ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1588
Committed: Sat Jul 9 15:05:59 2011 UTC (13 years, 9 months ago) by gezelter
File size: 38952 byte(s)
Log Message:
fixed one MPI bug, working on another

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60
61 nGroups_ = info_->getNLocalCutoffGroups();
62 // gather the information for atomtype IDs (atids):
63 idents = info_->getIdentArray();
64 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 cgLocalToGlobal = info_->getGlobalGroupIndices();
66 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67
68 massFactors = info_->getMassFactors();
69
70 PairList* excludes = info_->getExcludedInteractions();
71 PairList* oneTwo = info_->getOneTwoInteractions();
72 PairList* oneThree = info_->getOneThreeInteractions();
73 PairList* oneFour = info_->getOneFourInteractions();
74
75 #ifdef IS_MPI
76
77 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82
83 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88
89 cgCommIntRow = new Communicator<Row,int>(nGroups_);
90 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93
94 nAtomsInRow_ = AtomCommIntRow->getSize();
95 nAtomsInCol_ = AtomCommIntColumn->getSize();
96 nGroupsInRow_ = cgCommIntRow->getSize();
97 nGroupsInCol_ = cgCommIntColumn->getSize();
98
99 // Modify the data storage objects with the correct layouts and sizes:
100 atomRowData.resize(nAtomsInRow_);
101 atomRowData.setStorageLayout(storageLayout_);
102 atomColData.resize(nAtomsInCol_);
103 atomColData.setStorageLayout(storageLayout_);
104 cgRowData.resize(nGroupsInRow_);
105 cgRowData.setStorageLayout(DataStorage::dslPosition);
106 cgColData.resize(nGroupsInCol_);
107 cgColData.setStorageLayout(DataStorage::dslPosition);
108
109 identsRow.resize(nAtomsInRow_);
110 identsCol.resize(nAtomsInCol_);
111
112 AtomCommIntRow->gather(idents, identsRow);
113 AtomCommIntColumn->gather(idents, identsCol);
114
115 vector<int>::iterator it;
116 for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) {
117 cerr << "my AtomLocalToGlobal = " << (*it) << "\n";
118 }
119 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
120 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
121
122 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
123 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
124
125 AtomCommRealRow->gather(massFactors, massFactorsRow);
126 AtomCommRealColumn->gather(massFactors, massFactorsCol);
127
128 groupListRow_.clear();
129 groupListRow_.resize(nGroupsInRow_);
130 for (int i = 0; i < nGroupsInRow_; i++) {
131 int gid = cgRowToGlobal[i];
132 for (int j = 0; j < nAtomsInRow_; j++) {
133 int aid = AtomRowToGlobal[j];
134 if (globalGroupMembership[aid] == gid)
135 groupListRow_[i].push_back(j);
136 }
137 }
138
139 groupListCol_.clear();
140 groupListCol_.resize(nGroupsInCol_);
141 for (int i = 0; i < nGroupsInCol_; i++) {
142 int gid = cgColToGlobal[i];
143 for (int j = 0; j < nAtomsInCol_; j++) {
144 int aid = AtomColToGlobal[j];
145 if (globalGroupMembership[aid] == gid)
146 groupListCol_[i].push_back(j);
147 }
148 }
149
150 excludesForAtom.clear();
151 excludesForAtom.resize(nAtomsInRow_);
152 toposForAtom.clear();
153 toposForAtom.resize(nAtomsInRow_);
154 topoDist.clear();
155 topoDist.resize(nAtomsInRow_);
156 for (int i = 0; i < nAtomsInRow_; i++) {
157 int iglob = AtomRowToGlobal[i];
158
159 for (int j = 0; j < nAtomsInCol_; j++) {
160 int jglob = AtomColToGlobal[j];
161
162 if (excludes->hasPair(iglob, jglob))
163 excludesForAtom[i].push_back(j);
164
165 if (oneTwo->hasPair(iglob, jglob)) {
166 toposForAtom[i].push_back(j);
167 topoDist[i].push_back(1);
168 } else {
169 if (oneThree->hasPair(iglob, jglob)) {
170 toposForAtom[i].push_back(j);
171 topoDist[i].push_back(2);
172 } else {
173 if (oneFour->hasPair(iglob, jglob)) {
174 toposForAtom[i].push_back(j);
175 topoDist[i].push_back(3);
176 }
177 }
178 }
179 }
180 }
181
182 #endif
183
184 groupList_.clear();
185 groupList_.resize(nGroups_);
186 for (int i = 0; i < nGroups_; i++) {
187 int gid = cgLocalToGlobal[i];
188 for (int j = 0; j < nLocal_; j++) {
189 int aid = AtomLocalToGlobal[j];
190 if (globalGroupMembership[aid] == gid) {
191 groupList_[i].push_back(j);
192 }
193 }
194 }
195
