ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1576
Committed: Wed Jun 8 16:05:07 2011 UTC (13 years, 10 months ago) by gezelter
File size: 36860 byte(s)
Log Message:
migrating cutoff information from InteractionManager to ForceManager

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60 nGroups_ = snap_->getNumberOfCutoffGroups();
61
62 // gather the information for atomtype IDs (atids):
63 identsLocal = info_->getIdentArray();
64 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 cgLocalToGlobal = info_->getGlobalGroupIndices();
66 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 vector<RealType> massFactorsLocal = info_->getMassFactors();
68 PairList excludes = info_->getExcludedInteractions();
69 PairList oneTwo = info_->getOneTwoInteractions();
70 PairList oneThree = info_->getOneThreeInteractions();
71 PairList oneFour = info_->getOneFourInteractions();
72
73 #ifdef IS_MPI
74
75 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
76 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
79 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
80
81 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
82 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
83 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
84 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
85 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
86
87 cgCommIntRow = new Communicator<Row,int>(nGroups_);
88 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
89 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
90 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
91
92 nAtomsInRow_ = AtomCommIntRow->getSize();
93 nAtomsInCol_ = AtomCommIntColumn->getSize();
94 nGroupsInRow_ = cgCommIntRow->getSize();
95 nGroupsInCol_ = cgCommIntColumn->getSize();
96
97 // Modify the data storage objects with the correct layouts and sizes:
98 atomRowData.resize(nAtomsInRow_);
99 atomRowData.setStorageLayout(storageLayout_);
100 atomColData.resize(nAtomsInCol_);
101 atomColData.setStorageLayout(storageLayout_);
102 cgRowData.resize(nGroupsInRow_);
103 cgRowData.setStorageLayout(DataStorage::dslPosition);
104 cgColData.resize(nGroupsInCol_);
105 cgColData.setStorageLayout(DataStorage::dslPosition);
106
107 identsRow.reserve(nAtomsInRow_);
108 identsCol.reserve(nAtomsInCol_);
109
110 AtomCommIntRow->gather(identsLocal, identsRow);
111 AtomCommIntColumn->gather(identsLocal, identsCol);
112
113 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
114 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
115
116 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
117 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
118
119 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
120 AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
121
122 groupListRow_.clear();
123 groupListRow_.reserve(nGroupsInRow_);
124 for (int i = 0; i < nGroupsInRow_; i++) {
125 int gid = cgRowToGlobal[i];
126 for (int j = 0; j < nAtomsInRow_; j++) {
127 int aid = AtomRowToGlobal[j];
128 if (globalGroupMembership[aid] == gid)
129 groupListRow_[i].push_back(j);
130 }
131 }
132
133 groupListCol_.clear();
134 groupListCol_.reserve(nGroupsInCol_);
