ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1571
Committed: Fri May 27 16:45:44 2011 UTC (13 years, 11 months ago) by gezelter
File size: 27805 byte(s)
Log Message:
Added Atypes to new C++ force decomposition.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41 #include "parallel/ForceMatrixDecomposition.hpp"
42 #include "math/SquareMatrix3.hpp"
43 #include "nonbonded/NonBondedInteraction.hpp"
44 #include "brains/SnapshotManager.hpp"
45 #include "brains/PairList.hpp"
46
47 using namespace std;
48 namespace OpenMD {
49
50 /**
51 * distributeInitialData is essentially a copy of the older fortran
52 * SimulationSetup
53 */
54
55 void ForceMatrixDecomposition::distributeInitialData() {
56 snap_ = sman_->getCurrentSnapshot();
57 storageLayout_ = sman_->getStorageLayout();
58 ff_ = info_->getForceField();
59 nLocal_ = snap_->getNumberOfAtoms();
60 nGroups_ = snap_->getNumberOfCutoffGroups();
61
62 // gather the information for atomtype IDs (atids):
63 identsLocal = info_->getIdentArray();
64 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65 cgLocalToGlobal = info_->getGlobalGroupIndices();
66 vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 vector<RealType> massFactorsLocal = info_->getMassFactors();
68 PairList excludes = info_->getExcludedInteractions();
69 PairList oneTwo = info_->getOneTwoInteractions();
70 PairList oneThree = info_->getOneThreeInteractions();
71 PairList oneFour = info_->getOneFourInteractions();
72 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
73
74 #ifdef IS_MPI
75
76 AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77 AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78 AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79 AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80
81 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
82 AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
83 AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
84 AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
85
86 cgCommIntRow = new Communicator<Row,int>(nGroups_);
87 cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
88 cgCommIntColumn = new Communicator<Column,int>(nGroups_);
89 cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
90
91 nAtomsInRow_ = AtomCommIntRow->getSize();
92 nAtomsInCol_ = AtomCommIntColumn->getSize();
93 nGroupsInRow_ = cgCommIntRow->getSize();
94 nGroupsInCol_ = cgCommIntColumn->getSize();
95
96 // Modify the data storage objects with the correct layouts and sizes:
97 atomRowData.resize(nAtomsInRow_);
98 atomRowData.setStorageLayout(storageLayout_);
99 atomColData.resize(nAtomsInCol_);
100 atomColData.setStorageLayout(storageLayout_);
101 cgRowData.resize(nGroupsInRow_);
102 cgRowData.setStorageLayout(DataStorage::dslPosition);
103 cgColData.resize(nGroupsInCol_);
104 cgColData.setStorageLayout(DataStorage::dslPosition);
105
106 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
107 vector<RealType> (nAtomsInRow_, 0.0));
108 vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
109 vector<RealType> (nAtomsInCol_, 0.0));
110
111 identsRow.reserve(nAtomsInRow_);
112 identsCol.reserve(nAtomsInCol_);
113
114 AtomCommIntRow->gather(identsLocal, identsRow);
115 AtomCommIntColumn->gather(identsLocal, identsCol);
116
117 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
118 AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
119
120 cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
121 cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
122
123 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