196 excludesForAtom.clear();
197 excludesForAtom.resize(nLocal_);
198 toposForAtom.clear();
199 toposForAtom.resize(nLocal_);
200 topoDist.clear();
201 topoDist.resize(nLocal_);
202
203 for (int i = 0; i < nLocal_; i++) {
204 int iglob = AtomLocalToGlobal[i];
205
206 for (int j = 0; j < nLocal_; j++) {
207 int jglob = AtomLocalToGlobal[j];
208
209 if (excludes->hasPair(iglob, jglob))
210 excludesForAtom[i].push_back(j);
211
212 if (oneTwo->hasPair(iglob, jglob)) {
213 toposForAtom[i].push_back(j);
214 topoDist[i].push_back(1);
215 } else {
216 if (oneThree->hasPair(iglob, jglob)) {
217 toposForAtom[i].push_back(j);
218 topoDist[i].push_back(2);
219 } else {
220 if (oneFour->hasPair(iglob, jglob)) {
221 toposForAtom[i].push_back(j);
222 topoDist[i].push_back(3);
223 }
224 }
225 }
226 }
227 }
228
229 createGtypeCutoffMap();
230
231 }
232
233 void ForceMatrixDecomposition::createGtypeCutoffMap() {
234
235 RealType tol = 1e-6;
236 RealType rc;
237 int atid;
238 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
239 map<int, RealType> atypeCutoff;
240
241 for (set<AtomType*>::iterator at = atypes.begin();
242 at != atypes.end(); ++at){
243 atid = (*at)->getIdent();
244 if (userChoseCutoff_)
245 atypeCutoff[atid] = userCutoff_;
246 else
247 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
248 }
249
250 vector<RealType> gTypeCutoffs;
251 // first we do a single loop over the cutoff groups to find the
252 // largest cutoff for any atypes present in this group.
253 #ifdef IS_MPI
254 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
255 groupRowToGtype.resize(nGroupsInRow_);
256 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
257 vector<int> atomListRow = getAtomsInGroupRow(cg1);
258 for (vector<int>::iterator ia = atomListRow.begin();
259 ia != atomListRow.end(); ++ia) {
260 int atom1 = (*ia);
261 atid = identsRow[atom1];
262 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
263 groupCutoffRow[cg1] = atypeCutoff[atid];
264 }
265 }
266
267 bool gTypeFound = false;
268 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
269 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
270 groupRowToGtype[cg1] = gt;
271 gTypeFound = true;
272 }
273 }
274 if (!gTypeFound) {
275 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
276 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
277 }
278
279 }
280 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
281 groupColToGtype.resize(nGroupsInCol_);
282 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
283 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
284 for (vector<int>::iterator jb = atomListCol.begin();
285 jb != atomListCol.end(); ++jb) {
286 int atom2 = (*jb);
287 atid = identsCol[atom2];
288 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
289 groupCutoffCol[cg2] = atypeCutoff[atid];
290 }
291 }
292 bool gTypeFound = false;
293 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
294 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
295 groupColToGtype[cg2] = gt;
296 gTypeFound = true;
297 }
298 }
299 if (!gTypeFound) {
300 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
301 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
302 }
303 }
304 #else
305
306 vector<RealType> groupCutoff(nGroups_, 0.0);
307 groupToGtype.resize(nGroups_);
308 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
309
310 groupCutoff[cg1] = 0.0;
311 vector<int> atomList = getAtomsInGroupRow(cg1);
312
313 for (vector<int>::iterator ia = atomList.begin();
314 ia != atomList.end(); ++ia) {
315 int atom1 = (*ia);
316 atid = idents[atom1];
317 if (atypeCutoff[atid] > groupCutoff[cg1]) {
318 groupCutoff[cg1] = atypeCutoff[atid];
319 }
320 }
321
322 bool gTypeFound = false;
323 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
324 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
325 groupToGtype[cg1] = gt;
326 gTypeFound = true;
327 }
328 }
329 if (!gTypeFound) {
330 gTypeCutoffs.push_back( groupCutoff[cg1] );
331 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
332 }
333 }
334 #endif
335
336 // Now we find the maximum group cutoff value present in the simulation
337
338 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
339
340 #ifdef IS_MPI