135 for (int i = 0; i < nGroupsInCol_; i++) {
136 int gid = cgColToGlobal[i];
137 for (int j = 0; j < nAtomsInCol_; j++) {
138 int aid = AtomColToGlobal[j];
139 if (globalGroupMembership[aid] == gid)
140 groupListCol_[i].push_back(j);
141 }
142 }
143
144 skipsForRowAtom.clear();
145 skipsForRowAtom.reserve(nAtomsInRow_);
146 for (int i = 0; i < nAtomsInRow_; i++) {
147 int iglob = AtomRowToGlobal[i];
148 for (int j = 0; j < nAtomsInCol_; j++) {
149 int jglob = AtomColToGlobal[j];
150 if (excludes.hasPair(iglob, jglob))
151 skipsForRowAtom[i].push_back(j);
152 }
153 }
154
155 toposForRowAtom.clear();
156 toposForRowAtom.reserve(nAtomsInRow_);
157 for (int i = 0; i < nAtomsInRow_; i++) {
158 int iglob = AtomRowToGlobal[i];
159 int nTopos = 0;
160 for (int j = 0; j < nAtomsInCol_; j++) {
161 int jglob = AtomColToGlobal[j];
162 if (oneTwo.hasPair(iglob, jglob)) {
163 toposForRowAtom[i].push_back(j);
164 topoDistRow[i][nTopos] = 1;
165 nTopos++;
166 }
167 if (oneThree.hasPair(iglob, jglob)) {
168 toposForRowAtom[i].push_back(j);
169 topoDistRow[i][nTopos] = 2;
170 nTopos++;
171 }
172 if (oneFour.hasPair(iglob, jglob)) {
173 toposForRowAtom[i].push_back(j);
174 topoDistRow[i][nTopos] = 3;
175 nTopos++;
176 }
177 }
178 }
179
180 #endif
181
182 groupList_.clear();
183 groupList_.reserve(nGroups_);
184 for (int i = 0; i < nGroups_; i++) {
185 int gid = cgLocalToGlobal[i];
186 for (int j = 0; j < nLocal_; j++) {
187 int aid = AtomLocalToGlobal[j];
188 if (globalGroupMembership[aid] == gid)
189 groupList_[i].push_back(j);
190 }
191 }
192
193 skipsForLocalAtom.clear();
194 skipsForLocalAtom.reserve(nLocal_);
195
196 for (int i = 0; i < nLocal_; i++) {
197 int iglob = AtomLocalToGlobal[i];
198 for (int j = 0; j < nLocal_; j++) {
199 int jglob = AtomLocalToGlobal[j];
200 if (excludes.hasPair(iglob, jglob))
201 skipsForLocalAtom[i].push_back(j);
202 }
203 }
204
205 toposForLocalAtom.clear();
206 toposForLocalAtom.reserve(nLocal_);
207 for (int i = 0; i < nLocal_; i++) {
208 int iglob = AtomLocalToGlobal[i];
209 int nTopos = 0;
210 for (int j = 0; j < nLocal_; j++) {
211 int jglob = AtomLocalToGlobal[j];
212 if (oneTwo.hasPair(iglob, jglob)) {
213 toposForLocalAtom[i].push_back(j);
214 topoDistLocal[i][nTopos] = 1;
215 nTopos++;
216 }
217 if (oneThree.hasPair(iglob, jglob)) {
218 toposForLocalAtom[i].push_back(j);
219 topoDistLocal[i][nTopos] = 2;
220 nTopos++;
221 }
222 if (oneFour.hasPair(iglob, jglob)) {
223 toposForLocalAtom[i].push_back(j);
224 topoDistLocal[i][nTopos] = 3;
225 nTopos++;
226 }
227 }
228 }
229
230 }
231
232 void ForceMatrixDecomposition::createGtypeCutoffMap() {
233
234 RealType tol = 1e-6;
235 RealType rc;
236 int atid;
237 set<AtomType*> atypes = info_->getSimulatedAtomTypes();
238 vector<RealType> atypeCutoff;
239 atypeCutoff.reserve( atypes.size() );
240
241 for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){
242 rc = interactionMan_->getSuggestedCutoffRadius(*at);
243 atid = (*at)->getIdent();
244 atypeCutoff[atid] = rc;
245 }
246
247 vector<RealType> gTypeCutoffs;
248
249 // first we do a single loop over the cutoff groups to find the
250 // largest cutoff for any atypes present in this group.
