactorsCol[atom2];
739 #else
740 return massFactors[atom2];
741 #endif
742
743 }
744
745 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
746 Vector3d d;
747
748 #ifdef IS_MPI
749 d = atomColData.position[atom2] - atomRowData.position[atom1];
750 #else
751 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
752 #endif
753
754 snap_->wrapVector(d);
755 return d;
756 }
757
758 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
759 return excludesForAtom[atom1];
760 }
761
762 /**
763 * We need to exclude some overcounted interactions that result from
764 * the parallel decomposition.
765 */
766 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
767 int unique_id_1, unique_id_2;
768
769 #ifdef IS_MPI
770 // in MPI, we have to look up the unique IDs for each atom
771 unique_id_1 = AtomRowToGlobal[atom1];
772 unique_id_2 = AtomColToGlobal[atom2];
773
774 // this situation should only arise in MPI simulations
775 if (unique_id_1 == unique_id_2) return true;
776
777 // this prevents us from doing the pair on multiple processors
778 if (unique_id_1 < unique_id_2) {
779 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
780 } else {
781 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
782 }
783 #endif
784 return false;
785 }
786
787 /**
788 * We need to handle the interactions for atoms who are involved in
789 * the same rigid body as well as some short range interactions
790 * (bonds, bends, torsions) differently from other interactions.
791 * We'll still visit the pairwise routines, but with a flag that
792 * tells those routines to exclude the pair from direct long range
793 * interactions. Some indirect interactions (notably reaction
794 * field) must still be handled for these pairs.
795 */
796 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
797 int unique_id_2;
798
799 #ifdef IS_MPI
800 // in MPI, we have to look up the unique IDs for the row atom.
801 unique_id_2 = AtomColToGlobal[atom2];
802 #else
803 // in the normal loop, the atom numbers are unique
804 unique_id_2 = atom2;
805 #endif
806
807 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
808 i != excludesForAtom[atom1].end(); ++i) {
809 if ( (*i) == unique_id_2 ) return true;
810 }
811
812 return false;
813 }
814
815
816 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
817 #ifdef IS_MPI
818 atomRowData.force[atom1] += fg;
819 #else
820 snap_->atomData.force[atom1] += fg;
821 #endif
822 }
823
824 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
825 #ifdef IS_MPI
826 atomColData.force[atom2] += fg;
827 #else
828 snap_->atomData.force[atom2] += fg;
829 #endif
830 }
831
832 // filling interaction blocks with pointers
833 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
834 int atom1, int atom2) {
835
836 idat.excluded = excludeAtomPair(atom1, atom2);
837
838 #ifdef IS_MPI
839
840 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
841 ff_->getAtomType(identsCol[atom2]) );
842
843 if (storageLayout_ & DataStorage::dslAmat) {
844 idat.A1 = &(atomRowData.aMat[atom1]);
845 idat.A2 = &(atomColData.aMat[atom2]);
846 }
847
848 if (storageLayout_ & DataStorage::dslElectroFrame) {
849 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
850 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
851 }
852
853 if (storageLayout_ & DataStorage::dslTorque) {
854 idat.t1 = &(atomRowData.torque[atom1]);
855 idat.t2 = &(atomColData.torque[atom2]);
856 }
857
858 if (storageLayout_ & DataStorage::dslDensity) {
859 idat.rho1 = &(atomRowData.density[atom1]);
860 idat.rho2 = &(atomColData.density[atom2]);
861 }
862
863 if (storageLayout_ & DataStorage::dslFunctional) {
864 idat.frho1 = &(atomRowData.functional[atom1]);
865 idat.frho2 = &(atomColData.functional[atom2]);
866 }
867
868 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
869 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
870 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
871 }
872
873 if (storageLayout_ & DataStorage::dslParticlePot) {
874 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
875 idat.particlePot2 = &(atomColData.particlePot[atom2]);
876 }
877
878 if (storageLayout_ & DataStorage::dslSkippedCharge) {
879 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
880 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
881 }
882
883 #else
884
885 idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
886 ff_->getAtomType(idents[atom2]) );
887
888 if (storageLayout_ & DataStorage::dslAmat) {
