ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1760
Committed: Thu Jun 21 19:26:46 2012 UTC (12 years, 10 months ago) by gezelter
File size: 51264 byte(s)
Log Message:
Some bugfixes (CholeskyDecomposition), more work on fluctuating charges,
migrating stats stuff into frameData

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 chuckv 1538 */
42 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
43 gezelter 1539 #include "math/SquareMatrix3.hpp"
44 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
45     #include "brains/SnapshotManager.hpp"
46 gezelter 1570 #include "brains/PairList.hpp"
47 chuckv 1538
48 gezelter 1541 using namespace std;
49 gezelter 1539 namespace OpenMD {
50 chuckv 1538
51 gezelter 1593 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52    
53     // In a parallel computation, row and colum scans must visit all
54     // surrounding cells (not just the 14 upper triangular blocks that
55     // are used when the processor can see all pairs)
56     #ifdef IS_MPI
57 gezelter 1612 cellOffsets_.clear();
58     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61     cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 gezelter 1593 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 gezelter 1612 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71     cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72     cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73     cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74     cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75     cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76     cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77     cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78     cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 gezelter 1593 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 gezelter 1612 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81     cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82     cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83     cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84     cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 gezelter 1593 #endif
86     }
87    
88    
89 gezelter 1544 /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
93 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
94 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
95     storageLayout_ = sman_->getStorageLayout();
96 gezelter 1571 ff_ = info_->getForceField();
97 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
98 gezelter 1723
99 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
100 gezelter 1569 // gather the information for atomtype IDs (atids):
101 gezelter 1583 idents = info_->getIdentArray();
102 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103     cgLocalToGlobal = info_->getGlobalGroupIndices();
104     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 gezelter 1586
106 gezelter 1581 massFactors = info_->getMassFactors();
107 gezelter 1584
108 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
109     PairList* oneTwo = info_->getOneTwoInteractions();
110     PairList* oneThree = info_->getOneThreeInteractions();
111     PairList* oneFour = info_->getOneFourInteractions();
112 gezelter 1723
113     if (needVelocities_)
114     snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115     DataStorage::dslVelocity);
116     else
117     snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118    
119 gezelter 1567 #ifdef IS_MPI
120    
121 gezelter 1593 MPI::Intracomm row = rowComm.getComm();
122     MPI::Intracomm col = colComm.getComm();
123 chuckv 1538
124 gezelter 1593 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129 gezelter 1541
130 gezelter 1593 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135 gezelter 1551
136 gezelter 1593 cgPlanIntRow = new Plan<int>(row, nGroups_);
137     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138     cgPlanIntColumn = new Plan<int>(col, nGroups_);
139     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140 gezelter 1567
141 gezelter 1593 nAtomsInRow_ = AtomPlanIntRow->getSize();
142     nAtomsInCol_ = AtomPlanIntColumn->getSize();
143     nGroupsInRow_ = cgPlanIntRow->getSize();
144     nGroupsInCol_ = cgPlanIntColumn->getSize();
145    
146 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
147 gezelter 1567 atomRowData.resize(nAtomsInRow_);
148 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
149 gezelter 1567 atomColData.resize(nAtomsInCol_);
150 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
151 gezelter 1567 cgRowData.resize(nGroupsInRow_);
152 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 gezelter 1567 cgColData.resize(nGroupsInCol_);
154 gezelter 1723 if (needVelocities_)
155     // we only need column velocities if we need them.
156     cgColData.setStorageLayout(DataStorage::dslPosition |
157     DataStorage::dslVelocity);
158     else
159     cgColData.setStorageLayout(DataStorage::dslPosition);
160    
161 gezelter 1577 identsRow.resize(nAtomsInRow_);
162     identsCol.resize(nAtomsInCol_);
163 gezelter 1549
164 gezelter 1593 AtomPlanIntRow->gather(idents, identsRow);
165     AtomPlanIntColumn->gather(idents, identsCol);
166 gezelter 1549
167 gezelter 1589 // allocate memory for the parallel objects
168 gezelter 1591 atypesRow.resize(nAtomsInRow_);
169     atypesCol.resize(nAtomsInCol_);
170    
171     for (int i = 0; i < nAtomsInRow_; i++)