251 #ifdef IS_MPI
252 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
253 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
254 vector<int> atomListRow = getAtomsInGroupRow(cg1);
255 for (vector<int>::iterator ia = atomListRow.begin();
256 ia != atomListRow.end(); ++ia) {
257 int atom1 = (*ia);
258 atid = identsRow[atom1];
259 if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
260 groupCutoffRow[cg1] = atypeCutoff[atid];
261 }
262 }
263
264 bool gTypeFound = false;
265 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
266 if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
267 groupRowToGtype[cg1] = gt;
268 gTypeFound = true;
269 }
270 }
271 if (!gTypeFound) {
272 gTypeCutoffs.push_back( groupCutoffRow[cg1] );
273 groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
274 }
275
276 }
277 vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
278 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
279 vector<int> atomListCol = getAtomsInGroupColumn(cg2);
280 for (vector<int>::iterator jb = atomListCol.begin();
281 jb != atomListCol.end(); ++jb) {
282 int atom2 = (*jb);
283 atid = identsCol[atom2];
284 if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
285 groupCutoffCol[cg2] = atypeCutoff[atid];
286 }
287 }
288 bool gTypeFound = false;
289 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
290 if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
291 groupColToGtype[cg2] = gt;
292 gTypeFound = true;
293 }
294 }
295 if (!gTypeFound) {
296 gTypeCutoffs.push_back( groupCutoffCol[cg2] );
297 groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
298 }
299 }
300 #else
301 vector<RealType> groupCutoff(nGroups_, 0.0);
302 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
303 groupCutoff[cg1] = 0.0;
304 vector<int> atomList = getAtomsInGroupRow(cg1);
305 for (vector<int>::iterator ia = atomList.begin();
306 ia != atomList.end(); ++ia) {
307 int atom1 = (*ia);
308 atid = identsLocal[atom1];
309 if (atypeCutoff[atid] > groupCutoff[cg1]) {
310 groupCutoff[cg1] = atypeCutoff[atid];
311 }
312 }
313
314 bool gTypeFound = false;
315 for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
316 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
317 groupToGtype[cg1] = gt;
318 gTypeFound = true;
319 }
320 }
321 if (!gTypeFound) {
322 gTypeCutoffs.push_back( groupCutoff[cg1] );
323 groupToGtype[cg1] = gTypeCutoffs.size() - 1;
324 }
325 }
326 #endif
327
328 // Now we find the maximum group cutoff value present in the simulation
329
330 vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
331 RealType groupMax = *groupMaxLoc;
332
333 #ifdef IS_MPI
334 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
335 #endif
336
337 RealType tradRcut = groupMax;
338
339 for (int i = 0; i < gTypeCutoffs.size(); i++) {
340 for (int j = 0; j < gTypeCutoffs.size(); j++) {
341
342 RealType thisRcut;
343 switch(cutoffPolicy_) {
344 case TRADITIONAL:
345 thisRcut = tradRcut;
346 case MIX:
347 thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
348 case MAX:
349 thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
350 default:
351 sprintf(painCave.errMsg,
352 "ForceMatrixDecomposition::createGtypeCutoffMap "
353 "hit an unknown cutoff policy!\n");
354 painCave.severity = OPENMD_ERROR;
355 painCave.isFatal = 1;
356 simError();
357 }
358
359 pair<int,int> key = make_pair(i,j);
360 gTypeCutoffMap[key].first = thisRcut;
361
362 if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
363
364 gTypeCutoffMap[key].second = thisRcut*thisRcut;
365
366 gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
367
368 // sanity check
369
370 if (userChoseCutoff_) {
371 if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
372 sprintf(painCave.errMsg,
373 "ForceMatrixDecomposition::createGtypeCutoffMap "
374 "user-specified rCut does not match computed group Cutoff\n");
375 painCave.severity = OPENMD_ERROR;
376 painCave.isFatal = 1;
377 simError();
378 }
379 }
380 }
381 }
382 }
383
384
385 groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
386 int i, j;
387
388 #ifdef IS_MPI
389 i = groupRowToGtype[cg1];
390 j = groupColToGtype[cg2];
391 #else
392 i = groupToGtype[cg1];
393 j = groupToGtype[cg2];
394 #endif
395
396 return gTypeCutoffMap[make_pair(i,j)];
397 }
398
399
400 void ForceMatrixDecomposition::zeroWorkArrays() {
401
402 for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
403 longRangePot_[j] = 0.0;
404 }
405
406 #ifdef IS_MPI
407 if (storageLayout_ & DataStorage::dslForce) {