341 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
342 #endif
343
344 RealType tradRcut = groupMax;
345
346 for (int i = 0; i < gTypeCutoffs.size(); i++) {
347 for (int j = 0; j < gTypeCutoffs.size(); j++) {
348 RealType thisRcut;
349 switch(cutoffPolicy_) {
350 case TRADITIONAL:
351 thisRcut = tradRcut;
352 break;
353 case MIX:
354 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
355 break;
356 case MAX:
357 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
358 break;
359 default:
360 sprintf(painCave.errMsg,
361 "ForceMatrixDecomposition::createGtypeCutoffMap "
362 "hit an unknown cutoff policy!\n");
363 painCave.severity = OPENMD_ERROR;
364 painCave.isFatal = 1;
365 simError();
366 break;
367 }
368
369 pair<int,int> key = make_pair(i,j);
370 gTypeCutoffMap[key].first = thisRcut;
371
372 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
373
374 gTypeCutoffMap[key].second = thisRcut*thisRcut;
375
376 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
377
378 // sanity check
379
380 if (userChoseCutoff_) {
381 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
382 sprintf(painCave.errMsg,
383 "ForceMatrixDecomposition::createGtypeCutoffMap "
384 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
385 painCave.severity = OPENMD_ERROR;
386 painCave.isFatal = 1;
387 simError();
388 }
389 }
390 }
391 }
392 }
393
394
395 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
396 int i, j;
397 #ifdef IS_MPI
398 i = groupRowToGtype[cg1];
399 j = groupColToGtype[cg2];
400 #else
401 i = groupToGtype[cg1];
402 j = groupToGtype[cg2];
403 #endif
404 return gTypeCutoffMap[make_pair(i,j)];
405 }
406
407 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
408 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
409 if (toposForAtom[atom1][j] == atom2)
410 return topoDist[atom1][j];
411 }
412 return 0;
413 }
414
415 void ForceMatrixDecomposition::zeroWorkArrays() {
416 pairwisePot = 0.0;
417 embeddingPot = 0.0;
418
419 #ifdef IS_MPI
420 if (storageLayout_ & DataStorage::dslForce) {
421 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
422 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
423 }
424
425 if (storageLayout_ & DataStorage::dslTorque) {
426 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
427 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
428 }
429
430 fill(pot_row.begin(), pot_row.end(),
431 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
432
433 fill(pot_col.begin(), pot_col.end(),
434 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
435
436 if (storageLayout_ & DataStorage::dslParticlePot) {
437 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
438 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
439 }
440
441 if (storageLayout_ & DataStorage::dslDensity) {
442 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
443 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
444 }
445
446 if (storageLayout_ & DataStorage::dslFunctional) {
447 fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
448 fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
449 }
450
451 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
452 fill(atomRowData.functionalDerivative.begin(),
453 atomRowData.functionalDerivative.end(), 0.0);
454 fill(atomColData.functionalDerivative.begin(),
455 atomColData.functionalDerivative.end(), 0.0);
456 }
457
458 if (storageLayout_ & DataStorage::dslSkippedCharge) {
459 fill(atomRowData.skippedCharge.begin(),
460 atomRowData.skippedCharge.end(), 0.0);
461 fill(atomColData.skippedCharge.begin(),
462 atomColData.skippedCharge.end(), 0.0);
463 }
464
465 #else
466
467 if (storageLayout_ & DataStorage::dslParticlePot) {
468 fill(snap_->atomData.particlePot.begin(),
469 snap_->atomData.particlePot.end(), 0.0);
470 }
471
472 if (storageLayout_ & DataStorage::dslDensity) {
473 fill(snap_->atomData.density.begin(),
474 snap_->atomData.density.end(), 0.0);
475 }
476 if (storageLayout_ & DataStorage::dslFunctional) {
477 fill(snap_->atomData.functional.begin(),
478 snap_->atomData.functional.end(), 0.0);
479 }
480 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
481 fill(snap_->atomData.functionalDerivative.begin(),
482 snap_->atomData.functionalDerivative.end(), 0.0);
