ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1579
Committed: Thu Jun 9 20:26:29 2011 UTC (13 years, 10 months ago) by gezelter
File size: 36437 byte(s)
Log Message:
bug fixes (not done yet)

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60
61 nGroups_ = info_->getNLocalCutoffGroups();
62 cerr << "in dId, nGroups = " << nGroups_ << "\n";
63 // gather the information for atomtype IDs (atids):
64 identsLocal = info_->getIdentArray();
65 AtomLocalToGlobal = info_->getGlobalAtomIndices();
66 cgLocalToGlobal = info_->getGlobalGroupIndices();
67 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
68 vector<RealType> massFactorsLocal = info_->getMassFactors();
69 PairList excludes = info_->getExcludedInteractions();
70 PairList oneTwo = info_->getOneTwoInteractions();
71 PairList oneThree = info_->getOneThreeInteractions();
72 PairList oneFour = info_->getOneFourInteractions();
73
74 #ifdef IS_MPI
75
76 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
81
82 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
83 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
84 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
85 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
86 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
87
88 cgCommIntRow = new Communicator<Row,int>(nGroups_);
89 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
90 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
91 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
92
93 nAtomsInRow_ = AtomCommIntRow->getSize();
94 nAtomsInCol_ = AtomCommIntColumn->getSize();
95 nGroupsInRow_ = cgCommIntRow->getSize();
96 nGroupsInCol_ = cgCommIntColumn->getSize();
97
98 // Modify the data storage objects with the correct layouts and sizes:
99 atomRowData.resize(nAtomsInRow_);
100 atomRowData.setStorageLayout(storageLayout_);
101 atomColData.resize(nAtomsInCol_);
102 atomColData.setStorageLayout(storageLayout_);
103 cgRowData.resize(nGroupsInRow_);
104 cgRowData.setStorageLayout(DataStorage::dslPosition);
105 cgColData.resize(nGroupsInCol_);
106 cgColData.setStorageLayout(DataStorage::dslPosition);
107
108 identsRow.resize(nAtomsInRow_);
109 identsCol.resize(nAtomsInCol_);
110
111 AtomCommIntRow->gather(identsLocal, identsRow);
112 AtomCommIntColumn->gather(identsLocal, identsCol);
113
114 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
115 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
116
117 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
119
120 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
121 AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
122
123 groupListRow_.clear();
124 groupListRow_.resize(nGroupsInRow_);
125 for (int i = 0; i < nGroupsInRow_; i++) {
126 int gid = cgRowToGlobal[i];
127 for (int j = 0; j < nAtomsInRow_; j++) {
128 int aid = AtomRowToGlobal[j];
129 if (globalGroupMembership[aid] == gid)
130 groupListRow_[i].push_back(j);
131 }
132 }
133
134 groupListCol_.clear();
135 groupListCol_.resize(nGroupsInCol_);
136 for (int i = 0; i < nGroupsInCol_; i++) {
137 int gid = cgColToGlobal[i];
138 for (int j = 0; j < nAtomsInCol_; j++) {
139 int aid = AtomColToGlobal[j];
140 if (globalGroupMembership[aid] == gid)
141 groupListCol_[i].push_back(j);
142 }
143 }
144
145 skipsForAtom.clear();
146 skipsForAtom.resize(nAtomsInRow_);
147 toposForAtom.clear();
148 toposForAtom.resize(nAtomsInRow_);
149 topoDist.clear();
150 topoDist.resize(nAtomsInRow_);
151 for (int i = 0; i < nAtomsInRow_; i++) {
152 int iglob = AtomRowToGlobal[i];
153
154 for (int j = 0; j < nAtomsInCol_; j++) {
155 int jglob = AtomColToGlobal[j];
156
157 if (excludes.hasPair(iglob, jglob))
158 skipsForAtom[i].push_back(j);
159
160 if (oneTwo.hasPair(iglob, jglob)) {
161 toposForAtom[i].push_back(j);
162 topoDist[i].push_back(1);
163 } else {
164 if (oneThree.hasPair(iglob, jglob)) {
165 toposForAtom[i].push_back(j);
166 topoDist[i].push_back(2);