408 fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
409 fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
410 }
411
412 if (storageLayout_ & DataStorage::dslTorque) {
413 fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
414 fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
415 }
416
417 fill(pot_row.begin(), pot_row.end(),
418 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
419
420 fill(pot_col.begin(), pot_col.end(),
421 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
422
423 pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
424
425 if (storageLayout_ & DataStorage::dslParticlePot) {
426 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
427 fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
428 }
429
430 if (storageLayout_ & DataStorage::dslDensity) {
431 fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
432 fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
433 }
434
435 if (storageLayout_ & DataStorage::dslFunctional) {
436 fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
437 fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
438 }
439
440 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
441 fill(atomRowData.functionalDerivative.begin(),
442 atomRowData.functionalDerivative.end(), 0.0);
443 fill(atomColData.functionalDerivative.begin(),
444 atomColData.functionalDerivative.end(), 0.0);
445 }
446
447 #else
448
449 if (storageLayout_ & DataStorage::dslParticlePot) {
450 fill(snap_->atomData.particlePot.begin(),
451 snap_->atomData.particlePot.end(), 0.0);
452 }
453
454 if (storageLayout_ & DataStorage::dslDensity) {
455 fill(snap_->atomData.density.begin(),
456 snap_->atomData.density.end(), 0.0);
457 }
458 if (storageLayout_ & DataStorage::dslFunctional) {
459 fill(snap_->atomData.functional.begin(),
460 snap_->atomData.functional.end(), 0.0);
461 }
462 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
463 fill(snap_->atomData.functionalDerivative.begin(),
464 snap_->atomData.functionalDerivative.end(), 0.0);
465 }
466 #endif
467
468 }
469
470
471 void ForceMatrixDecomposition::distributeData() {
472 snap_ = sman_->getCurrentSnapshot();
473 storageLayout_ = sman_->getStorageLayout();
474 #ifdef IS_MPI
475
476 // gather up the atomic positions
477 AtomCommVectorRow->gather(snap_->atomData.position,
478 atomRowData.position);
479 AtomCommVectorColumn->gather(snap_->atomData.position,
480 atomColData.position);
481
482 // gather up the cutoff group positions
483 cgCommVectorRow->gather(snap_->cgData.position,
484 cgRowData.position);
485 cgCommVectorColumn->gather(snap_->cgData.position,
486 cgColData.position);
487
488 // if needed, gather the atomic rotation matrices
489 if (storageLayout_ & DataStorage::dslAmat) {
490 AtomCommMatrixRow->gather(snap_->atomData.aMat,
491 atomRowData.aMat);
492 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
493 atomColData.aMat);
494 }
495
496 // if needed, gather the atomic eletrostatic frames
497 if (storageLayout_ & DataStorage::dslElectroFrame) {
498 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
499 atomRowData.electroFrame);
500 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
501 atomColData.electroFrame);
502 }
503 #endif
504 }
505
506 /* collects information obtained during the pre-pair loop onto local
507 * data structures.
508 */
509 void ForceMatrixDecomposition::collectIntermediateData() {
510 snap_ = sman_->getCurrentSnapshot();
511 storageLayout_ = sman_->getStorageLayout();
512 #ifdef IS_MPI
513
514 if (storageLayout_ & DataStorage::dslDensity) {
515
516 AtomCommRealRow->scatter(atomRowData.density,
517 snap_->atomData.density);
518
519 int n = snap_->atomData.density.size();
520 vector<RealType> rho_tmp(n, 0.0);
521 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
522 for (int i = 0; i < n; i++)
523 snap_->atomData.density[i] += rho_tmp[i];
524 }
525 #endif
526 }
527
528 /*
529 * redistributes information obtained during the pre-pair loop out to
530 * row and column-indexed data structures
531 */
532 void ForceMatrixDecomposition::distributeIntermediateData() {
533 snap_ = sman_->getCurrentSnapshot();
534 storageLayout_ = sman_->getStorageLayout();
535 #ifdef IS_MPI
536 if (storageLayout_ & DataStorage::dslFunctional) {
537 AtomCommRealRow->gather(snap_->atomData.functional,
538 atomRowData.functional);
539 AtomCommRealColumn->gather(snap_->atomData.functional,
540 atomColData.functional);
541 }
542