889 idat.A1 = &(snap_->atomData.aMat[atom1]);
890 idat.A2 = &(snap_->atomData.aMat[atom2]);
891 }
892
893 if (storageLayout_ & DataStorage::dslElectroFrame) {
894 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
895 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
896 }
897
898 if (storageLayout_ & DataStorage::dslTorque) {
899 idat.t1 = &(snap_->atomData.torque[atom1]);
900 idat.t2 = &(snap_->atomData.torque[atom2]);
901 }
902
903 if (storageLayout_ & DataStorage::dslDensity) {
904 idat.rho1 = &(snap_->atomData.density[atom1]);
905 idat.rho2 = &(snap_->atomData.density[atom2]);
906 }
907
908 if (storageLayout_ & DataStorage::dslFunctional) {
909 idat.frho1 = &(snap_->atomData.functional[atom1]);
910 idat.frho2 = &(snap_->atomData.functional[atom2]);
911 }
912
913 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
914 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
915 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
916 }
917
918 if (storageLayout_ & DataStorage::dslParticlePot) {
919 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
920 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
921 }
922
923 if (storageLayout_ & DataStorage::dslSkippedCharge) {
924 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
925 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
926 }
927 #endif
928 }
929
930
931 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
932 #ifdef IS_MPI
933 pot_row[atom1] += 0.5 * *(idat.pot);
934 pot_col[atom2] += 0.5 * *(idat.pot);
935
936 atomRowData.force[atom1] += *(idat.f1);
937 atomColData.force[atom2] -= *(idat.f1);
938 #else
939 pairwisePot += *(idat.pot);
940
941 snap_->atomData.force[atom1] += *(idat.f1);
942 snap_->atomData.force[atom2] -= *(idat.f1);
943 #endif
944
945 }
946
947 /*
948 * buildNeighborList
949 *
950 * first element of pair is row-indexed CutoffGroup
951 * second element of pair is column-indexed CutoffGroup
952 */
953 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
954
955 vector<pair<int, int> > neighborList;
956 groupCutoffs cuts;
957 bool doAllPairs = false;
958
959 #ifdef IS_MPI
960 cellListRow_.clear();
961 cellListCol_.clear();
962 #else
963 cellList_.clear();
964 #endif
965
966 RealType rList_ = (largestRcut_ + skinThickness_);
967 RealType rl2 = rList_ * rList_;
968 Snapshot* snap_ = sman_->getCurrentSnapshot();
969 Mat3x3d Hmat = snap_->getHmat();
970 Vector3d Hx = Hmat.getColumn(0);
971 Vector3d Hy = Hmat.getColumn(1);
972 Vector3d Hz = Hmat.getColumn(2);
973
974 nCells_.x() = (int) ( Hx.length() )/ rList_;
975 nCells_.y() = (int) ( Hy.length() )/ rList_;
976 nCells_.z() = (int) ( Hz.length() )/ rList_;
977
978 // handle small boxes where the cell offsets can end up repeating cells
979
980 if (nCells_.x() < 3) doAllPairs = true;
981 if (nCells_.y() < 3) doAllPairs = true;
982 if (nCells_.z() < 3) doAllPairs = true;
983
984 Mat3x3d invHmat = snap_->getInvHmat();
985 Vector3d rs, scaled, dr;
986 Vector3i whichCell;
987 int cellIndex;
988 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
989
990 #ifdef IS_MPI
991 cellListRow_.resize(nCtot);
992 cellListCol_.resize(nCtot);
993 #else
994 cellList_.resize(nCtot);
995 #endif
996
997 if (!doAllPairs) {
998 #ifdef IS_MPI
999
1000 for (int i = 0; i < nGroupsInRow_; i++) {
1001 rs = cgRowData.position[i];
1002
1003 // scaled positions relative to the box vectors
1004 scaled = invHmat * rs;
1005
1006 // wrap the vector back into the unit box by subtracting integer box
1007 // numbers
1008 for (int j = 0; j < 3; j++) {
1009 scaled[j] -= roundMe(scaled[j]);
1010 scaled[j] += 0.5;
1011 }
1012
1013 // find xyz-indices of cell that cutoffGroup is in.
1014 whichCell.x() = nCells_.x() * scaled.x();
1015 whichCell.y() = nCells_.y() * scaled.y();
1016 whichCell.z() = nCells_.z() * scaled.z();
1017
1018 // find single index of this cell:
1019 cellIndex = Vlinear(whichCell, nCells_);
1020
1021 // add this cutoff group to the list of groups in this cell;
1022 cellListRow_[cellIndex].push_back(i);
1023 }
1024
1025 for (int i = 0; i < nGroupsInCol_; i++) {
1026 rs = cgColData.position[i];
1027
1028 // scaled positions relative to the box vectors
1029 scaled = invHmat * rs;
1030
1031 // wrap the vector back into the unit box by subtracting integer box
1032 // numbers
1033 for (int j = 0; j < 3; j++) {
1034 scaled[j] -= roundMe(scaled[j]);
1035 scaled[j] += 0.5;
1036 }
1037
1038 // find xyz-indices of cell that cutoffGroup is in.