167 } else {
168 if (oneFour.hasPair(iglob, jglob)) {
169 toposForAtom[i].push_back(j);
170 topoDist[i].push_back(3);
171 }
172 }
173 }
174 }
175 }
176
177 #endif
178
179 groupList_.clear();
180 groupList_.resize(nGroups_);
181 for (int i = 0; i < nGroups_; i++) {
182 int gid = cgLocalToGlobal[i];
183 for (int j = 0; j < nLocal_; j++) {
184 int aid = AtomLocalToGlobal[j];
185 if (globalGroupMembership[aid] == gid) {
186 groupList_[i].push_back(j);
187 }
188 }
189 }
190
191 skipsForAtom.clear();
192 skipsForAtom.resize(nLocal_);
193 toposForAtom.clear();
194 toposForAtom.resize(nLocal_);
195 topoDist.clear();
196 topoDist.resize(nLocal_);
197
198 for (int i = 0; i < nLocal_; i++) {
199 int iglob = AtomLocalToGlobal[i];
200
201 for (int j = 0; j < nLocal_; j++) {
202 int jglob = AtomLocalToGlobal[j];
203
204 if (excludes.hasPair(iglob, jglob))
205 skipsForAtom[i].push_back(j);
206
207 if (oneTwo.hasPair(iglob, jglob)) {
208 toposForAtom[i].push_back(j);
209 topoDist[i].push_back(1);
210 } else {
211 if (oneThree.hasPair(iglob, jglob)) {
212 toposForAtom[i].push_back(j);
213 topoDist[i].push_back(2);
214 } else {
215 if (oneFour.hasPair(iglob, jglob)) {
216 toposForAtom[i].push_back(j);
217 topoDist[i].push_back(3);
218 }
219 }
220 }
221 }
222 }
223
224 createGtypeCutoffMap();
225 }
226
227 void ForceMatrixDecomposition::createGtypeCutoffMap() {
228
229 RealType tol = 1e-6;
230 RealType rc;
231 int atid;
232 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233 vector<RealType> atypeCutoff;
234 atypeCutoff.resize( atypes.size() );
235
236 for (set<AtomType*>::iterator at = atypes.begin();
237 at != atypes.end(); ++at){
238 rc = interactionMan_->getSuggestedCutoffRadius(*at);
239 atid = (*at)->getIdent();
240 atypeCutoff[atid] = rc;
241 }
242
243 vector<RealType> gTypeCutoffs;
244
245 // first we do a single loop over the cutoff groups to find the
246 // largest cutoff for any atypes present in this group.
247 #ifdef IS_MPI
248 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
249 groupRowToGtype.resize(nGroupsInRow_);
250 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
251 vector<int> atomListRow = getAtomsInGroupRow(cg1);
252 for (vector<int>::iterator ia = atomListRow.begin();
253 ia != atomListRow.end(); ++ia) {
254 int atom1 = (*ia);
255 atid = identsRow[atom1];
256 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
257 groupCutoffRow[cg1] = atypeCutoff[atid];
258 }
259 }
260
261 bool gTypeFound = false;
262 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
263 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
264 groupRowToGtype[cg1] = gt;
265 gTypeFound = true;
266 }
267 }
268 if (!gTypeFound) {
269 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
270 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
271 }
272
273 }
274 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
275 groupColToGtype.resize(nGroupsInCol_);
276 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
277 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
278 for (vector<int>::iterator jb = atomListCol.begin();
279 jb != atomListCol.end(); ++jb) {
280 int atom2 = (*jb);
281 atid = identsCol[atom2];
282 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
283 groupCutoffCol[cg2] = atypeCutoff[atid];
284 }
285 }
286 bool gTypeFound = false;
287 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
288 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
289 groupColToGtype[cg2] = gt;
290 gTypeFound = true;
291 }
292 }
293 if (!gTypeFound) {
294 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
295 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
296 }
297 }
298 #else
299
300 vector<RealType> groupCutoff(nGroups_, 0.0);
301 groupToGtype.resize(nGroups_);
302
303 cerr << "nGroups = " << nGroups_ << "\n";
304 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305
306 groupCutoff[cg1] = 0.0;