543 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
544 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
545 atomRowData.functionalDerivative);
546 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
547 atomColData.functionalDerivative);
548 }
549 #endif
550 }
551
552
553 void ForceMatrixDecomposition::collectData() {
554 snap_ = sman_->getCurrentSnapshot();
555 storageLayout_ = sman_->getStorageLayout();
556 #ifdef IS_MPI
557 int n = snap_->atomData.force.size();
558 vector<Vector3d> frc_tmp(n, V3Zero);
559
560 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
561 for (int i = 0; i < n; i++) {
562 snap_->atomData.force[i] += frc_tmp[i];
563 frc_tmp[i] = 0.0;
564 }
565
566 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
567 for (int i = 0; i < n; i++)
568 snap_->atomData.force[i] += frc_tmp[i];
569
570
571 if (storageLayout_ & DataStorage::dslTorque) {
572
573 int nt = snap_->atomData.force.size();
574 vector<Vector3d> trq_tmp(nt, V3Zero);
575
576 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
577 for (int i = 0; i < n; i++) {
578 snap_->atomData.torque[i] += trq_tmp[i];
579 trq_tmp[i] = 0.0;
580 }
581
582 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
583 for (int i = 0; i < n; i++)
584 snap_->atomData.torque[i] += trq_tmp[i];
585 }
586
587 nLocal_ = snap_->getNumberOfAtoms();
588
589 vector<potVec> pot_temp(nLocal_,
590 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
591
592 // scatter/gather pot_row into the members of my column
593
594 AtomCommPotRow->scatter(pot_row, pot_temp);
595
596 for (int ii = 0; ii < pot_temp.size(); ii++ )
597 pot_local += pot_temp[ii];
598
599 fill(pot_temp.begin(), pot_temp.end(),
600 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
601
602 AtomCommPotColumn->scatter(pot_col, pot_temp);
603
604 for (int ii = 0; ii < pot_temp.size(); ii++ )
605 pot_local += pot_temp[ii];
606
607 #endif
608 }
609
610 int ForceMatrixDecomposition::getNAtomsInRow() {
611 #ifdef IS_MPI
612 return nAtomsInRow_;
613 #else
614 return nLocal_;
615 #endif
616 }
617
618 /**
619 * returns the list of atoms belonging to this group.
620 */
621 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
622 #ifdef IS_MPI
623 return groupListRow_[cg1];
624 #else
625 return groupList_[cg1];
626 #endif
627 }
628
629 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
630 #ifdef IS_MPI
631 return groupListCol_[cg2];
632 #else
633 return groupList_[cg2];
634 #endif
635 }
636
637 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
638 Vector3d d;
639
640 #ifdef IS_MPI
641 d = cgColData.position[cg2] - cgRowData.position[cg1];
642 #else
643 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
644 #endif
645
646 snap_->wrapVector(d);
647 return d;
648 }
649
650
651 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
652
653 Vector3d d;
654
655 #ifdef IS_MPI
656 d = cgRowData.position[cg1] - atomRowData.position[atom1];
657 #else
658 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
659 #endif
660
661 snap_->wrapVector(d);
662 return d;
663 }
664
665 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
666 Vector3d d;
667
668 #ifdef IS_MPI
669 d = cgColData.position[cg2] - atomColData.position[atom2];
670 #else
671 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
672 #endif
673
674 snap_->wrapVector(d);
675 return d;
676 }
677
678 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
679 #ifdef IS_MPI
680 return massFactorsRow[atom1];
681 #else
682 return massFactorsLocal[atom1];
683 #endif
684 }
685
686 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
687 #ifdef IS_MPI
688 return massFactorsCol[atom2];
689 #else
690 return massFactorsLocal[atom2];
691 #endif
692
693 }
694
695 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
696 Vector3d d;
697
698 #ifdef IS_MPI
699 d = atomColData.position[atom2] - atomRowData.position[atom1];
700 #else
701 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
702 #endif
703
704 snap_->wrapVector(d);
705 return d;
706 }
707
708 vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
709 #ifdef IS_MPI
710 return skipsForRowAtom[atom1];
711 #else
712 return skipsForLocalAtom[atom1];
713 #endif
714 }
715
716 /**
717 * There are a number of reasons to skip a pair or a
718 * particle. Mostly we do this to exclude atoms who are involved in
719 * short range interactions (bonds, bends, torsions), but we also
720 * need to exclude some overcounted interactions that result from
721 * the parallel decomposition.