124 AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
125
126 groupListRow_.clear();
127 groupListRow_.reserve(nGroupsInRow_);
128 for (int i = 0; i < nGroupsInRow_; i++) {
129 int gid = cgRowToGlobal[i];
130 for (int j = 0; j < nAtomsInRow_; j++) {
131 int aid = AtomRowToGlobal[j];
132 if (globalGroupMembership[aid] == gid)
133 groupListRow_[i].push_back(j);
134 }
135 }
136
137 groupListCol_.clear();
138 groupListCol_.reserve(nGroupsInCol_);
139 for (int i = 0; i < nGroupsInCol_; i++) {
140 int gid = cgColToGlobal[i];
141 for (int j = 0; j < nAtomsInCol_; j++) {
142 int aid = AtomColToGlobal[j];
143 if (globalGroupMembership[aid] == gid)
144 groupListCol_[i].push_back(j);
145 }
146 }
147
148 skipsForRowAtom.clear();
149 skipsForRowAtom.reserve(nAtomsInRow_);
150 for (int i = 0; i < nAtomsInRow_; i++) {
151 int iglob = AtomRowToGlobal[i];
152 for (int j = 0; j < nAtomsInCol_; j++) {
153 int jglob = AtomColToGlobal[j];
154 if (excludes.hasPair(iglob, jglob))
155 skipsForRowAtom[i].push_back(j);
156 }
157 }
158
159 toposForRowAtom.clear();
160 toposForRowAtom.reserve(nAtomsInRow_);
161 for (int i = 0; i < nAtomsInRow_; i++) {
162 int iglob = AtomRowToGlobal[i];
163 int nTopos = 0;
164 for (int j = 0; j < nAtomsInCol_; j++) {
165 int jglob = AtomColToGlobal[j];
166 if (oneTwo.hasPair(iglob, jglob)) {
167 toposForRowAtom[i].push_back(j);
168 topoDistRow[i][nTopos] = 1;
169 nTopos++;
170 }
171 if (oneThree.hasPair(iglob, jglob)) {
172 toposForRowAtom[i].push_back(j);
173 topoDistRow[i][nTopos] = 2;
174 nTopos++;
175 }
176 if (oneFour.hasPair(iglob, jglob)) {
177 toposForRowAtom[i].push_back(j);
178 topoDistRow[i][nTopos] = 3;
179 nTopos++;
180 }
181 }
182 }
183
184 #endif
185
186 groupList_.clear();
187 groupList_.reserve(nGroups_);
188 for (int i = 0; i < nGroups_; i++) {
189 int gid = cgLocalToGlobal[i];
190 for (int j = 0; j < nLocal_; j++) {
191 int aid = AtomLocalToGlobal[j];
192 if (globalGroupMembership[aid] == gid)
193 groupList_[i].push_back(j);
194 }
195 }
196
197 skipsForLocalAtom.clear();
198 skipsForLocalAtom.reserve(nLocal_);
199
200 for (int i = 0; i < nLocal_; i++) {
201 int iglob = AtomLocalToGlobal[i];
202 for (int j = 0; j < nLocal_; j++) {
203 int jglob = AtomLocalToGlobal[j];
204 if (excludes.hasPair(iglob, jglob))
205 skipsForLocalAtom[i].push_back(j);
206 }
207 }
208
209 toposForLocalAtom.clear();
210 toposForLocalAtom.reserve(nLocal_);
211 for (int i = 0; i < nLocal_; i++) {
212 int iglob = AtomLocalToGlobal[i];
213 int nTopos = 0;
214 for (int j = 0; j < nLocal_; j++) {
215 int jglob = AtomLocalToGlobal[j];
216 if (oneTwo.hasPair(iglob, jglob)) {
217 toposForLocalAtom[i].push_back(j);
218 topoDistLocal[i][nTopos] = 1;
219 nTopos++;
220 }
221 if (oneThree.hasPair(iglob, jglob)) {
222 toposForLocalAtom[i].push_back(j);
223 topoDistLocal[i][nTopos] = 2;
224 nTopos++;
225 }
226 if (oneFour.hasPair(iglob, jglob)) {
227 toposForLocalAtom[i].push_back(j);
228 topoDistLocal[i][nTopos] = 3;
229 nTopos++;
230 }
231 }
232 }
233 }
234
235 void ForceMatrixDecomposition::distributeData() {
236 snap_ = sman_->getCurrentSnapshot();
237 storageLayout_ = sman_->getStorageLayout();
238 #ifdef IS_MPI
239
240 // gather up the atomic positions
241 AtomCommVectorRow->gather(snap_->atomData.position,
242 atomRowData.position);
243 AtomCommVectorColumn->gather(snap_->atomData.position,
244 atomColData.position);
245
246 // gather up the cutoff group positions
247 cgCommVectorRow->gather(snap_->cgData.position,
248 cgRowData.position);