172     atypesRow[i] = ff_->getAtomType(identsRow[i]);
173     for (int i = 0; i < nAtomsInCol_; i++)
174     atypesCol[i] = ff_->getAtomType(identsCol[i]);
175    
176 gezelter 1589 pot_row.resize(nAtomsInRow_);
177     pot_col.resize(nAtomsInCol_);
178    
179 gezelter 1760 expot_row.resize(nAtomsInRow_);
180     expot_col.resize(nAtomsInCol_);
181    
182 gezelter 1591 AtomRowToGlobal.resize(nAtomsInRow_);
183     AtomColToGlobal.resize(nAtomsInCol_);
184 gezelter 1593 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186    
187 gezelter 1591 cgRowToGlobal.resize(nGroupsInRow_);
188     cgColToGlobal.resize(nGroupsInCol_);
189 gezelter 1593 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 gezelter 1541
192 gezelter 1591 massFactorsRow.resize(nAtomsInRow_);
193     massFactorsCol.resize(nAtomsInCol_);
194 gezelter 1593 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 gezelter 1569
197     groupListRow_.clear();
198 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
199 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
200     int gid = cgRowToGlobal[i];
201     for (int j = 0; j < nAtomsInRow_; j++) {
202     int aid = AtomRowToGlobal[j];
203     if (globalGroupMembership[aid] == gid)
204     groupListRow_[i].push_back(j);
205     }
206     }
207    
208     groupListCol_.clear();
209 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
210 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
211     int gid = cgColToGlobal[i];
212     for (int j = 0; j < nAtomsInCol_; j++) {
213     int aid = AtomColToGlobal[j];
214     if (globalGroupMembership[aid] == gid)
215     groupListCol_[i].push_back(j);
216     }
217     }
218    
219 gezelter 1587 excludesForAtom.clear();
220     excludesForAtom.resize(nAtomsInRow_);
221 gezelter 1579 toposForAtom.clear();
222     toposForAtom.resize(nAtomsInRow_);
223     topoDist.clear();
224     topoDist.resize(nAtomsInRow_);
225 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
226 gezelter 1571 int iglob = AtomRowToGlobal[i];
227 gezelter 1579
228 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
229 gezelter 1579 int jglob = AtomColToGlobal[j];
230    
231 gezelter 1587 if (excludes->hasPair(iglob, jglob))
232     excludesForAtom[i].push_back(j);
233 gezelter 1579
234 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
235 gezelter 1579 toposForAtom[i].push_back(j);
236     topoDist[i].push_back(1);
237     } else {
238 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
239 gezelter 1579 toposForAtom[i].push_back(j);
240     topoDist[i].push_back(2);
241     } else {
242 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
243 gezelter 1579 toposForAtom[i].push_back(j);
244     topoDist[i].push_back(3);
245     }
246     }
247 gezelter 1570 }
248     }
249     }
250    
251 gezelter 1613 #else
252 gezelter 1587 excludesForAtom.clear();
253     excludesForAtom.resize(nLocal_);
254 gezelter 1579 toposForAtom.clear();
255     toposForAtom.resize(nLocal_);
256     topoDist.clear();
257     topoDist.resize(nLocal_);
258 gezelter 1569
259 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
260     int iglob = AtomLocalToGlobal[i];
261 gezelter 1579
262 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
263 gezelter 1579 int jglob = AtomLocalToGlobal[j];
264    
265 gezelter 1616 if (excludes->hasPair(iglob, jglob))
266 gezelter 1587 excludesForAtom[i].push_back(j);
267 gezelter 1579
268 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
269 gezelter 1579 toposForAtom[i].push_back(j);
270     topoDist[i].push_back(1);
271     } else {
272 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
273 gezelter 1579 toposForAtom[i].push_back(j);
274     topoDist[i].push_back(2);
275     } else {
276 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
277 gezelter 1579 toposForAtom[i].push_back(j);
278     topoDist[i].push_back(3);
279     }
280     }
281 gezelter 1570 }
282     }
283 gezelter 1579 }
284 gezelter 1613 #endif
285    
286     // allocate memory for the parallel objects
287     atypesLocal.resize(nLocal_);
288    
289     for (int i = 0; i < nLocal_; i++)
290     atypesLocal[i] = ff_->getAtomType(idents[i]);
291    
292     groupList_.clear();
293     groupList_.resize(nGroups_);
294     for (int i = 0; i < nGroups_; i++) {
295     int gid = cgLocalToGlobal[i];
296     for (int j = 0; j < nLocal_; j++) {
297     int aid = AtomLocalToGlobal[j];
298     if (globalGroupMembership[aid] == gid) {
299     groupList_[i].push_back(j);
300     }
301     }
302     }
303    
304    
305 gezelter 1579 createGtypeCutoffMap();
306 gezelter 1587
307 gezelter 1576 }
308    
309     void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 gezelter 1586
311 gezelter 1576 RealType tol = 1e-6;
312 gezelter 1592 largestRcut_ = 0.0;
313 gezelter 1576 RealType rc;
314     int atid;
315     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
316 gezelter 1592
317 gezelter 1587 map<int, RealType> atypeCutoff;
318 gezelter 1583
319 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
320     at != atypes.end(); ++at){
321 gezelter 1576 atid = (*at)->getIdent();
322 gezelter 1587 if (userChoseCutoff_)
323 gezelter 1583 atypeCutoff[atid] = userCutoff_;
324 gezelter 1592 else
325 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
326 gezelter 1570 }
327 gezelter 1592
328 gezelter 1576 vector<RealType> gTypeCutoffs;
329     // first we do a single loop over the cutoff groups to find the
330     // largest cutoff for any atypes present in this group.