307 vector<int> atomList = getAtomsInGroupRow(cg1);
308
309 for (vector<int>::iterator ia = atomList.begin();
310 ia != atomList.end(); ++ia) {
311 int atom1 = (*ia);
312 atid = identsLocal[atom1];
313 if (atypeCutoff[atid] > groupCutoff[cg1]) {
314 groupCutoff[cg1] = atypeCutoff[atid];
315 }
316 }
317
318 bool gTypeFound = false;
319 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321 groupToGtype[cg1] = gt;
322 gTypeFound = true;
323 }
324 }
325 if (!gTypeFound) {
326 gTypeCutoffs.push_back( groupCutoff[cg1] );
327 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
328 }
329 }
330 #endif
331
332 cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
333 // Now we find the maximum group cutoff value present in the simulation
334
335 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
336
337 #ifdef IS_MPI
338 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
339 #endif
340
341 RealType tradRcut = groupMax;
342
343 for (int i = 0; i < gTypeCutoffs.size(); i++) {
344 for (int j = 0; j < gTypeCutoffs.size(); j++) {
345 RealType thisRcut;
346 switch(cutoffPolicy_) {
347 case TRADITIONAL:
348 thisRcut = tradRcut;
349 break;
350 case MIX:
351 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
352 break;
353 case MAX:
354 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
355 break;
356 default:
357 sprintf(painCave.errMsg,
358 "ForceMatrixDecomposition::createGtypeCutoffMap "
359 "hit an unknown cutoff policy!\n");
360 painCave.severity = OPENMD_ERROR;
361 painCave.isFatal = 1;
362 simError();
363 break;
364 }
365
366 pair<int,int> key = make_pair(i,j);
367 gTypeCutoffMap[key].first = thisRcut;
368
369 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
370
371 gTypeCutoffMap[key].second = thisRcut*thisRcut;
372
373 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374
375 // sanity check
376
377 if (userChoseCutoff_) {
378 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
379 sprintf(painCave.errMsg,
380 "ForceMatrixDecomposition::createGtypeCutoffMap "
381 "user-specified rCut does not match computed group Cutoff\n");
382 painCave.severity = OPENMD_ERROR;
383 painCave.isFatal = 1;
384 simError();
385 }
386 }
387 }
388 }
389 }
390
391
392 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
393 int i, j;
394 #ifdef IS_MPI
395 i = groupRowToGtype[cg1];
396 j = groupColToGtype[cg2];
397 #else
398 i = groupToGtype[cg1];
399 j = groupToGtype[cg2];
400 #endif
401 return gTypeCutoffMap[make_pair(i,j)];
402 }
403
404 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
405 for (int j = 0; j < toposForAtom[atom1].size(); j++) {
406 if (toposForAtom[atom1][j] == atom2)
407 return topoDist[atom1][j];
408 }
409 return 0;
410 }
411
412 void ForceMatrixDecomposition::zeroWorkArrays() {
413
414 for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415 longRangePot_[j] = 0.0;
416 }
417
418 #ifdef IS_MPI
419 if (storageLayout_ & DataStorage::dslForce) {
420 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
421 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
422 }
423
424 if (storageLayout_ & DataStorage::dslTorque) {
425 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
426 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
427 }
428
429 fill(pot_row.begin(), pot_row.end(),
430 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
431
432 fill(pot_col.begin(), pot_col.end(),
433 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434
435 pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
436
437 if (storageLayout_ & DataStorage::dslParticlePot) {
438 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
439 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
440 }
441
442 if (storageLayout_ & DataStorage::dslDensity) {
443 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
444 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
445 }
446
447 if (storageLayout_ & DataStorage::dslFunctional) {