483 }
484 if (storageLayout_ & DataStorage::dslSkippedCharge) {
485 fill(snap_->atomData.skippedCharge.begin(),
486 snap_->atomData.skippedCharge.end(), 0.0);
487 }
488 #endif
489
490 }
491
492
493 void ForceMatrixDecomposition::distributeData() {
494 snap_ = sman_->getCurrentSnapshot();
495 storageLayout_ = sman_->getStorageLayout();
496 #ifdef IS_MPI
497
498 // gather up the atomic positions
499 AtomCommVectorRow->gather(snap_->atomData.position,
500 atomRowData.position);
501 AtomCommVectorColumn->gather(snap_->atomData.position,
502 atomColData.position);
503
504 // gather up the cutoff group positions
505 cgCommVectorRow->gather(snap_->cgData.position,
506 cgRowData.position);
507 cgCommVectorColumn->gather(snap_->cgData.position,
508 cgColData.position);
509
510 // if needed, gather the atomic rotation matrices
511 if (storageLayout_ & DataStorage::dslAmat) {
512 AtomCommMatrixRow->gather(snap_->atomData.aMat,
513 atomRowData.aMat);
514 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
515 atomColData.aMat);
516 }
517
518 // if needed, gather the atomic eletrostatic frames
519 if (storageLayout_ & DataStorage::dslElectroFrame) {
520 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
521 atomRowData.electroFrame);
522 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
523 atomColData.electroFrame);
524 }
525 #endif
526 }
527
528 /* collects information obtained during the pre-pair loop onto local
529 * data structures.
530 */
531 void ForceMatrixDecomposition::collectIntermediateData() {
532 snap_ = sman_->getCurrentSnapshot();
533 storageLayout_ = sman_->getStorageLayout();
534 #ifdef IS_MPI
535
536 if (storageLayout_ & DataStorage::dslDensity) {
537
538 AtomCommRealRow->scatter(atomRowData.density,
539 snap_->atomData.density);
540
541 int n = snap_->atomData.density.size();
542 vector<RealType> rho_tmp(n, 0.0);
543 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
544 for (int i = 0; i < n; i++)
545 snap_->atomData.density[i] += rho_tmp[i];
546 }
547 #endif
548 }
549
550 /*
551 * redistributes information obtained during the pre-pair loop out to
552 * row and column-indexed data structures
553 */
554 void ForceMatrixDecomposition::distributeIntermediateData() {
555 snap_ = sman_->getCurrentSnapshot();
556 storageLayout_ = sman_->getStorageLayout();
557 #ifdef IS_MPI
558 if (storageLayout_ & DataStorage::dslFunctional) {
559 AtomCommRealRow->gather(snap_->atomData.functional,
560 atomRowData.functional);
561 AtomCommRealColumn->gather(snap_->atomData.functional,
562 atomColData.functional);
563 }
564
565 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
566 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
567 atomRowData.functionalDerivative);
568 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
569 atomColData.functionalDerivative);
570 }
571 #endif
572 }
573
574
575 void ForceMatrixDecomposition::collectData() {
576 snap_ = sman_->getCurrentSnapshot();
577 storageLayout_ = sman_->getStorageLayout();
578 #ifdef IS_MPI
579 int n = snap_->atomData.force.size();
580 vector<Vector3d> frc_tmp(n, V3Zero);
581
582 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
583 for (int i = 0; i < n; i++) {
584 snap_->atomData.force[i] += frc_tmp[i];
585 frc_tmp[i] = 0.0;
586 }
587
588 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
589 for (int i = 0; i < n; i++)
590 snap_->atomData.force[i] += frc_tmp[i];
591
592
593 if (storageLayout_ & DataStorage::dslTorque) {
594
595 int nt = snap_->atomData.torque.size();
596 vector<Vector3d> trq_tmp(nt, V3Zero);
597
598 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
599 for (int i = 0; i < nt; i++) {
600 snap_->atomData.torque[i] += trq_tmp[i];
601 trq_tmp[i] = 0.0;
602 }
603
604 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
605 for (int i = 0; i < nt; i++)
606 snap_->atomData.torque[i] += trq_tmp[i];
607 }
608
609 if (storageLayout_ & DataStorage::dslSkippedCharge) {
610
611 int ns = snap_->atomData.skippedCharge.size();
612 vector<RealType> skch_tmp(ns, 0.0);
613
614 AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
615 for (int i = 0; i < ns; i++) {
616 snap_->atomData.skippedCharge[i] = skch_tmp[i];
617 skch_tmp[i] = 0.0;