331     #ifdef IS_MPI
332     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
333 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
334 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
335     vector<int> atomListRow = getAtomsInGroupRow(cg1);
336     for (vector<int>::iterator ia = atomListRow.begin();
337     ia != atomListRow.end(); ++ia) {
338     int atom1 = (*ia);
339     atid = identsRow[atom1];
340     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
341     groupCutoffRow[cg1] = atypeCutoff[atid];
342     }
343     }
344    
345     bool gTypeFound = false;
346     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
347     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
348     groupRowToGtype[cg1] = gt;
349     gTypeFound = true;
350     }
351     }
352     if (!gTypeFound) {
353     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
354     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
355     }
356    
357     }
358     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
359 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
360 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
361     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
362     for (vector<int>::iterator jb = atomListCol.begin();
363     jb != atomListCol.end(); ++jb) {
364     int atom2 = (*jb);
365     atid = identsCol[atom2];
366     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
367     groupCutoffCol[cg2] = atypeCutoff[atid];
368     }
369     }
370     bool gTypeFound = false;
371     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
372     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
373     groupColToGtype[cg2] = gt;
374     gTypeFound = true;
375     }
376     }
377     if (!gTypeFound) {
378     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
379     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
380     }
381     }
382     #else
383 gezelter 1579
384 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
385 gezelter 1579 groupToGtype.resize(nGroups_);
386 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
387     groupCutoff[cg1] = 0.0;
388     vector<int> atomList = getAtomsInGroupRow(cg1);
389     for (vector<int>::iterator ia = atomList.begin();
390     ia != atomList.end(); ++ia) {
391     int atom1 = (*ia);
392 gezelter 1583 atid = idents[atom1];
393 gezelter 1592 if (atypeCutoff[atid] > groupCutoff[cg1])
394 gezelter 1576 groupCutoff[cg1] = atypeCutoff[atid];
395     }
396 gezelter 1592
397 gezelter 1576 bool gTypeFound = false;
398     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
399     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
400     groupToGtype[cg1] = gt;
401     gTypeFound = true;
402     }
403     }
404 gezelter 1592 if (!gTypeFound) {
405 gezelter 1576 gTypeCutoffs.push_back( groupCutoff[cg1] );
406     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
407     }
408     }
409     #endif
410    
411     // Now we find the maximum group cutoff value present in the simulation
412    
413 gezelter 1590 RealType groupMax = *max_element(gTypeCutoffs.begin(),
414     gTypeCutoffs.end());
415 gezelter 1576
416     #ifdef IS_MPI
417 gezelter 1590 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
418     MPI::MAX);
419 gezelter 1576 #endif
420    
421     RealType tradRcut = groupMax;
422    
423     for (int i = 0; i < gTypeCutoffs.size(); i++) {
424 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
425 gezelter 1576 RealType thisRcut;
426     switch(cutoffPolicy_) {
427     case TRADITIONAL:
428     thisRcut = tradRcut;
429 gezelter 1579 break;
430 gezelter 1576 case MIX:
431     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
432 gezelter 1579 break;
433 gezelter 1576 case MAX:
434     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
435 gezelter 1579 break;
436 gezelter 1576 default:
437     sprintf(painCave.errMsg,
438     "ForceMatrixDecomposition::createGtypeCutoffMap "
439     "hit an unknown cutoff policy!\n");
440     painCave.severity = OPENMD_ERROR;
441     painCave.isFatal = 1;
442 gezelter 1579 simError();
443     break;
444 gezelter 1576 }
445    
446     pair<int,int> key = make_pair(i,j);
447     gTypeCutoffMap[key].first = thisRcut;
448     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
449     gTypeCutoffMap[key].second = thisRcut*thisRcut;
450     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
451     // sanity check
452    
453     if (userChoseCutoff_) {
454     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
455     sprintf(painCave.errMsg,
456     "ForceMatrixDecomposition::createGtypeCutoffMap "
457 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
458 gezelter 1576 painCave.severity = OPENMD_ERROR;
459     painCave.isFatal = 1;
460     simError();
461     }
462     }
463     }
464     }
465 gezelter 1539 }
466 gezelter 1576
467     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
468 gezelter 1579 int i, j;
469 gezelter 1576 #ifdef IS_MPI
470     i = groupRowToGtype[cg1];
471     j = groupColToGtype[cg2];
472     #else
473     i = groupToGtype[cg1];
474     j = groupToGtype[cg2];
475 gezelter 1579 #endif
476 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
477     }
478    
479 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
480     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
481     if (toposForAtom[atom1][j] == atom2)
482     return topoDist[atom1][j];
483     }
484     return 0;
485     }
486 gezelter 1576
487 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
488 gezelter 1583 pairwisePot = 0.0;
489     embeddingPot = 0.0;
490 gezelter 1760 excludedPot = 0.0;
491 gezelter 1575
492     #ifdef IS_MPI
493     if (storageLayout_ & DataStorage::dslForce) {
494     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496     }
497    
498     if (storageLayout_ & DataStorage::dslTorque) {
499     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501     }
502    
503     fill(pot_row.begin(), pot_row.end(),
504     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505    
506     fill(pot_col.begin(), pot_col.end(),
507 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508 gezelter 1575
509 gezelter 1760 fill(expot_row.begin(), expot_row.end(),
510     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511    
512     fill(expot_col.begin(), expot_col.end(),
513     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514    
515 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
516 gezelter 1590 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517     0.0);
518     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519     0.0);
520 gezelter 1575 }
521    
522     if (storageLayout_ & DataStorage::dslDensity) {
523     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525     }
526    
527     if (storageLayout_ & DataStorage::dslFunctional) {
528 gezelter 1590 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529     0.0);
530     fill(atomColData.functional.begin(), atomColData.functional.end(),
531     0.0);
532 gezelter 1575 }