448 fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
449 fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
450 }
451
452 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
453 fill(atomRowData.functionalDerivative.begin(),
454 atomRowData.functionalDerivative.end(), 0.0);
455 fill(atomColData.functionalDerivative.begin(),
456 atomColData.functionalDerivative.end(), 0.0);
457 }
458
459 #else
460
461 if (storageLayout_ & DataStorage::dslParticlePot) {
462 fill(snap_->atomData.particlePot.begin(),
463 snap_->atomData.particlePot.end(), 0.0);
464 }
465
466 if (storageLayout_ & DataStorage::dslDensity) {
467 fill(snap_->atomData.density.begin(),
468 snap_->atomData.density.end(), 0.0);
469 }
470 if (storageLayout_ & DataStorage::dslFunctional) {
471 fill(snap_->atomData.functional.begin(),
472 snap_->atomData.functional.end(), 0.0);
473 }
474 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
475 fill(snap_->atomData.functionalDerivative.begin(),
476 snap_->atomData.functionalDerivative.end(), 0.0);
477 }
478 #endif
479
480 }
481
482
483 void ForceMatrixDecomposition::distributeData() {
484 snap_ = sman_->getCurrentSnapshot();
485 storageLayout_ = sman_->getStorageLayout();
486 #ifdef IS_MPI
487
488 // gather up the atomic positions
489 AtomCommVectorRow->gather(snap_->atomData.position,
490 atomRowData.position);
491 AtomCommVectorColumn->gather(snap_->atomData.position,
492 atomColData.position);
493
494 // gather up the cutoff group positions
495 cgCommVectorRow->gather(snap_->cgData.position,
496 cgRowData.position);
497 cgCommVectorColumn->gather(snap_->cgData.position,
498 cgColData.position);
499
500 // if needed, gather the atomic rotation matrices
501 if (storageLayout_ & DataStorage::dslAmat) {
502 AtomCommMatrixRow->gather(snap_->atomData.aMat,
503 atomRowData.aMat);
504 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
505 atomColData.aMat);
506 }
507
508 // if needed, gather the atomic eletrostatic frames
509 if (storageLayout_ & DataStorage::dslElectroFrame) {
510 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
511 atomRowData.electroFrame);
512 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
513 atomColData.electroFrame);
514 }
515 #endif
516 }
517
518 /* collects information obtained during the pre-pair loop onto local
519 * data structures.
520 */
521 void ForceMatrixDecomposition::collectIntermediateData() {
522 snap_ = sman_->getCurrentSnapshot();
523 storageLayout_ = sman_->getStorageLayout();
524 #ifdef IS_MPI
525
526 if (storageLayout_ & DataStorage::dslDensity) {
527
528 AtomCommRealRow->scatter(atomRowData.density,
529 snap_->atomData.density);
530
531 int n = snap_->atomData.density.size();
532 vector<RealType> rho_tmp(n, 0.0);
533 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
534 for (int i = 0; i < n; i++)
535 snap_->atomData.density[i] += rho_tmp[i];
536 }
537 #endif
538 }
539
540 /*
541 * redistributes information obtained during the pre-pair loop out to
542 * row and column-indexed data structures
543 */
544 void ForceMatrixDecomposition::distributeIntermediateData() {
545 snap_ = sman_->getCurrentSnapshot();
546 storageLayout_ = sman_->getStorageLayout();
547 #ifdef IS_MPI
548 if (storageLayout_ & DataStorage::dslFunctional) {
549 AtomCommRealRow->gather(snap_->atomData.functional,
550 atomRowData.functional);
551 AtomCommRealColumn->gather(snap_->atomData.functional,
552 atomColData.functional);
553 }
554
555 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
556 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
557 atomRowData.functionalDerivative);
558 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
559 atomColData.functionalDerivative);
560 }
561 #endif
562 }
563
564
565 void ForceMatrixDecomposition::collectData() {
566 snap_ = sman_->getCurrentSnapshot();
567 storageLayout_ = sman_->getStorageLayout();
568 #ifdef IS_MPI
569 int n = snap_->atomData.force.size();