722 */
723 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
724 int unique_id_1, unique_id_2;
725
726 #ifdef IS_MPI
727 // in MPI, we have to look up the unique IDs for each atom
728 unique_id_1 = AtomRowToGlobal[atom1];
729 unique_id_2 = AtomColToGlobal[atom2];
730
731 // this situation should only arise in MPI simulations
732 if (unique_id_1 == unique_id_2) return true;
733
734 // this prevents us from doing the pair on multiple processors
735 if (unique_id_1 < unique_id_2) {
736 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
737 } else {
738 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
739 }
740 #else
741 // in the normal loop, the atom numbers are unique
742 unique_id_1 = atom1;
743 unique_id_2 = atom2;
744 #endif
745
746 #ifdef IS_MPI
747 for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
748 i != skipsForRowAtom[atom1].end(); ++i) {
749 if ( (*i) == unique_id_2 ) return true;
750 }
751 #else
752 for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
753 i != skipsForLocalAtom[atom1].end(); ++i) {
754 if ( (*i) == unique_id_2 ) return true;
755 }
756 #endif
757 }
758
759 int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
760
761 #ifdef IS_MPI
762 for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
763 if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
764 }
765 #else
766 for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
767 if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
768 }
769 #endif
770
771 // zero is default for unconnected (i.e. normal) pair interactions
772 return 0;
773 }
774
775 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
776 #ifdef IS_MPI
777 atomRowData.force[atom1] += fg;
778 #else
779 snap_->atomData.force[atom1] += fg;
780 #endif
781 }
782
783 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
784 #ifdef IS_MPI
785 atomColData.force[atom2] += fg;
786 #else
787 snap_->atomData.force[atom2] += fg;
788 #endif
789 }
790
791 // filling interaction blocks with pointers
792 InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
793 InteractionData idat;
794
795 #ifdef IS_MPI
796
797 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
798 ff_->getAtomType(identsCol[atom2]) );
799
800
801 if (storageLayout_ & DataStorage::dslAmat) {
802 idat.A1 = &(atomRowData.aMat[atom1]);
803 idat.A2 = &(atomColData.aMat[atom2]);
804 }
805
806 if (storageLayout_ & DataStorage::dslElectroFrame) {
807 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
808 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
809 }
810
811 if (storageLayout_ & DataStorage::dslTorque) {
812 idat.t1 = &(atomRowData.torque[atom1]);
813 idat.t2 = &(atomColData.torque[atom2]);
814 }
815
816 if (storageLayout_ & DataStorage::dslDensity) {
817 idat.rho1 = &(atomRowData.density[atom1]);
818 idat.rho2 = &(atomColData.density[atom2]);
819 }
820
821 if (storageLayout_ & DataStorage::dslFunctional) {
822 idat.frho1 = &(atomRowData.functional[atom1]);
823 idat.frho2 = &(atomColData.functional[atom2]);
824 }
825
826 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
827 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
828 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
829 }
830
831 if (storageLayout_ & DataStorage::dslParticlePot) {
832 idat.particlePot1 = &(atomRowData.particlePot[atom1]);
833 idat.particlePot2 = &(atomColData.particlePot[atom2]);
834 }
835
836 #else
837
838 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
839 ff_->getAtomType(identsLocal[atom2]) );
840
841 if (storageLayout_ & DataStorage::dslAmat) {
842 idat.A1 = &(snap_->atomData.aMat[atom1]);
843 idat.A2 = &(snap_->atomData.aMat[atom2]);
844 }
845
846 if (storageLayout_ & DataStorage::dslElectroFrame) {
847 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
848 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
849 }
850
851 if (storageLayout_ & DataStorage::dslTorque) {
852 idat.t1 = &(snap_->atomData.torque[atom1]);
853 idat.t2 = &(snap_->atomData.torque[atom2]);
854 }
855
856 if (storageLayout_ & DataStorage::dslDensity) {
857 idat.rho1 = &(snap_->atomData.density[atom1]);
858 idat.rho2 = &(snap_->atomData.density[atom2]);