533    
534     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535     fill(atomRowData.functionalDerivative.begin(),
536     atomRowData.functionalDerivative.end(), 0.0);
537     fill(atomColData.functionalDerivative.begin(),
538     atomColData.functionalDerivative.end(), 0.0);
539     }
540    
541 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
543     atomRowData.skippedCharge.end(), 0.0);
544     fill(atomColData.skippedCharge.begin(),
545     atomColData.skippedCharge.end(), 0.0);
546 gezelter 1586 }
547    
548 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQForce) {
549     fill(atomRowData.flucQFrc.begin(),
550     atomRowData.flucQFrc.end(), 0.0);
551     fill(atomColData.flucQFrc.begin(),
552     atomColData.flucQFrc.end(), 0.0);
553     }
554    
555 gezelter 1713 if (storageLayout_ & DataStorage::dslElectricField) {
556     fill(atomRowData.electricField.begin(),
557     atomRowData.electricField.end(), V3Zero);
558     fill(atomColData.electricField.begin(),
559     atomColData.electricField.end(), V3Zero);
560     }
561 gezelter 1721
562 gezelter 1713 if (storageLayout_ & DataStorage::dslFlucQForce) {
563     fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
564     0.0);
565     fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
566     0.0);
567     }
568    
569 gezelter 1590 #endif
570     // even in parallel, we need to zero out the local arrays:
571    
572 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
573     fill(snap_->atomData.particlePot.begin(),
574     snap_->atomData.particlePot.end(), 0.0);
575     }
576    
577     if (storageLayout_ & DataStorage::dslDensity) {
578     fill(snap_->atomData.density.begin(),
579     snap_->atomData.density.end(), 0.0);
580     }
581 gezelter 1706
582 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
583     fill(snap_->atomData.functional.begin(),
584     snap_->atomData.functional.end(), 0.0);
585     }
586 gezelter 1706
587 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
588     fill(snap_->atomData.functionalDerivative.begin(),
589     snap_->atomData.functionalDerivative.end(), 0.0);
590     }
591 gezelter 1706
592 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
593     fill(snap_->atomData.skippedCharge.begin(),
594     snap_->atomData.skippedCharge.end(), 0.0);
595     }
596 gezelter 1713
597     if (storageLayout_ & DataStorage::dslElectricField) {
598     fill(snap_->atomData.electricField.begin(),
599     snap_->atomData.electricField.end(), V3Zero);
600     }
601 gezelter 1575 }
602    
603    
604 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
605 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
606     storageLayout_ = sman_->getStorageLayout();
607 chuckv 1538 #ifdef IS_MPI
608 gezelter 1540
609 gezelter 1539 // gather up the atomic positions
610 gezelter 1593 AtomPlanVectorRow->gather(snap_->atomData.position,
611 gezelter 1551 atomRowData.position);
612 gezelter 1593 AtomPlanVectorColumn->gather(snap_->atomData.position,
613 gezelter 1551 atomColData.position);
614 gezelter 1539
615     // gather up the cutoff group positions
616 gezelter 1593
617     cgPlanVectorRow->gather(snap_->cgData.position,
618 gezelter 1551 cgRowData.position);
619 gezelter 1593
620     cgPlanVectorColumn->gather(snap_->cgData.position,
621 gezelter 1551 cgColData.position);
622 gezelter 1593
623 gezelter 1723
624    
625     if (needVelocities_) {
626     // gather up the atomic velocities
627     AtomPlanVectorColumn->gather(snap_->atomData.velocity,
628     atomColData.velocity);
629    
630     cgPlanVectorColumn->gather(snap_->cgData.velocity,
631     cgColData.velocity);
632     }
633    
634 gezelter 1539
635     // if needed, gather the atomic rotation matrices
636 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
637 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
638 gezelter 1551 atomRowData.aMat);
639 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
640 gezelter 1551 atomColData.aMat);
641 gezelter 1539 }
642    
643     // if needed, gather the atomic eletrostatic frames
644 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
645 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
646 gezelter 1551 atomRowData.electroFrame);
647 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
648 gezelter 1551 atomColData.electroFrame);
649 gezelter 1539 }
650 gezelter 1590
651 gezelter 1713 // if needed, gather the atomic fluctuating charge values
652     if (storageLayout_ & DataStorage::dslFlucQPosition) {
653     AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654     atomRowData.flucQPos);
655     AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656     atomColData.flucQPos);
657     }
658    
659 gezelter 1539 #endif
660     }
661    
662 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
663     * data structures.
664     */
665 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
666 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
667     storageLayout_ = sman_->getStorageLayout();
668 gezelter 1539 #ifdef IS_MPI
669    
670 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
671    
672 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.density,
673 gezelter 1551 snap_->atomData.density);
674    
675     int n = snap_->atomData.density.size();
676 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
677 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 gezelter 1539 for (int i = 0; i < n; i++)
679 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
680 gezelter 1539 }
681 gezelter 1713
682     if (storageLayout_ & DataStorage::dslElectricField) {
683    
684     AtomPlanVectorRow->scatter(atomRowData.electricField,
685     snap_->atomData.electricField);
686    
687     int n = snap_->atomData.electricField.size();
688     vector<Vector3d> field_tmp(n, V3Zero);
689     AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
690     for (int i = 0; i < n; i++)
691     snap_->atomData.electricField[i] += field_tmp[i];
692     }
693 chuckv 1538 #endif
694 gezelter 1539 }
695 gezelter 1575
696     /*
697     * redistributes information obtained during the pre-pair loop out to
698     * row and column-indexed data structures
699     */
700 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
701 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
702     storageLayout_ = sman_->getStorageLayout();
703 chuckv 1538 #ifdef IS_MPI
704 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
705 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functional,
706 gezelter 1551 atomRowData.functional);
707 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functional,
708 gezelter 1551 atomColData.functional);
709 gezelter 1539 }
710    
711 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
712 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
713 gezelter 1551 atomRowData.functionalDerivative);
714 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
715 gezelter 1551 atomColData.functionalDerivative);
716 gezelter 1539 }
717 chuckv 1538 #endif
718     }