618 }
619
620 AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
621 for (int i = 0; i < ns; i++)
622 snap_->atomData.skippedCharge[i] += skch_tmp[i];
623 }
624
625 nLocal_ = snap_->getNumberOfAtoms();
626
627 vector<potVec> pot_temp(nLocal_,
628 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
629
630 // scatter/gather pot_row into the members of my column
631
632 AtomCommPotRow->scatter(pot_row, pot_temp);
633
634 for (int ii = 0; ii < pot_temp.size(); ii++ )
635 pairwisePot += pot_temp[ii];
636
637 fill(pot_temp.begin(), pot_temp.end(),
638 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
639
640 AtomCommPotColumn->scatter(pot_col, pot_temp);
641
642 for (int ii = 0; ii < pot_temp.size(); ii++ )
643 pairwisePot += pot_temp[ii];
644 #endif
645
646 }
647
648 int ForceMatrixDecomposition::getNAtomsInRow() {
649 #ifdef IS_MPI
650 return nAtomsInRow_;
651 #else
652 return nLocal_;
653 #endif
654 }
655
656 /**
657 * returns the list of atoms belonging to this group.
658 */
659 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
660 #ifdef IS_MPI
661 return groupListRow_[cg1];
662 #else
663 return groupList_[cg1];
664 #endif
665 }
666
667 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
668 #ifdef IS_MPI
669 return groupListCol_[cg2];
670 #else
671 return groupList_[cg2];
672 #endif
673 }
674
675 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
676 Vector3d d;
677
678 #ifdef IS_MPI
679 d = cgColData.position[cg2] - cgRowData.position[cg1];
680 #else
681 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
682 #endif
683
684 snap_->wrapVector(d);
685 return d;
686 }
687
688
689 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
690
691 Vector3d d;
692
693 #ifdef IS_MPI
694 d = cgRowData.position[cg1] - atomRowData.position[atom1];
695 #else
696 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
697 #endif
698
699 snap_->wrapVector(d);
700 return d;
701 }
702
703 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
704 Vector3d d;
705
706 #ifdef IS_MPI
707 d = cgColData.position[cg2] - atomColData.position[atom2];
708 #else
709 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
710 #endif
711
712 snap_->wrapVector(d);
713 return d;
714 }
715
716 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
717 #ifdef IS_MPI
718 return massFactorsRow[atom1];
719 #else
720 return massFactors[atom1];
721 #endif
722 }
723
724 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
725 #ifdef IS_MPI
726 return massFactorsCol[atom2];
727 #else
728 return massFactors[atom2];
729 #endif
730
731 }
732
733 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
734 Vector3d d;
735
736 #ifdef IS_MPI
737 d = atomColData.position[atom2] - atomRowData.position[atom1];
738 #else
739 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
740 #endif
741
742 snap_->wrapVector(d);
743 return d;
744 }
745
746 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
747 return excludesForAtom[atom1];
748 }
749
750 /**
751 * We need to exclude some overcounted interactions that result from
752 * the parallel decomposition.
753 */
754 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
755 int unique_id_1, unique_id_2;
756
757 #ifdef IS_MPI
758 // in MPI, we have to look up the unique IDs for each atom
759 unique_id_1 = AtomRowToGlobal[atom1];
760 unique_id_2 = AtomColToGlobal[atom2];
761
762 // this situation should only arise in MPI simulations
763 if (unique_id_1 == unique_id_2) return true;
764
765 // this prevents us from doing the pair on multiple processors
766 if (unique_id_1 < unique_id_2) {
767 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
768 } else {
769 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
770 }
771 #endif
772 return false;
773 }
774
775 /**
776 * We need to handle the interactions for atoms who are involved in
777 * the same rigid body as well as some short range interactions
778 * (bonds, bends, torsions) differently from other interactions.
779 * We'll still visit the pairwise routines, but with a flag that
780 * tells those routines to exclude the pair from direct long range
781 * interactions. Some indirect interactions (notably reaction
782 * field) must still be handled for these pairs.