1039 whichCell.x() = nCells_.x() * scaled.x();
1040 whichCell.y() = nCells_.y() * scaled.y();
1041 whichCell.z() = nCells_.z() * scaled.z();
1042
1043 // find single index of this cell:
1044 cellIndex = Vlinear(whichCell, nCells_);
1045
1046 // add this cutoff group to the list of groups in this cell;
1047 cellListCol_[cellIndex].push_back(i);
1048 }
1049 #else
1050 for (int i = 0; i < nGroups_; i++) {
1051 rs = snap_->cgData.position[i];
1052
1053 // scaled positions relative to the box vectors
1054 scaled = invHmat * rs;
1055
1056 // wrap the vector back into the unit box by subtracting integer box
1057 // numbers
1058 for (int j = 0; j < 3; j++) {
1059 scaled[j] -= roundMe(scaled[j]);
1060 scaled[j] += 0.5;
1061 }
1062
1063 // find xyz-indices of cell that cutoffGroup is in.
1064 whichCell.x() = nCells_.x() * scaled.x();
1065 whichCell.y() = nCells_.y() * scaled.y();
1066 whichCell.z() = nCells_.z() * scaled.z();
1067
1068 // find single index of this cell:
1069 cellIndex = Vlinear(whichCell, nCells_);
1070
1071 // add this cutoff group to the list of groups in this cell;
1072 cellList_[cellIndex].push_back(i);
1073 }
1074 #endif
1075
1076 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1077 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1078 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1079 Vector3i m1v(m1x, m1y, m1z);
1080 int m1 = Vlinear(m1v, nCells_);
1081
1082 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1083 os != cellOffsets_.end(); ++os) {
1084
1085 Vector3i m2v = m1v + (*os);
1086
1087 if (m2v.x() >= nCells_.x()) {
1088 m2v.x() = 0;
1089 } else if (m2v.x() < 0) {
1090 m2v.x() = nCells_.x() - 1;
1091 }
1092
1093 if (m2v.y() >= nCells_.y()) {
1094 m2v.y() = 0;
1095 } else if (m2v.y() < 0) {
1096 m2v.y() = nCells_.y() - 1;
1097 }
1098
1099 if (m2v.z() >= nCells_.z()) {
1100 m2v.z() = 0;
1101 } else if (m2v.z() < 0) {
1102 m2v.z() = nCells_.z() - 1;
1103 }
1104
1105 int m2 = Vlinear (m2v, nCells_);
1106
1107 #ifdef IS_MPI
1108 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1109 j1 != cellListRow_[m1].end(); ++j1) {
1110 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1111 j2 != cellListCol_[m2].end(); ++j2) {
1112
1113 // Always do this if we're in different cells or if
1114 // we're in the same cell and the global index of the
1115 // j2 cutoff group is less than the j1 cutoff group
1116
1117 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1118 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1119 snap_->wrapVector(dr);
1120 cuts = getGroupCutoffs( (*j1), (*j2) );
1121 if (dr.lengthSquare() < cuts.third) {
1122 neighborList.push_back(make_pair((*j1), (*j2)));
1123 }
1124 }
1125 }
1126 }
1127 #else
1128
1129 for (vector<int>::iterator j1 = cellList_[m1].begin();
1130 j1 != cellList_[m1].end(); ++j1) {
1131 for (vector<int>::iterator j2 = cellList_[m2].begin();
1132 j2 != cellList_[m2].end(); ++j2) {
1133
1134 // Always do this if we're in different cells or if
1135 // we're in the same cell and the global index of the
1136 // j2 cutoff group is less than the j1 cutoff group
1137
1138 if (m2 != m1 || (*j2) < (*j1)) {
1139 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1140 snap_->wrapVector(dr);
1141 cuts = getGroupCutoffs( (*j1), (*j2) );
1142 if (dr.lengthSquare() < cuts.third) {
1143 neighborList.push_back(make_pair((*j1), (*j2)));
1144 }
1145 }
1146 }
1147 }
1148 #endif
1149 }
1150 }
1151 }
1152 }
1153 } else {
1154 // branch to do all cutoff group pairs
1155 #ifdef IS_MPI
1156 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1157 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1158 dr = cgColData.position[j2] - cgRowData.position[j1];
1159 snap_->wrapVector(dr);
1160 cuts = getGroupCutoffs( j1, j2 );
1161 if (dr.lengthSquare() < cuts.third) {
1162 neighborList.push_back(make_pair(j1, j2));
1163 }
1164 }
1165 }
1166 #else
1167 for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1168 for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1169 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1170 snap_->wrapVector(dr);
1171 cuts = getGroupCutoffs( j1, j2 );
1172 if (dr.lengthSquare() < cuts.third) {
1173 neighborList.push_back(make_pair(j1, j2));
1174 }
1175 }
1176 }
1177 #endif
1178 }
1179
1180 // save the local cutoff group positions for the check that is
1181 // done on each loop:
1182 saved_CG_positions_.clear();
1183 for (int i = 0; i < nGroups_; i++)
1184 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1185
1186 return neighborList;
1187 }
1188 } //end namespace OpenMD