719 gezelter 1539
720    
721 gezelter 1549 void ForceMatrixDecomposition::collectData() {
722 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
723     storageLayout_ = sman_->getStorageLayout();
724     #ifdef IS_MPI
725     int n = snap_->atomData.force.size();
726 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
727 gezelter 1541
728 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
729 gezelter 1541 for (int i = 0; i < n; i++) {
730 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
731 gezelter 1541 frc_tmp[i] = 0.0;
732     }
733 gezelter 1540
734 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
735     for (int i = 0; i < n; i++) {
736 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
737 gezelter 1593 }
738 gezelter 1590
739 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
740 gezelter 1541
741 gezelter 1587 int nt = snap_->atomData.torque.size();
742 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
743 gezelter 1541
744 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
745 gezelter 1587 for (int i = 0; i < nt; i++) {
746 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
747 gezelter 1541 trq_tmp[i] = 0.0;
748     }
749 gezelter 1540
750 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
751 gezelter 1587 for (int i = 0; i < nt; i++)
752 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
753 gezelter 1540 }
754 gezelter 1587
755     if (storageLayout_ & DataStorage::dslSkippedCharge) {
756    
757     int ns = snap_->atomData.skippedCharge.size();
758     vector<RealType> skch_tmp(ns, 0.0);
759    
760 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
761 gezelter 1587 for (int i = 0; i < ns; i++) {
762 gezelter 1590 snap_->atomData.skippedCharge[i] += skch_tmp[i];
763 gezelter 1587 skch_tmp[i] = 0.0;
764     }
765    
766 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
767 gezelter 1613 for (int i = 0; i < ns; i++)
768 gezelter 1587 snap_->atomData.skippedCharge[i] += skch_tmp[i];
769 gezelter 1613
770 gezelter 1587 }
771 gezelter 1540
772 gezelter 1713 if (storageLayout_ & DataStorage::dslFlucQForce) {
773    
774     int nq = snap_->atomData.flucQFrc.size();
775     vector<RealType> fqfrc_tmp(nq, 0.0);
776    
777     AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
778     for (int i = 0; i < nq; i++) {
779     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
780     fqfrc_tmp[i] = 0.0;
781     }
782    
783     AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
784     for (int i = 0; i < nq; i++)
785     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
786    
787     }
788    
789 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
790 gezelter 1544
791 gezelter 1575 vector<potVec> pot_temp(nLocal_,
792     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
793 gezelter 1760 vector<potVec> expot_temp(nLocal_,
794     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
795 gezelter 1575
796     // scatter/gather pot_row into the members of my column
797    
798 gezelter 1593 AtomPlanPotRow->scatter(pot_row, pot_temp);
799 gezelter 1760 AtomPlanPotRow->scatter(expot_row, expot_temp);
800 gezelter 1575
801 gezelter 1760 for (int ii = 0; ii < pot_temp.size(); ii++ )
802 gezelter 1583 pairwisePot += pot_temp[ii];
803 gezelter 1760
804     for (int ii = 0; ii < expot_temp.size(); ii++ )
805     excludedPot += expot_temp[ii];
806 gezelter 1723
807     if (storageLayout_ & DataStorage::dslParticlePot) {
808     // This is the pairwise contribution to the particle pot. The
809     // embedding contribution is added in each of the low level
810     // non-bonded routines. In single processor, this is done in
811     // unpackInteractionData, not in collectData.
812     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
813     for (int i = 0; i < nLocal_; i++) {
814     // factor of two is because the total potential terms are divided
815     // by 2 in parallel due to row/ column scatter
816     snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
817     }
818     }
819     }
820    
821 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
822     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
823 gezelter 1760 fill(expot_temp.begin(), expot_temp.end(),
824     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
825 gezelter 1575
826 gezelter 1593 AtomPlanPotColumn->scatter(pot_col, pot_temp);
827 gezelter 1760 AtomPlanPotColumn->scatter(expot_col, expot_temp);
828 gezelter 1575
829     for (int ii = 0; ii < pot_temp.size(); ii++ )
830 gezelter 1583 pairwisePot += pot_temp[ii];
831 gezelter 1723
832 gezelter 1760 for (int ii = 0; ii < expot_temp.size(); ii++ )
833     excludedPot += expot_temp[ii];
834    
835 gezelter 1723 if (storageLayout_ & DataStorage::dslParticlePot) {
836     // This is the pairwise contribution to the particle pot. The
837     // embedding contribution is added in each of the low level
838     // non-bonded routines. In single processor, this is done in
839     // unpackInteractionData, not in collectData.
840     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
841     for (int i = 0; i < nLocal_; i++) {
842     // factor of two is because the total potential terms are divided
843     // by 2 in parallel due to row/ column scatter
844     snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
845     }
846     }
847     }
848 gezelter 1601
849 gezelter 1723 if (storageLayout_ & DataStorage::dslParticlePot) {
850     int npp = snap_->atomData.particlePot.size();
851     vector<RealType> ppot_temp(npp, 0.0);
852    
853     // This is the direct or embedding contribution to the particle
854     // pot.
855    
856     AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
857     for (int i = 0; i < npp; i++) {
858     snap_->atomData.particlePot[i] += ppot_temp[i];
859     }
860    
861     fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
862    
863     AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
864     for (int i = 0; i < npp; i++) {
865     snap_->atomData.particlePot[i] += ppot_temp[i];
866     }
867     }
868    
869 gezelter 1601 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
870     RealType ploc1 = pairwisePot[ii];
871     RealType ploc2 = 0.0;
872     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
873     pairwisePot[ii] = ploc2;
874     }
875    
876 gezelter 1760 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
877     RealType ploc1 = excludedPot[ii];
878     RealType ploc2 = 0.0;
879     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
880     excludedPot[ii] = ploc2;
881     }
882    
883 gezelter 1723 // Here be dragons.
884     MPI::Intracomm col = colComm.getComm();
885 gezelter 1613
886 gezelter 1723 col.Allreduce(MPI::IN_PLACE,
887     &snap_->frameData.conductiveHeatFlux[0], 3,
888     MPI::REALTYPE, MPI::SUM);
889    
890    
891 gezelter 1539 #endif
892 gezelter 1583
893 chuckv 1538 }
894 gezelter 1551
895 gezelter 1756 /**
896     * Collects information obtained during the post-pair (and embedding
897     * functional) loops onto local data structures.