783 */
784 bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
785 int unique_id_2;
786
787 #ifdef IS_MPI
788 // in MPI, we have to look up the unique IDs for the row atom.
789 unique_id_2 = AtomColToGlobal[atom2];
790 #else
791 // in the normal loop, the atom numbers are unique
792 unique_id_2 = atom2;
793 #endif
794
795 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
796 i != excludesForAtom[atom1].end(); ++i) {
797 if ( (*i) == unique_id_2 ) return true;
798 }
799
800 return false;
801 }
802
803
804 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
805 #ifdef IS_MPI
806 atomRowData.force[atom1] += fg;
807 #else
808 snap_->atomData.force[atom1] += fg;
809 #endif
810 }
811
812 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
813 #ifdef IS_MPI
814 atomColData.force[atom2] += fg;
815 #else
816 snap_->atomData.force[atom2] += fg;
817 #endif
818 }
819
820 // filling interaction blocks with pointers
821 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
822 int atom1, int atom2) {
823
824 idat.excluded = excludeAtomPair(atom1, atom2);
825
826 #ifdef IS_MPI
827
828 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
829 ff_->getAtomType(identsCol[atom2]) );
830
831 if (storageLayout_ & DataStorage::dslAmat) {
832 idat.A1 = &(atomRowData.aMat[atom1]);
833 idat.A2 = &(atomColData.aMat[atom2]);
834 }
835
836 if (storageLayout_ & DataStorage::dslElectroFrame) {
837 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
838 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
839 }
840
841 if (storageLayout_ & DataStorage::dslTorque) {
842 idat.t1 = &(atomRowData.torque[atom1]);
843 idat.t2 = &(atomColData.torque[atom2]);
844 }
845
846 if (storageLayout_ & DataStorage::dslDensity) {
847 idat.rho1 = &(atomRowData.density[atom1]);
848 idat.rho2 = &(atomColData.density[atom2]);
849 }
850
851 if (storageLayout_ & DataStorage::dslFunctional) {
852 idat.frho1 = &(atomRowData.functional[atom1]);
853 idat.frho2 = &(atomColData.functional[atom2]);
854 }
855
856 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
857 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
858 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
859 }
860
861 if (storageLayout_ & DataStorage::dslParticlePot) {
862 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
863 idat.particlePot2 = &(atomColData.particlePot[atom2]);
864 }
865
866 if (storageLayout_ & DataStorage::dslSkippedCharge) {
867 idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
868 idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
869 }
870
871 #else
872
873 idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
874 ff_->getAtomType(idents[atom2]) );
875
876 if (storageLayout_ & DataStorage::dslAmat) {
877 idat.A1 = &(snap_->atomData.aMat[atom1]);
878 idat.A2 = &(snap_->atomData.aMat[atom2]);
879 }
880
881 if (storageLayout_ & DataStorage::dslElectroFrame) {
882 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
883 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
884 }
885
886 if (storageLayout_ & DataStorage::dslTorque) {
887 idat.t1 = &(snap_->atomData.torque[atom1]);
888 idat.t2 = &(snap_->atomData.torque[atom2]);
889 }
890
891 if (storageLayout_ & DataStorage::dslDensity) {
892 idat.rho1 = &(snap_->atomData.density[atom1]);
893 idat.rho2 = &(snap_->atomData.density[atom2]);
894 }
895
896 if (storageLayout_ & DataStorage::dslFunctional) {
897 idat.frho1 = &(snap_->atomData.functional[atom1]);
898 idat.frho2 = &(snap_->atomData.functional[atom2]);
899 }
900
901 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
902 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
903 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
904 }
905
906 if (storageLayout_ & DataStorage::dslParticlePot) {
907 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
908 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
909 }
910
911 if (storageLayout_ & DataStorage::dslSkippedCharge) {
912 idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