859 }
860
861 if (storageLayout_ & DataStorage::dslFunctional) {
862 idat.frho1 = &(snap_->atomData.functional[atom1]);
863 idat.frho2 = &(snap_->atomData.functional[atom2]);
864 }
865
866 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
867 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
868 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
869 }
870
871 if (storageLayout_ & DataStorage::dslParticlePot) {
872 idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
873 idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
874 }
875
876 #endif
877 return idat;
878 }
879
880
881 void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {
882 #ifdef IS_MPI
883 pot_row[atom1] += 0.5 * *(idat.pot);
884 pot_col[atom2] += 0.5 * *(idat.pot);
885
886 atomRowData.force[atom1] += *(idat.f1);
887 atomColData.force[atom2] -= *(idat.f1);
888 #else
889 longRangePot_ += *(idat.pot);
890
891 snap_->atomData.force[atom1] += *(idat.f1);
892 snap_->atomData.force[atom2] -= *(idat.f1);
893 #endif
894
895 }
896
897
898 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
899
900 InteractionData idat;
901 #ifdef IS_MPI
902 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
903 ff_->getAtomType(identsCol[atom2]) );
904
905 if (storageLayout_ & DataStorage::dslElectroFrame) {
906 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
907 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
908 }
909 if (storageLayout_ & DataStorage::dslTorque) {
910 idat.t1 = &(atomRowData.torque[atom1]);
911 idat.t2 = &(atomColData.torque[atom2]);
912 }
913 #else
914 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
915 ff_->getAtomType(identsLocal[atom2]) );
916
917 if (storageLayout_ & DataStorage::dslElectroFrame) {
918 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
919 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
920 }
921 if (storageLayout_ & DataStorage::dslTorque) {
922 idat.t1 = &(snap_->atomData.torque[atom1]);
923 idat.t2 = &(snap_->atomData.torque[atom2]);
924 }
925 #endif
926 }
927
928 /*
929 * buildNeighborList
930 *
931 * first element of pair is row-indexed CutoffGroup
932 * second element of pair is column-indexed CutoffGroup
933 */
934 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
935
936 vector<pair<int, int> > neighborList;
937 groupCutoffs cuts;
938 #ifdef IS_MPI
939 cellListRow_.clear();
940 cellListCol_.clear();
941 #else
942 cellList_.clear();
943 #endif
944
945 RealType rList_ = (largestRcut_ + skinThickness_);
946 RealType rl2 = rList_ * rList_;
947 Snapshot* snap_ = sman_->getCurrentSnapshot();
948 Mat3x3d Hmat = snap_->getHmat();
949 Vector3d Hx = Hmat.getColumn(0);
950 Vector3d Hy = Hmat.getColumn(1);
951 Vector3d Hz = Hmat.getColumn(2);
952
953 nCells_.x() = (int) ( Hx.length() )/ rList_;
954 nCells_.y() = (int) ( Hy.length() )/ rList_;
955 nCells_.z() = (int) ( Hz.length() )/ rList_;
956
957 Mat3x3d invHmat = snap_->getInvHmat();
958 Vector3d rs, scaled, dr;
959 Vector3i whichCell;
960 int cellIndex;
961
962 #ifdef IS_MPI
963 for (int i = 0; i < nGroupsInRow_; i++) {
964 rs = cgRowData.position[i];
965 // scaled positions relative to the box vectors
966 scaled = invHmat * rs;
967 // wrap the vector back into the unit box by subtracting integer box
968 // numbers
969 for (int j = 0; j < 3; j++)
970 scaled[j] -= roundMe(scaled[j]);
971
972 // find xyz-indices of cell that cutoffGroup is in.
973 whichCell.x() = nCells_.x() * scaled.x();
974 whichCell.y() = nCells_.y() * scaled.y();
975 whichCell.z() = nCells_.z() * scaled.z();
976
977 // find single index of this cell:
978 cellIndex = Vlinear(whichCell, nCells_);
979 // add this cutoff group to the list of groups in this cell;
980 cellListRow_[cellIndex].push_back(i);
981 }
982
983 for (int i = 0; i < nGroupsInCol_; i++) {
984 rs = cgColData.position[i];
985 // scaled positions relative to the box vectors
986 scaled = invHmat * rs;
987 // wrap the vector back into the unit box by subtracting integer box
988 // numbers
989 for (int j = 0; j < 3; j++)
990 scaled[j] -= roundMe(scaled[j]);
991
992 // find xyz-indices of cell that cutoffGroup is in.