898     */
899     void ForceMatrixDecomposition::collectSelfData() {
900     snap_ = sman_->getCurrentSnapshot();
901     storageLayout_ = sman_->getStorageLayout();
902    
903     #ifdef IS_MPI
904     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
905     RealType ploc1 = embeddingPot[ii];
906     RealType ploc2 = 0.0;
907     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
908     embeddingPot[ii] = ploc2;
909     }
910     #endif
911    
912     }
913    
914    
915    
916 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
917     #ifdef IS_MPI
918     return nAtomsInRow_;
919     #else
920     return nLocal_;
921     #endif
922     }
923    
924 gezelter 1569 /**
925     * returns the list of atoms belonging to this group.
926     */
927     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
928     #ifdef IS_MPI
929     return groupListRow_[cg1];
930     #else
931     return groupList_[cg1];
932     #endif
933     }
934    
935     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
936     #ifdef IS_MPI
937     return groupListCol_[cg2];
938     #else
939     return groupList_[cg2];
940     #endif
941     }
942 chuckv 1538
943 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
944     Vector3d d;
945    
946     #ifdef IS_MPI
947     d = cgColData.position[cg2] - cgRowData.position[cg1];
948     #else
949     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
950     #endif
951    
952     snap_->wrapVector(d);
953     return d;
954     }
955    
956 gezelter 1723 Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
957     #ifdef IS_MPI
958     return cgColData.velocity[cg2];
959     #else
960     return snap_->cgData.velocity[cg2];
961     #endif
962     }
963 gezelter 1551
964 gezelter 1723 Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
965     #ifdef IS_MPI
966     return atomColData.velocity[atom2];
967     #else
968     return snap_->atomData.velocity[atom2];
969     #endif
970     }
971    
972    
973 gezelter 1551 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
974    
975     Vector3d d;
976    
977     #ifdef IS_MPI
978     d = cgRowData.position[cg1] - atomRowData.position[atom1];
979     #else
980     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
981     #endif
982    
983     snap_->wrapVector(d);
984     return d;
985     }
986    
987     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
988     Vector3d d;
989    
990     #ifdef IS_MPI
991     d = cgColData.position[cg2] - atomColData.position[atom2];
992     #else
993     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
994     #endif
995    
996     snap_->wrapVector(d);
997     return d;
998     }
999 gezelter 1569
1000     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1001     #ifdef IS_MPI
1002     return massFactorsRow[atom1];
1003     #else
1004 gezelter 1581 return massFactors[atom1];
1005 gezelter 1569 #endif
1006     }
1007    
1008     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1009     #ifdef IS_MPI
1010     return massFactorsCol[atom2];
1011     #else
1012 gezelter 1581 return massFactors[atom2];
1013 gezelter 1569 #endif
1014    
1015     }
1016 gezelter 1551
1017     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1018     Vector3d d;
1019    
1020     #ifdef IS_MPI
1021     d = atomColData.position[atom2] - atomRowData.position[atom1];
1022     #else
1023     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1024     #endif
1025    
1026     snap_->wrapVector(d);
1027     return d;
1028     }
1029    
1030 gezelter 1587 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1031     return excludesForAtom[atom1];
1032 gezelter 1570 }
1033    
1034     /**
1035 gezelter 1587 * We need to exclude some overcounted interactions that result from
1036 gezelter 1575 * the parallel decomposition.
1037 gezelter 1570 */
1038 gezelter 1756 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1039     int unique_id_1, unique_id_2, group1, group2;
1040 gezelter 1616
1041 gezelter 1570 #ifdef IS_MPI
1042     // in MPI, we have to look up the unique IDs for each atom
1043     unique_id_1 = AtomRowToGlobal[atom1];
1044     unique_id_2 = AtomColToGlobal[atom2];
1045 gezelter 1756 group1 = cgRowToGlobal[cg1];
1046     group2 = cgColToGlobal[cg2];
1047 gezelter 1616 #else
1048     unique_id_1 = AtomLocalToGlobal[atom1];
1049     unique_id_2 = AtomLocalToGlobal[atom2];
1050 gezelter 1756 group1 = cgLocalToGlobal[cg1];
1051     group2 = cgLocalToGlobal[cg2];
1052 gezelter 1616 #endif
1053 gezelter 1570
1054     if (unique_id_1 == unique_id_2) return true;
1055 gezelter 1616
1056     #ifdef IS_MPI
1057 gezelter 1570 // this prevents us from doing the pair on multiple processors
1058     if (unique_id_1 < unique_id_2) {
1059     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1060     } else {
1061 gezelter 1616 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1062 gezelter 1570 }
1063 gezelter 1756 #endif
1064    
1065     #ifndef IS_MPI
1066     if (group1 == group2) {
1067     if (unique_id_1 < unique_id_2) return true;
1068     }
1069 gezelter 1587 #endif
1070 gezelter 1616
1071 gezelter 1587 return false;
1072     }
1073    
1074     /**
1075     * We need to handle the interactions for atoms who are involved in
1076     * the same rigid body as well as some short range interactions
1077     * (bonds, bends, torsions) differently from other interactions.
1078     * We'll still visit the pairwise routines, but with a flag that
1079     * tells those routines to exclude the pair from direct long range
1080     * interactions. Some indirect interactions (notably reaction
1081     * field) must still be handled for these pairs.