913 idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
914 }
915 #endif
916 }
917
918
919 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
920 #ifdef IS_MPI
921 pot_row[atom1] += 0.5 * *(idat.pot);
922 pot_col[atom2] += 0.5 * *(idat.pot);
923
924 atomRowData.force[atom1] += *(idat.f1);
925 atomColData.force[atom2] -= *(idat.f1);
926 #else
927 pairwisePot += *(idat.pot);
928
929 snap_->atomData.force[atom1] += *(idat.f1);
930 snap_->atomData.force[atom2] -= *(idat.f1);
931 #endif
932
933 }
934
935 /*
936 * buildNeighborList
937 *
938 * first element of pair is row-indexed CutoffGroup
939 * second element of pair is column-indexed CutoffGroup
940 */
941 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
942
943 vector<pair<int, int> > neighborList;
944 groupCutoffs cuts;
945 bool doAllPairs = false;
946
947 #ifdef IS_MPI
948 cellListRow_.clear();
949 cellListCol_.clear();
950 #else
951 cellList_.clear();
952 #endif
953
954 RealType rList_ = (largestRcut_ + skinThickness_);
955 RealType rl2 = rList_ * rList_;
956 Snapshot* snap_ = sman_->getCurrentSnapshot();
957 Mat3x3d Hmat = snap_->getHmat();
958 Vector3d Hx = Hmat.getColumn(0);
959 Vector3d Hy = Hmat.getColumn(1);
960 Vector3d Hz = Hmat.getColumn(2);
961
962 nCells_.x() = (int) ( Hx.length() )/ rList_;
963 nCells_.y() = (int) ( Hy.length() )/ rList_;
964 nCells_.z() = (int) ( Hz.length() )/ rList_;
965
966 // handle small boxes where the cell offsets can end up repeating cells
967
968 if (nCells_.x() < 3) doAllPairs = true;
969 if (nCells_.y() < 3) doAllPairs = true;
970 if (nCells_.z() < 3) doAllPairs = true;
971
972 Mat3x3d invHmat = snap_->getInvHmat();
973 Vector3d rs, scaled, dr;
974 Vector3i whichCell;
975 int cellIndex;
976 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
977
978 #ifdef IS_MPI
979 cellListRow_.resize(nCtot);
980 cellListCol_.resize(nCtot);
981 #else
982 cellList_.resize(nCtot);
983 #endif
984
985 if (!doAllPairs) {
986 #ifdef IS_MPI
987
988 for (int i = 0; i < nGroupsInRow_; i++) {
989 rs = cgRowData.position[i];
990
991 // scaled positions relative to the box vectors
992 scaled = invHmat * rs;
993
994 // wrap the vector back into the unit box by subtracting integer box
995 // numbers
996 for (int j = 0; j < 3; j++) {
997 scaled[j] -= roundMe(scaled[j]);
998 scaled[j] += 0.5;
999 }
1000
1001 // find xyz-indices of cell that cutoffGroup is in.
1002 whichCell.x() = nCells_.x() * scaled.x();
1003 whichCell.y() = nCells_.y() * scaled.y();
1004 whichCell.z() = nCells_.z() * scaled.z();
1005
1006 // find single index of this cell:
1007 cellIndex = Vlinear(whichCell, nCells_);
1008
1009 // add this cutoff group to the list of groups in this cell;
1010 cellListRow_[cellIndex].push_back(i);
1011 }
1012
1013 for (int i = 0; i < nGroupsInCol_; i++) {
1014 rs = cgColData.position[i];
1015
1016 // scaled positions relative to the box vectors
1017 scaled = invHmat * rs;
1018
1019 // wrap the vector back into the unit box by subtracting integer box
1020 // numbers
1021 for (int j = 0; j < 3; j++) {
1022 scaled[j] -= roundMe(scaled[j]);
1023 scaled[j] += 0.5;
1024 }
1025
1026 // find xyz-indices of cell that cutoffGroup is in.
1027 whichCell.x() = nCells_.x() * scaled.x();
1028 whichCell.y() = nCells_.y() * scaled.y();
1029 whichCell.z() = nCells_.z() * scaled.z();
1030
1031 // find single index of this cell:
1032 cellIndex = Vlinear(whichCell, nCells_);
1033
1034 // add this cutoff group to the list of groups in this cell;
1035 cellListCol_[cellIndex].push_back(i);
1036 }
1037 #else
1038 for (int i = 0; i < nGroups_; i++) {
1039 rs = snap_->cgData.position[i];
1040
1041 // scaled positions relative to the box vectors
1042 scaled = invHmat * rs;
1043
1044 // wrap the vector back into the unit box by subtracting integer box
1045 // numbers
1046 for (int j = 0; j < 3; j++) {
1047 scaled[j] -= roundMe(scaled[j]);
1048 scaled[j] += 0.5;
1049 }
1050
1051 // find xyz-indices of cell that cutoffGroup is in.