249 cgCommVectorColumn->gather(snap_->cgData.position,
250 cgColData.position);
251
252 // if needed, gather the atomic rotation matrices
253 if (storageLayout_ & DataStorage::dslAmat) {
254 AtomCommMatrixRow->gather(snap_->atomData.aMat,
255 atomRowData.aMat);
256 AtomCommMatrixColumn->gather(snap_->atomData.aMat,
257 atomColData.aMat);
258 }
259
260 // if needed, gather the atomic eletrostatic frames
261 if (storageLayout_ & DataStorage::dslElectroFrame) {
262 AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
263 atomRowData.electroFrame);
264 AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
265 atomColData.electroFrame);
266 }
267 #endif
268 }
269
270 void ForceMatrixDecomposition::collectIntermediateData() {
271 snap_ = sman_->getCurrentSnapshot();
272 storageLayout_ = sman_->getStorageLayout();
273 #ifdef IS_MPI
274
275 if (storageLayout_ & DataStorage::dslDensity) {
276
277 AtomCommRealRow->scatter(atomRowData.density,
278 snap_->atomData.density);
279
280 int n = snap_->atomData.density.size();
281 std::vector<RealType> rho_tmp(n, 0.0);
282 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
283 for (int i = 0; i < n; i++)
284 snap_->atomData.density[i] += rho_tmp[i];
285 }
286 #endif
287 }
288
289 void ForceMatrixDecomposition::distributeIntermediateData() {
290 snap_ = sman_->getCurrentSnapshot();
291 storageLayout_ = sman_->getStorageLayout();
292 #ifdef IS_MPI
293 if (storageLayout_ & DataStorage::dslFunctional) {
294 AtomCommRealRow->gather(snap_->atomData.functional,
295 atomRowData.functional);
296 AtomCommRealColumn->gather(snap_->atomData.functional,
297 atomColData.functional);
298 }
299
300 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
301 AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
302 atomRowData.functionalDerivative);
303 AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
304 atomColData.functionalDerivative);
305 }
306 #endif
307 }
308
309
310 void ForceMatrixDecomposition::collectData() {
311 snap_ = sman_->getCurrentSnapshot();
312 storageLayout_ = sman_->getStorageLayout();
313 #ifdef IS_MPI
314 int n = snap_->atomData.force.size();
315 vector<Vector3d> frc_tmp(n, V3Zero);
316
317 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
318 for (int i = 0; i < n; i++) {
319 snap_->atomData.force[i] += frc_tmp[i];
320 frc_tmp[i] = 0.0;
321 }
322
323 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
324 for (int i = 0; i < n; i++)
325 snap_->atomData.force[i] += frc_tmp[i];
326
327
328 if (storageLayout_ & DataStorage::dslTorque) {
329
330 int nt = snap_->atomData.force.size();
331 vector<Vector3d> trq_tmp(nt, V3Zero);
332
333 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
334 for (int i = 0; i < n; i++) {
335 snap_->atomData.torque[i] += trq_tmp[i];
336 trq_tmp[i] = 0.0;
337 }
338
339 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
340 for (int i = 0; i < n; i++)
341 snap_->atomData.torque[i] += trq_tmp[i];
342 }
343
344 nLocal_ = snap_->getNumberOfAtoms();
345
346 vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
347 vector<RealType> (nLocal_, 0.0));
348
349 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
350 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
351 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
352 pot_local[i] += pot_temp[i][ii];
353 }
354 }
355 #endif
356 }
357
358 int ForceMatrixDecomposition::getNAtomsInRow() {
359 #ifdef IS_MPI
360 return nAtomsInRow_;
361 #else
362 return nLocal_;
363 #endif
364 }
365
366 /**
367 * returns the list of atoms belonging to this group.