570 vector<Vector3d> frc_tmp(n, V3Zero);
571
572 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
573 for (int i = 0; i < n; i++) {
574 snap_->atomData.force[i] += frc_tmp[i];
575 frc_tmp[i] = 0.0;
576 }
577
578 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
579 for (int i = 0; i < n; i++)
580 snap_->atomData.force[i] += frc_tmp[i];
581
582
583 if (storageLayout_ & DataStorage::dslTorque) {
584
585 int nt = snap_->atomData.force.size();
586 vector<Vector3d> trq_tmp(nt, V3Zero);
587
588 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
589 for (int i = 0; i < n; i++) {
590 snap_->atomData.torque[i] += trq_tmp[i];
591 trq_tmp[i] = 0.0;
592 }
593
594 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
595 for (int i = 0; i < n; i++)
596 snap_->atomData.torque[i] += trq_tmp[i];
597 }
598
599 nLocal_ = snap_->getNumberOfAtoms();
600
601 vector<potVec> pot_temp(nLocal_,
602 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
603
604 // scatter/gather pot_row into the members of my column
605
606 AtomCommPotRow->scatter(pot_row, pot_temp);
607
608 for (int ii = 0; ii < pot_temp.size(); ii++ )
609 pot_local += pot_temp[ii];
610
611 fill(pot_temp.begin(), pot_temp.end(),
612 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
613
614 AtomCommPotColumn->scatter(pot_col, pot_temp);
615
616 for (int ii = 0; ii < pot_temp.size(); ii++ )
617 pot_local += pot_temp[ii];
618
619 #endif
620 }
621
622 int ForceMatrixDecomposition::getNAtomsInRow() {
623 #ifdef IS_MPI
624 return nAtomsInRow_;
625 #else
626 return nLocal_;
627 #endif
628 }
629
630 /**
631 * returns the list of atoms belonging to this group.
632 */
633 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
634 #ifdef IS_MPI
635 return groupListRow_[cg1];
636 #else
637 return groupList_[cg1];
638 #endif
639 }
640
641 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
642 #ifdef IS_MPI
643 return groupListCol_[cg2];
644 #else
645 return groupList_[cg2];
646 #endif
647 }
648
649 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
650 Vector3d d;
651
652 #ifdef IS_MPI
653 d = cgColData.position[cg2] - cgRowData.position[cg1];
654 #else
655 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
656 #endif
657
658 snap_->wrapVector(d);
659 return d;
660 }
661
662
663 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
664
665 Vector3d d;
666
667 #ifdef IS_MPI
668 d = cgRowData.position[cg1] - atomRowData.position[atom1];
669 #else
670 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
671 #endif
672
673 snap_->wrapVector(d);
674 return d;
675 }
676
677 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
678 Vector3d d;
679
680 #ifdef IS_MPI
681 d = cgColData.position[cg2] - atomColData.position[atom2];
682 #else
683 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
684 #endif
685
686 snap_->wrapVector(d);
687 return d;
688 }
689
690 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
691 #ifdef IS_MPI
692 return massFactorsRow[atom1];
693 #else
694 return massFactorsLocal[atom1];
695 #endif
696 }
697
698 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
699 #ifdef IS_MPI
700 return massFactorsCol[atom2];
701 #else
702 return massFactorsLocal[atom2];
703 #endif
704
705 }
706
707 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
708 Vector3d d;
709
710 #ifdef IS_MPI
711 d = atomColData.position[atom2] - atomRowData.position[atom1];
712 #else
713 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
714 #endif
715
716 snap_->wrapVector(d);
717 return d;
718 }
719
720 vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
721 return skipsForAtom[atom1];
722 }
723
724 /**
725 * There are a number of reasons to skip a pair or a
726 * particle. Mostly we do this to exclude atoms who are involved in
727 * short range interactions (bonds, bends, torsions), but we also
728 * need to exclude some overcounted interactions that result from
729 * the parallel decomposition.