1052 whichCell.x() = nCells_.x() * scaled.x();
1053 whichCell.y() = nCells_.y() * scaled.y();
1054 whichCell.z() = nCells_.z() * scaled.z();
1055
1056 // find single index of this cell:
1057 cellIndex = Vlinear(whichCell, nCells_);
1058
1059 // add this cutoff group to the list of groups in this cell;
1060 cellList_[cellIndex].push_back(i);
1061 }
1062 #endif
1063
1064 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1065 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1066 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1067 Vector3i m1v(m1x, m1y, m1z);
1068 int m1 = Vlinear(m1v, nCells_);
1069
1070 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1071 os != cellOffsets_.end(); ++os) {
1072
1073 Vector3i m2v = m1v + (*os);
1074
1075 if (m2v.x() >= nCells_.x()) {
1076 m2v.x() = 0;
1077 } else if (m2v.x() < 0) {
1078 m2v.x() = nCells_.x() - 1;
1079 }
1080
1081 if (m2v.y() >= nCells_.y()) {
1082 m2v.y() = 0;
1083 } else if (m2v.y() < 0) {
1084 m2v.y() = nCells_.y() - 1;
1085 }
1086
1087 if (m2v.z() >= nCells_.z()) {
1088 m2v.z() = 0;
1089 } else if (m2v.z() < 0) {
1090 m2v.z() = nCells_.z() - 1;
1091 }
1092
1093 int m2 = Vlinear (m2v, nCells_);
1094
1095 #ifdef IS_MPI
1096 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1097 j1 != cellListRow_[m1].end(); ++j1) {
1098 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1099 j2 != cellListCol_[m2].end(); ++j2) {
1100
1101 // Always do this if we're in different cells or if
1102 // we're in the same cell and the global index of the
1103 // j2 cutoff group is less than the j1 cutoff group
1104
1105 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1106 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1107 snap_->wrapVector(dr);
1108 cuts = getGroupCutoffs( (*j1), (*j2) );
1109 if (dr.lengthSquare() < cuts.third) {
1110 neighborList.push_back(make_pair((*j1), (*j2)));
1111 }
1112 }
1113 }
1114 }
1115 #else
1116
1117 for (vector<int>::iterator j1 = cellList_[m1].begin();
1118 j1 != cellList_[m1].end(); ++j1) {
1119 for (vector<int>::iterator j2 = cellList_[m2].begin();
1120 j2 != cellList_[m2].end(); ++j2) {
1121
1122 // Always do this if we're in different cells or if
1123 // we're in the same cell and the global index of the
1124 // j2 cutoff group is less than the j1 cutoff group
1125
1126 if (m2 != m1 || (*j2) < (*j1)) {
1127 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1128 snap_->wrapVector(dr);
1129 cuts = getGroupCutoffs( (*j1), (*j2) );
1130 if (dr.lengthSquare() < cuts.third) {
1131 neighborList.push_back(make_pair((*j1), (*j2)));
1132 }
1133 }
1134 }
1135 }
1136 #endif
1137 }
1138 }
1139 }
1140 }
1141 } else {
1142 // branch to do all cutoff group pairs
1143 #ifdef IS_MPI
1144 for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1145 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1146 dr = cgColData.position[j2] - cgRowData.position[j1];
1147 snap_->wrapVector(dr);
1148 cuts = getGroupCutoffs( j1, j2 );
1149 if (dr.lengthSquare() < cuts.third) {
1150 neighborList.push_back(make_pair(j1, j2));
1151 }
1152 }
1153 }
1154 #else
1155 for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1156 for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1157 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1158 snap_->wrapVector(dr);
1159 cuts = getGroupCutoffs( j1, j2 );
1160 if (dr.lengthSquare() < cuts.third) {
1161 neighborList.push_back(make_pair(j1, j2));
1162 }
1163 }
1164 }
1165 #endif
1166 }
1167
1168 // save the local cutoff group positions for the check that is
1169 // done on each loop:
1170 saved_CG_positions_.clear();
1171 for (int i = 0; i < nGroups_; i++)
1172 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1173
1174 return neighborList;
1175 }
1176 } //end namespace OpenMD