368 */
369 vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
370 #ifdef IS_MPI
371 return groupListRow_[cg1];
372 #else
373 return groupList_[cg1];
374 #endif
375 }
376
377 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
378 #ifdef IS_MPI
379 return groupListCol_[cg2];
380 #else
381 return groupList_[cg2];
382 #endif
383 }
384
385 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
386 Vector3d d;
387
388 #ifdef IS_MPI
389 d = cgColData.position[cg2] - cgRowData.position[cg1];
390 #else
391 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
392 #endif
393
394 snap_->wrapVector(d);
395 return d;
396 }
397
398
399 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
400
401 Vector3d d;
402
403 #ifdef IS_MPI
404 d = cgRowData.position[cg1] - atomRowData.position[atom1];
405 #else
406 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
407 #endif
408
409 snap_->wrapVector(d);
410 return d;
411 }
412
413 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
414 Vector3d d;
415
416 #ifdef IS_MPI
417 d = cgColData.position[cg2] - atomColData.position[atom2];
418 #else
419 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
420 #endif
421
422 snap_->wrapVector(d);
423 return d;
424 }
425
426 RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
427 #ifdef IS_MPI
428 return massFactorsRow[atom1];
429 #else
430 return massFactorsLocal[atom1];
431 #endif
432 }
433
434 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
435 #ifdef IS_MPI
436 return massFactorsCol[atom2];
437 #else
438 return massFactorsLocal[atom2];
439 #endif
440
441 }
442
443 Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
444 Vector3d d;
445
446 #ifdef IS_MPI
447 d = atomColData.position[atom2] - atomRowData.position[atom1];
448 #else
449 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
450 #endif
451
452 snap_->wrapVector(d);
453 return d;
454 }
455
456 vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
457 #ifdef IS_MPI
458 return skipsForRowAtom[atom1];
459 #else
460 return skipsForLocalAtom[atom1];
461 #endif
462 }
463
464 /**
465 * there are a number of reasons to skip a pair or a particle mostly
466 * we do this to exclude atoms who are involved in short range
467 * interactions (bonds, bends, torsions), but we also need to
468 * exclude some overcounted interactions that result from the
469 * parallel decomposition.
470 */
471 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
472 int unique_id_1, unique_id_2;
473
474 #ifdef IS_MPI
475 // in MPI, we have to look up the unique IDs for each atom
476 unique_id_1 = AtomRowToGlobal[atom1];
477 unique_id_2 = AtomColToGlobal[atom2];
478
479 // this situation should only arise in MPI simulations
480 if (unique_id_1 == unique_id_2) return true;
481
482 // this prevents us from doing the pair on multiple processors
483 if (unique_id_1 < unique_id_2) {
484 if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
485 } else {
486 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
487 }
488 #else
489 // in the normal loop, the atom numbers are unique
490 unique_id_1 = atom1;
491 unique_id_2 = atom2;
492 #endif
493
494 #ifdef IS_MPI
495 for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
496 i != skipsForRowAtom[atom1].end(); ++i) {
497 if ( (*i) == unique_id_2 ) return true;
498 }
499 #else
500 for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
501 i != skipsForLocalAtom[atom1].end(); ++i) {
502 if ( (*i) == unique_id_2 ) return true;
503 }
504 #endif
505 }
506
507 int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
508
509 #ifdef IS_MPI
510 for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
511 if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
512 }
513 #else
514 for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
515 if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
516 }
517 #endif
518
519 // zero is default for unconnected (i.e. normal) pair interactions
520 return 0;
521 }
522
523 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
524 #ifdef IS_MPI
525 atomRowData.force[atom1] += fg;
526 #else
527 snap_->atomData.force[atom1] += fg;
528 #endif
529 }
530
531 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
532 #ifdef IS_MPI
533 atomColData.force[atom2] += fg;
534 #else
535 snap_->atomData.force[atom2] += fg;
536 #endif
537 }
538
539 // filling interaction blocks with pointers
540 InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
541 InteractionData idat;
542
543 #ifdef IS_MPI
544
545 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
546 ff_->getAtomType(identsCol[atom2]) );
547
548 if (storageLayout_ & DataStorage::dslAmat) {
549 idat.A1 = &(atomRowData.aMat[atom1]);
550 idat.A2 = &(atomColData.aMat[atom2]);
551 }
552
553 if (storageLayout_ & DataStorage::dslElectroFrame) {
554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
555 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
556 }
557