1082     */
1083     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1084 gezelter 1613
1085     // excludesForAtom was constructed to use row/column indices in the MPI
1086     // version, and to use local IDs in the non-MPI version:
1087 gezelter 1570
1088 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1089     i != excludesForAtom[atom1].end(); ++i) {
1090 gezelter 1616 if ( (*i) == atom2 ) return true;
1091 gezelter 1583 }
1092 gezelter 1579
1093 gezelter 1583 return false;
1094 gezelter 1570 }
1095    
1096    
1097 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1098     #ifdef IS_MPI
1099     atomRowData.force[atom1] += fg;
1100     #else
1101     snap_->atomData.force[atom1] += fg;
1102     #endif
1103     }
1104    
1105     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1106     #ifdef IS_MPI
1107     atomColData.force[atom2] += fg;
1108     #else
1109     snap_->atomData.force[atom2] += fg;
1110     #endif
1111     }
1112    
1113     // filling interaction blocks with pointers
1114 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1115 gezelter 1587 int atom1, int atom2) {
1116    
1117     idat.excluded = excludeAtomPair(atom1, atom2);
1118    
1119 gezelter 1551 #ifdef IS_MPI
1120 gezelter 1591 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1121     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1122     // ff_->getAtomType(identsCol[atom2]) );
1123 gezelter 1571
1124 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
1125 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
1126     idat.A2 = &(atomColData.aMat[atom2]);
1127 gezelter 1551 }
1128 gezelter 1567
1129 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
1130 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1131     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1132 gezelter 1551 }
1133    
1134     if (storageLayout_ & DataStorage::dslTorque) {
1135 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
1136     idat.t2 = &(atomColData.torque[atom2]);
1137 gezelter 1551 }
1138    
1139     if (storageLayout_ & DataStorage::dslDensity) {
1140 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
1141     idat.rho2 = &(atomColData.density[atom2]);
1142 gezelter 1551 }
1143    
1144 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
1145     idat.frho1 = &(atomRowData.functional[atom1]);
1146     idat.frho2 = &(atomColData.functional[atom2]);
1147     }
1148    
1149 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1150 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1151     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1152 gezelter 1551 }
1153 gezelter 1570
1154 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
1155     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1156     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1157     }
1158    
1159 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1160     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1161     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1162     }
1163    
1164 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1165     idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1166     idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1167     }
1168    
1169 gezelter 1562 #else
1170 gezelter 1688
1171 gezelter 1591 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1172 gezelter 1571
1173 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
1174     idat.A1 = &(snap_->atomData.aMat[atom1]);
1175     idat.A2 = &(snap_->atomData.aMat[atom2]);
1176     }
1177    
1178     if (storageLayout_ & DataStorage::dslElectroFrame) {
1179     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1180     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1181     }
1182    
1183     if (storageLayout_ & DataStorage::dslTorque) {
1184     idat.t1 = &(snap_->atomData.torque[atom1]);
1185     idat.t2 = &(snap_->atomData.torque[atom2]);
1186     }
1187    
1188 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
1189 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
1190     idat.rho2 = &(snap_->atomData.density[atom2]);
1191     }
1192    
1193 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
1194     idat.frho1 = &(snap_->atomData.functional[atom1]);
1195     idat.frho2 = &(snap_->atomData.functional[atom2]);
1196     }
1197    
1198 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1199     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1200     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1201     }
1202 gezelter 1575
1203     if (storageLayout_ & DataStorage::dslParticlePot) {
1204     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1205     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1206     }
1207    
1208 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1209     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1210     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1211     }
1212 gezelter 1721
1213     if (storageLayout_ & DataStorage::dslFlucQPosition) {
1214     idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1215     idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1216     }
1217    
1218 gezelter 1551 #endif
1219     }
1220 gezelter 1567
1221 gezelter 1575
1222 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1223 gezelter 1575 #ifdef IS_MPI
1224 gezelter 1668 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1225     pot_col[atom2] += RealType(0.5) * *(idat.pot);
1226 gezelter 1760 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1227     expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1228 gezelter 1575
1229     atomRowData.force[atom1] += *(idat.f1);
1230     atomColData.force[atom2] -= *(idat.f1);
1231 gezelter 1713
1232 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQForce) {
1233 jmichalk 1736 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1234     atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1235 gezelter 1721 }
1236    
1237     if (storageLayout_ & DataStorage::dslElectricField) {
1238     atomRowData.electricField[atom1] += *(idat.eField1);
1239     atomColData.electricField[atom2] += *(idat.eField2);
1240     }
1241    
1242 gezelter 1575 #else
1243 gezelter 1583 pairwisePot += *(idat.pot);
1244 gezelter 1760 excludedPot += *(idat.excludedPot);
1245 gezelter 1583
1246 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
1247     snap_->atomData.force[atom2] -= *(idat.f1);
1248 gezelter 1713
1249     if (idat.doParticlePot) {
1250 gezelter 1723 // This is the pairwise contribution to the particle pot. The
1251     // embedding contribution is added in each of the low level
1252     // non-bonded routines. In parallel, this calculation is done
1253     // in collectData, not in unpackInteractionData.