730 */
731 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
732 int unique_id_1, unique_id_2;
733
734 #ifdef IS_MPI
735 // in MPI, we have to look up the unique IDs for each atom
736 unique_id_1 = AtomRowToGlobal[atom1];
737 unique_id_2 = AtomColToGlobal[atom2];
738
739 // this situation should only arise in MPI simulations
740 if (unique_id_1 == unique_id_2) return true;
741
742 // this prevents us from doing the pair on multiple processors
743 if (unique_id_1 < unique_id_2) {
744 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
745 } else {
746 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
747 }
748 #else
749 // in the normal loop, the atom numbers are unique
750 unique_id_1 = atom1;
751 unique_id_2 = atom2;
752 #endif
753
754 for (vector<int>::iterator i = skipsForAtom[atom1].begin();
755 i != skipsForAtom[atom1].end(); ++i) {
756 if ( (*i) == unique_id_2 ) return true;
757 }
758
759 }
760
761
762 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
763 #ifdef IS_MPI
764 atomRowData.force[atom1] += fg;
765 #else
766 snap_->atomData.force[atom1] += fg;
767 #endif
768 }
769
770 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
771 #ifdef IS_MPI
772 atomColData.force[atom2] += fg;
773 #else
774 snap_->atomData.force[atom2] += fg;
775 #endif
776 }
777
778 // filling interaction blocks with pointers
779 InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
780 InteractionData idat;
781
782 #ifdef IS_MPI
783
784 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
785 ff_->getAtomType(identsCol[atom2]) );
786
787
788 if (storageLayout_ & DataStorage::dslAmat) {
789 idat.A1 = &(atomRowData.aMat[atom1]);
790 idat.A2 = &(atomColData.aMat[atom2]);
791 }
792
793 if (storageLayout_ & DataStorage::dslElectroFrame) {
794 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
795 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
796 }
797
798 if (storageLayout_ & DataStorage::dslTorque) {
799 idat.t1 = &(atomRowData.torque[atom1]);
800 idat.t2 = &(atomColData.torque[atom2]);
801 }
802
803 if (storageLayout_ & DataStorage::dslDensity) {
804 idat.rho1 = &(atomRowData.density[atom1]);
805 idat.rho2 = &(atomColData.density[atom2]);
806 }
807
808 if (storageLayout_ & DataStorage::dslFunctional) {
809 idat.frho1 = &(atomRowData.functional[atom1]);
810 idat.frho2 = &(atomColData.functional[atom2]);
811 }
812
813 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
814 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
815 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
816 }
817
818 if (storageLayout_ & DataStorage::dslParticlePot) {
819 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
820 idat.particlePot2 = &(atomColData.particlePot[atom2]);
821 }
822
823 #else
824
825 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
826 ff_->getAtomType(identsLocal[atom2]) );
827
828 if (storageLayout_ & DataStorage::dslAmat) {
829 idat.A1 = &(snap_->atomData.aMat[atom1]);
830 idat.A2 = &(snap_->atomData.aMat[atom2]);
831 }
832
833 if (storageLayout_ & DataStorage::dslElectroFrame) {
834 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
835 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
836 }
837
838 if (storageLayout_ & DataStorage::dslTorque) {
839 idat.t1 = &(snap_->atomData.torque[atom1]);
840 idat.t2 = &(snap_->atomData.torque[atom2]);
841 }
842
843 if (storageLayout_ & DataStorage::dslDensity) {
844 idat.rho1 = &(snap_->atomData.density[atom1]);
845 idat.rho2 = &(snap_->atomData.density[atom2]);
846 }
847
848 if (storageLayout_ & DataStorage::dslFunctional) {
849 idat.frho1 = &(snap_->atomData.functional[atom1]);
850 idat.frho2 = &(snap_->atomData.functional[atom2]);
851 }
852
853 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
854 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
855 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
856 }
857
858 if (storageLayout_ & DataStorage::dslParticlePot) {