993 whichCell.x() = nCells_.x() * scaled.x();
994 whichCell.y() = nCells_.y() * scaled.y();
995 whichCell.z() = nCells_.z() * scaled.z();
996
997 // find single index of this cell:
998 cellIndex = Vlinear(whichCell, nCells_);
999 // add this cutoff group to the list of groups in this cell;
1000 cellListCol_[cellIndex].push_back(i);
1001 }
1002 #else
1003 for (int i = 0; i < nGroups_; i++) {
1004 rs = snap_->cgData.position[i];
1005 // scaled positions relative to the box vectors
1006 scaled = invHmat * rs;
1007 // wrap the vector back into the unit box by subtracting integer box
1008 // numbers
1009 for (int j = 0; j < 3; j++)
1010 scaled[j] -= roundMe(scaled[j]);
1011
1012 // find xyz-indices of cell that cutoffGroup is in.
1013 whichCell.x() = nCells_.x() * scaled.x();
1014 whichCell.y() = nCells_.y() * scaled.y();
1015 whichCell.z() = nCells_.z() * scaled.z();
1016
1017 // find single index of this cell:
1018 cellIndex = Vlinear(whichCell, nCells_);
1019 // add this cutoff group to the list of groups in this cell;
1020 cellList_[cellIndex].push_back(i);
1021 }
1022 #endif
1023
1024 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1025 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1026 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1027 Vector3i m1v(m1x, m1y, m1z);
1028 int m1 = Vlinear(m1v, nCells_);
1029
1030 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1031 os != cellOffsets_.end(); ++os) {
1032
1033 Vector3i m2v = m1v + (*os);
1034
1035 if (m2v.x() >= nCells_.x()) {
1036 m2v.x() = 0;
1037 } else if (m2v.x() < 0) {
1038 m2v.x() = nCells_.x() - 1;
1039 }
1040
1041 if (m2v.y() >= nCells_.y()) {
1042 m2v.y() = 0;
1043 } else if (m2v.y() < 0) {
1044 m2v.y() = nCells_.y() - 1;
1045 }
1046
1047 if (m2v.z() >= nCells_.z()) {
1048 m2v.z() = 0;
1049 } else if (m2v.z() < 0) {
1050 m2v.z() = nCells_.z() - 1;
1051 }
1052
1053 int m2 = Vlinear (m2v, nCells_);
1054
1055 #ifdef IS_MPI
1056 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1057 j1 != cellListRow_[m1].end(); ++j1) {
1058 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1059 j2 != cellListCol_[m2].end(); ++j2) {
1060
1061 // Always do this if we're in different cells or if
1062 // we're in the same cell and the global index of the
1063 // j2 cutoff group is less than the j1 cutoff group
1064
1065 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1066 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1067 snap_->wrapVector(dr);
1068 cuts = getGroupCutoffs( (*j1), (*j2) );
1069 if (dr.lengthSquare() < cuts.third) {
1070 neighborList.push_back(make_pair((*j1), (*j2)));
1071 }
1072 }
1073 }
1074 }
1075 #else
1076 for (vector<int>::iterator j1 = cellList_[m1].begin();
1077 j1 != cellList_[m1].end(); ++j1) {
1078 for (vector<int>::iterator j2 = cellList_[m2].begin();
1079 j2 != cellList_[m2].end(); ++j2) {
1080
1081 // Always do this if we're in different cells or if
1082 // we're in the same cell and the global index of the
1083 // j2 cutoff group is less than the j1 cutoff group
1084
1085 if (m2 != m1 || (*j2) < (*j1)) {
1086 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1087 snap_->wrapVector(dr);
1088 cuts = getGroupCutoffs( (*j1), (*j2) );
1089 if (dr.lengthSquare() < cuts.third) {
1090 neighborList.push_back(make_pair((*j1), (*j2)));
1091 }
1092 }
1093 }
1094 }
1095 #endif
1096 }
1097 }
1098 }
1099 }
1100
1101 // save the local cutoff group positions for the check that is
1102 // done on each loop:
1103 saved_CG_positions_.clear();
1104 for (int i = 0; i < nGroups_; i++)
1105 saved_CG_positions_.push_back(snap_->cgData.position[i]);
1106
1107 return neighborList;
1108 }
1109 } //end namespace OpenMD