558 if (storageLayout_ & DataStorage::dslTorque) {
559 idat.t1 = &(atomRowData.torque[atom1]);
560 idat.t2 = &(atomColData.torque[atom2]);
561 }
562
563 if (storageLayout_ & DataStorage::dslDensity) {
564 idat.rho1 = &(atomRowData.density[atom1]);
565 idat.rho2 = &(atomColData.density[atom2]);
566 }
567
568 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
569 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
570 idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
571 }
572
573 #else
574
575 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
576 ff_->getAtomType(identsLocal[atom2]) );
577
578 if (storageLayout_ & DataStorage::dslAmat) {
579 idat.A1 = &(snap_->atomData.aMat[atom1]);
580 idat.A2 = &(snap_->atomData.aMat[atom2]);
581 }
582
583 if (storageLayout_ & DataStorage::dslElectroFrame) {
584 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
585 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
586 }
587
588 if (storageLayout_ & DataStorage::dslTorque) {
589 idat.t1 = &(snap_->atomData.torque[atom1]);
590 idat.t2 = &(snap_->atomData.torque[atom2]);
591 }
592
593 if (storageLayout_ & DataStorage::dslDensity) {
594 idat.rho1 = &(snap_->atomData.density[atom1]);
595 idat.rho2 = &(snap_->atomData.density[atom2]);
596 }
597
598 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
599 idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
600 idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
601 }
602 #endif
603 return idat;
604 }
605
606 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
607
608 InteractionData idat;
609 #ifdef IS_MPI
610 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
611 ff_->getAtomType(identsCol[atom2]) );
612
613 if (storageLayout_ & DataStorage::dslElectroFrame) {
614 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
615 idat.eFrame2 = &(atomColData.electroFrame[atom2]);
616 }
617 if (storageLayout_ & DataStorage::dslTorque) {
618 idat.t1 = &(atomRowData.torque[atom1]);
619 idat.t2 = &(atomColData.torque[atom2]);
620 }
621 if (storageLayout_ & DataStorage::dslForce) {
622 idat.t1 = &(atomRowData.force[atom1]);
623 idat.t2 = &(atomColData.force[atom2]);
624 }
625 #else
626 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
627 ff_->getAtomType(identsLocal[atom2]) );
628
629 if (storageLayout_ & DataStorage::dslElectroFrame) {
630 idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
631 idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
632 }
633 if (storageLayout_ & DataStorage::dslTorque) {
634 idat.t1 = &(snap_->atomData.torque[atom1]);
635 idat.t2 = &(snap_->atomData.torque[atom2]);
636 }
637 if (storageLayout_ & DataStorage::dslForce) {
638 idat.t1 = &(snap_->atomData.force[atom1]);
639 idat.t2 = &(snap_->atomData.force[atom2]);
640 }
641 #endif
642 }
643
644 /*
645 * buildNeighborList
646 *
647 * first element of pair is row-indexed CutoffGroup
648 * second element of pair is column-indexed CutoffGroup
649 */
650 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
651
652 vector<pair<int, int> > neighborList;
653 #ifdef IS_MPI
654 cellListRow_.clear();
655 cellListCol_.clear();
656 #else
657 cellList_.clear();
658 #endif
659
660 // dangerous to not do error checking.
661 RealType rCut_;
662
663 RealType rList_ = (rCut_ + skinThickness_);
664 RealType rl2 = rList_ * rList_;
665 Snapshot* snap_ = sman_->getCurrentSnapshot();
666 Mat3x3d Hmat = snap_->getHmat();
667 Vector3d Hx = Hmat.getColumn(0);
668 Vector3d Hy = Hmat.getColumn(1);
669 Vector3d Hz = Hmat.getColumn(2);
670
671 nCells_.x() = (int) ( Hx.length() )/ rList_;
672 nCells_.y() = (int) ( Hy.length() )/ rList_;
673 nCells_.z() = (int) ( Hz.length() )/ rList_;
674
675 Mat3x3d invHmat = snap_->getInvHmat();
676 Vector3d rs, scaled, dr;
677 Vector3i whichCell;
678 int cellIndex;
679
680 #ifdef IS_MPI
681 for (int i = 0; i < nGroupsInRow_; i++) {
682 rs = cgRowData.position[i];
683 // scaled positions relative to the box vectors
684 scaled = invHmat * rs;
685 // wrap the vector back into the unit box by subtracting integer box
686 // numbers
687 for (int j = 0; j < 3; j++)
688 scaled[j] -= roundMe(scaled[j]);
689
690 // find xyz-indices of cell that cutoffGroup is in.
691 whichCell.x() = nCells_.x() * scaled.x();
692 whichCell.y() = nCells_.y() * scaled.y();
693 whichCell.z() = nCells_.z() * scaled.z();
694
695 // find single index of this cell:
696 cellIndex = Vlinear(whichCell, nCells_);
697 // add this cutoff group to the list of groups in this cell;
698 cellListRow_[cellIndex].push_back(i);
699 }
700
701 for (int i = 0; i < nGroupsInCol_; i++) {
702 rs = cgColData.position[i];
703 // scaled positions relative to the box vectors
704 scaled = invHmat * rs;
705 // wrap the vector back into the unit box by subtracting integer box
706 // numbers
707 for (int j = 0; j < 3; j++)
708 scaled[j] -= roundMe(scaled[j]);
709
710 // find xyz-indices of cell that cutoffGroup is in.