859 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
860 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
861 }
862
863 #endif
864 return idat;
865 }
866
867
868 void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {
869 #ifdef IS_MPI
870 pot_row[atom1] += 0.5 * *(idat.pot);
871 pot_col[atom2] += 0.5 * *(idat.pot);
872
873 atomRowData.force[atom1] += *(idat.f1);
874 atomColData.force[atom2] -= *(idat.f1);
875 #else
876 longRangePot_ += *(idat.pot);
877
878 snap_->atomData.force[atom1] += *(idat.f1);
879 snap_->atomData.force[atom2] -= *(idat.f1);
880 #endif
881
882 }
883
884
885 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
886
887 InteractionData idat;
888 #ifdef IS_MPI
889 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
890 ff_->getAtomType(identsCol[atom2]) );
891
892 if (storageLayout_ & DataStorage::dslElectroFrame) {
893 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
894 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
895 }
896 if (storageLayout_ & DataStorage::dslTorque) {
897 idat.t1 = &(atomRowData.torque[atom1]);
898 idat.t2 = &(atomColData.torque[atom2]);
899 }
900 #else
901 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
902 ff_->getAtomType(identsLocal[atom2]) );
903
904 if (storageLayout_ & DataStorage::dslElectroFrame) {
905 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
906 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
907 }
908 if (storageLayout_ & DataStorage::dslTorque) {
909 idat.t1 = &(snap_->atomData.torque[atom1]);
910 idat.t2 = &(snap_->atomData.torque[atom2]);
911 }
912 #endif
913 }
914
915 /*
916 * buildNeighborList
917 *
918 * first element of pair is row-indexed CutoffGroup
919 * second element of pair is column-indexed CutoffGroup
920 */
921 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
922
923 vector<pair<int, int> > neighborList;
924 groupCutoffs cuts;
925 #ifdef IS_MPI
926 cellListRow_.clear();
927 cellListCol_.clear();
928 #else
929 cellList_.clear();
930 #endif
931
932 RealType rList_ = (largestRcut_ + skinThickness_);
933 RealType rl2 = rList_ * rList_;
934 Snapshot* snap_ = sman_->getCurrentSnapshot();
935 Mat3x3d Hmat = snap_->getHmat();
936 Vector3d Hx = Hmat.getColumn(0);
937 Vector3d Hy = Hmat.getColumn(1);
938 Vector3d Hz = Hmat.getColumn(2);
939
940 nCells_.x() = (int) ( Hx.length() )/ rList_;
941 nCells_.y() = (int) ( Hy.length() )/ rList_;
942 nCells_.z() = (int) ( Hz.length() )/ rList_;
943
944 Mat3x3d invHmat = snap_->getInvHmat();
945 Vector3d rs, scaled, dr;
946 Vector3i whichCell;
947 int cellIndex;
948 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
949
950 #ifdef IS_MPI
951 cellListRow_.resize(nCtot);
952 cellListCol_.resize(nCtot);
953 #else
954 cellList_.resize(nCtot);
955 #endif
956
957 #ifdef IS_MPI
958 for (int i = 0; i < nGroupsInRow_; i++) {
959 rs = cgRowData.position[i];
960 // scaled positions relative to the box vectors
961 scaled = invHmat * rs;
962 // wrap the vector back into the unit box by subtracting integer box
963 // numbers
964 for (int j = 0; j < 3; j++)
965 scaled[j] -= roundMe(scaled[j]);
966
967 // find xyz-indices of cell that cutoffGroup is in.
968 whichCell.x() = nCells_.x() * scaled.x();
969 whichCell.y() = nCells_.y() * scaled.y();
970 whichCell.z() = nCells_.z() * scaled.z();
971
972 // find single index of this cell:
973 cellIndex = Vlinear(whichCell, nCells_);
974 // add this cutoff group to the list of groups in this cell;
975 cellListRow_[cellIndex].push_back(i);
976 }
977
978 for (int i = 0; i < nGroupsInCol_; i++) {
979 rs = cgColData.position[i];
980 // scaled positions relative to the box vectors
981 scaled = invHmat * rs;
982 // wrap the vector back into the unit box by subtracting integer box
983 // numbers
984 for (int j = 0; j < 3; j++)
985 scaled[j] -= roundMe(scaled[j]);
986
987 // find xyz-indices of cell that cutoffGroup is in.