711 whichCell.x() = nCells_.x() * scaled.x();
712 whichCell.y() = nCells_.y() * scaled.y();
713 whichCell.z() = nCells_.z() * scaled.z();
714
715 // find single index of this cell:
716 cellIndex = Vlinear(whichCell, nCells_);
717 // add this cutoff group to the list of groups in this cell;
718 cellListCol_[cellIndex].push_back(i);
719 }
720 #else
721 for (int i = 0; i < nGroups_; i++) {
722 rs = snap_->cgData.position[i];
723 // scaled positions relative to the box vectors
724 scaled = invHmat * rs;
725 // wrap the vector back into the unit box by subtracting integer box
726 // numbers
727 for (int j = 0; j < 3; j++)
728 scaled[j] -= roundMe(scaled[j]);
729
730 // find xyz-indices of cell that cutoffGroup is in.
731 whichCell.x() = nCells_.x() * scaled.x();
732 whichCell.y() = nCells_.y() * scaled.y();
733 whichCell.z() = nCells_.z() * scaled.z();
734
735 // find single index of this cell:
736 cellIndex = Vlinear(whichCell, nCells_);
737 // add this cutoff group to the list of groups in this cell;
738 cellList_[cellIndex].push_back(i);
739 }
740 #endif
741
742
743
744 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
745 for (int m1y = 0; m1y < nCells_.y(); m1y++) {
746 for (int m1x = 0; m1x < nCells_.x(); m1x++) {
747 Vector3i m1v(m1x, m1y, m1z);
748 int m1 = Vlinear(m1v, nCells_);
749
750 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
751 os != cellOffsets_.end(); ++os) {
752
753 Vector3i m2v = m1v + (*os);
754
755 if (m2v.x() >= nCells_.x()) {
756 m2v.x() = 0;
757 } else if (m2v.x() < 0) {
758 m2v.x() = nCells_.x() - 1;
759 }
760
761 if (m2v.y() >= nCells_.y()) {
762 m2v.y() = 0;
763 } else if (m2v.y() < 0) {
764 m2v.y() = nCells_.y() - 1;
765 }
766
767 if (m2v.z() >= nCells_.z()) {
768 m2v.z() = 0;
769 } else if (m2v.z() < 0) {
770 m2v.z() = nCells_.z() - 1;
771 }
772
773 int m2 = Vlinear (m2v, nCells_);
774
775 #ifdef IS_MPI
776 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
777 j1 != cellListRow_[m1].end(); ++j1) {
778 for (vector<int>::iterator j2 = cellListCol_[m2].begin();
779 j2 != cellListCol_[m2].end(); ++j2) {
780
781 // Always do this if we're in different cells or if
782 // we're in the same cell and the global index of the
783 // j2 cutoff group is less than the j1 cutoff group
784
785 if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
786 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
787 snap_->wrapVector(dr);
788 if (dr.lengthSquare() < rl2) {
789 neighborList.push_back(make_pair((*j1), (*j2)));
790 }
791 }
792 }
793 }
794 #else
795 for (vector<int>::iterator j1 = cellList_[m1].begin();
796 j1 != cellList_[m1].end(); ++j1) {
797 for (vector<int>::iterator j2 = cellList_[m2].begin();
798 j2 != cellList_[m2].end(); ++j2) {
799
800 // Always do this if we're in different cells or if
801 // we're in the same cell and the global index of the
802 // j2 cutoff group is less than the j1 cutoff group
803
804 if (m2 != m1 || (*j2) < (*j1)) {
805 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
806 snap_->wrapVector(dr);
807 if (dr.lengthSquare() < rl2) {
808 neighborList.push_back(make_pair((*j1), (*j2)));
809 }
810 }
811 }
812 }
813 #endif
814 }
815 }
816 }
817 }
818
819 // save the local cutoff group positions for the check that is
820 // done on each loop:
821 saved_CG_positions_.clear();
822 for (int i = 0; i < nGroups_; i++)
823 saved_CG_positions_.push_back(snap_->cgData.position[i]);
824
825 return neighborList;
826 }
827 } //end namespace OpenMD