988 whichCell.x() = nCells_.x() * scaled.x();
989 whichCell.y() = nCells_.y() * scaled.y();
990 whichCell.z() = nCells_.z() * scaled.z();
991
992 // find single index of this cell:
993 cellIndex = Vlinear(whichCell, nCells_);
994 // add this cutoff group to the list of groups in this cell;
995 cellListCol_[cellIndex].push_back(i);
996 }
997 #else
998 for (int i = 0; i < nGroups_; i++) {
999 rs = snap_->cgData.position[i];
1000 // scaled positions relative to the box vectors
1001 scaled = invHmat * rs;
1002 // wrap the vector back into the unit box by subtracting integer box
1003 // numbers
1004 for (int j = 0; j < 3; j++)
1005 scaled[j] -= roundMe(scaled[j]);
1006
1007 // find xyz-indices of cell that cutoffGroup is in.
1008 whichCell.x() = nCells_.x() * scaled.x();
1009 whichCell.y() = nCells_.y() * scaled.y();
1010 whichCell.z() = nCells_.z() * scaled.z();
1011
1012 // find single index of this cell:
1013 cellIndex = Vlinear(whichCell, nCells_);
1014 // add this cutoff group to the list of groups in this cell;
1015 cellList_[cellIndex].push_back(i);
1016 }
1017 #endif
1018
1019 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1020 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1021 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1022 Vector3i m1v(m1x, m1y, m1z);
1023 int m1 = Vlinear(m1v, nCells_);
1024
1025 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1026 os != cellOffsets_.end(); ++os) {
1027
1028 Vector3i m2v = m1v + (*os);
1029
1030 if (m2v.x() >= nCells_.x()) {
1031 m2v.x() = 0;
1032 } else if (m2v.x() < 0) {
1033 m2v.x() = nCells_.x() - 1;
1034 }
1035
1036 if (m2v.y() >= nCells_.y()) {
1037 m2v.y() = 0;
1038 } else if (m2v.y() < 0) {
1039 m2v.y() = nCells_.y() - 1;
1040 }
1041
1042 if (m2v.z() >= nCells_.z()) {
1043 m2v.z() = 0;
1044 } else if (m2v.z() < 0) {
1045 m2v.z() = nCells_.z() - 1;
1046 }
1047
1048 int m2 = Vlinear (m2v, nCells_);
1049
1050 #ifdef IS_MPI
1051 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1052 j1 != cellListRow_[m1].end(); ++j1) {
1053 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1054 j2 != cellListCol_[m2].end(); ++j2) {
1055
1056 // Always do this if we're in different cells or if
1057 // we're in the same cell and the global index of the
1058 // j2 cutoff group is less than the j1 cutoff group
1059
1060 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1061 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1062 snap_->wrapVector(dr);
1063 cuts = getGroupCutoffs( (*j1), (*j2) );
1064 if (dr.lengthSquare() < cuts.third) {
1065 neighborList.push_back(make_pair((*j1), (*j2)));
1066 }
1067 }
1068 }
1069 }
1070 #else
1071 for (vector<int>::iterator j1 = cellList_[m1].begin();
1072 j1 != cellList_[m1].end(); ++j1) {
1073 for (vector<int>::iterator j2 = cellList_[m2].begin();
1074 j2 != cellList_[m2].end(); ++j2) {
1075
1076 // Always do this if we're in different cells or if
1077 // we're in the same cell and the global index of the
1078 // j2 cutoff group is less than the j1 cutoff group
1079
1080 if (m2 != m1 || (*j2) < (*j1)) {
1081 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1082 snap_->wrapVector(dr);
1083 cuts = getGroupCutoffs( (*j1), (*j2) );
1084 if (dr.lengthSquare() < cuts.third) {
1085 neighborList.push_back(make_pair((*j1), (*j2)));
1086 }
1087 }
1088 }
1089 }
1090 #endif
1091 }
1092 }
1093 }
1094 }
1095
1096 // save the local cutoff group positions for the check that is
1097 // done on each loop:
1098 saved_CG_positions_.clear();
1099 for (int i = 0; i < nGroups_; i++)
1100 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1101
1102 return neighborList;
1103 }
1104 } //end namespace OpenMD