1254 gezelter 1713 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1255 gezelter 1723 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1256 gezelter 1713 }
1257 gezelter 1721
1258     if (storageLayout_ & DataStorage::dslFlucQForce) {
1259 jmichalk 1736 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1260 gezelter 1721 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1261     }
1262    
1263     if (storageLayout_ & DataStorage::dslElectricField) {
1264     snap_->atomData.electricField[atom1] += *(idat.eField1);
1265     snap_->atomData.electricField[atom2] += *(idat.eField2);
1266     }
1267    
1268 gezelter 1575 #endif
1269 gezelter 1586
1270 gezelter 1575 }
1271    
1272 gezelter 1562 /*
1273     * buildNeighborList
1274     *
1275     * first element of pair is row-indexed CutoffGroup
1276     * second element of pair is column-indexed CutoffGroup
1277     */
1278 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1279    
1280     vector<pair<int, int> > neighborList;
1281 gezelter 1576 groupCutoffs cuts;
1282 gezelter 1587 bool doAllPairs = false;
1283    
1284 gezelter 1567 #ifdef IS_MPI
1285 gezelter 1568 cellListRow_.clear();
1286     cellListCol_.clear();
1287 gezelter 1567 #else
1288 gezelter 1568 cellList_.clear();
1289 gezelter 1567 #endif
1290 gezelter 1562
1291 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
1292 gezelter 1567 RealType rl2 = rList_ * rList_;
1293     Snapshot* snap_ = sman_->getCurrentSnapshot();
1294 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
1295     Vector3d Hx = Hmat.getColumn(0);
1296     Vector3d Hy = Hmat.getColumn(1);
1297     Vector3d Hz = Hmat.getColumn(2);
1298    
1299 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
1300     nCells_.y() = (int) ( Hy.length() )/ rList_;
1301     nCells_.z() = (int) ( Hz.length() )/ rList_;
1302 gezelter 1562
1303 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
1304    
1305     if (nCells_.x() < 3) doAllPairs = true;
1306     if (nCells_.y() < 3) doAllPairs = true;
1307     if (nCells_.z() < 3) doAllPairs = true;
1308    
1309 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
1310     Vector3d rs, scaled, dr;
1311     Vector3i whichCell;
1312     int cellIndex;
1313 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1314 gezelter 1567
1315     #ifdef IS_MPI
1316 gezelter 1579 cellListRow_.resize(nCtot);
1317     cellListCol_.resize(nCtot);
1318     #else
1319     cellList_.resize(nCtot);
1320     #endif
1321 gezelter 1582
1322 gezelter 1587 if (!doAllPairs) {
1323 gezelter 1579 #ifdef IS_MPI
1324 gezelter 1581
1325 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
1326     rs = cgRowData.position[i];
1327    
1328     // scaled positions relative to the box vectors
1329     scaled = invHmat * rs;
1330    
1331     // wrap the vector back into the unit box by subtracting integer box
1332     // numbers
1333     for (int j = 0; j < 3; j++) {
1334     scaled[j] -= roundMe(scaled[j]);
1335     scaled[j] += 0.5;
1336     }
1337    
1338     // find xyz-indices of cell that cutoffGroup is in.
1339     whichCell.x() = nCells_.x() * scaled.x();
1340     whichCell.y() = nCells_.y() * scaled.y();
1341     whichCell.z() = nCells_.z() * scaled.z();
1342    
1343     // find single index of this cell:
1344     cellIndex = Vlinear(whichCell, nCells_);
1345    
1346     // add this cutoff group to the list of groups in this cell;
1347     cellListRow_[cellIndex].push_back(i);
1348 gezelter 1581 }
1349 gezelter 1587 for (int i = 0; i < nGroupsInCol_; i++) {
1350     rs = cgColData.position[i];
1351    
1352     // scaled positions relative to the box vectors
1353     scaled = invHmat * rs;
1354    
1355     // wrap the vector back into the unit box by subtracting integer box
1356     // numbers
1357     for (int j = 0; j < 3; j++) {
1358     scaled[j] -= roundMe(scaled[j]);
1359     scaled[j] += 0.5;
1360     }
1361    
1362     // find xyz-indices of cell that cutoffGroup is in.
1363     whichCell.x() = nCells_.x() * scaled.x();
1364     whichCell.y() = nCells_.y() * scaled.y();
1365     whichCell.z() = nCells_.z() * scaled.z();
1366    
1367     // find single index of this cell:
1368     cellIndex = Vlinear(whichCell, nCells_);
1369    
1370     // add this cutoff group to the list of groups in this cell;
1371     cellListCol_[cellIndex].push_back(i);
1372 gezelter 1581 }
1373 gezelter 1612
1374 gezelter 1567 #else
1375 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1376     rs = snap_->cgData.position[i];
1377    
1378     // scaled positions relative to the box vectors
1379     scaled = invHmat * rs;
1380    
1381     // wrap the vector back into the unit box by subtracting integer box
1382     // numbers
1383     for (int j = 0; j < 3; j++) {
1384     scaled[j] -= roundMe(scaled[j]);
1385     scaled[j] += 0.5;
1386     }
1387    
1388     // find xyz-indices of cell that cutoffGroup is in.
1389     whichCell.x() = nCells_.x() * scaled.x();
1390     whichCell.y() = nCells_.y() * scaled.y();
1391     whichCell.z() = nCells_.z() * scaled.z();
1392    
1393     // find single index of this cell:
1394 gezelter 1593 cellIndex = Vlinear(whichCell, nCells_);
1395 gezelter 1587
1396     // add this cutoff group to the list of groups in this cell;
1397     cellList_[cellIndex].push_back(i);
1398 gezelter 1581 }
1399 gezelter 1612
1400 gezelter 1567 #endif
1401    
1402 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1403     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1404     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1405     Vector3i m1v(m1x, m1y, m1z);
1406     int m1 = Vlinear(m1v, nCells_);
1407 gezelter 1568
1408 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1409     os != cellOffsets_.end(); ++os) {
1410    
1411     Vector3i m2v = m1v + (*os);
1412 gezelter 1612
1413    
1414 gezelter 1587 if (m2v.x() >= nCells_.x()) {
1415     m2v.x() = 0;
1416     } else if (m2v.x() < 0) {
1417     m2v.x() = nCells_.x() - 1;
1418     }
1419    
1420     if (m2v.y() >= nCells_.y()) {
1421     m2v.y() = 0;
1422     } else if (m2v.y() < 0) {
1423     m2v.y() = nCells_.y() - 1;
1424     }
1425    
1426     if (m2v.z() >= nCells_.z()) {
1427     m2v.z() = 0;
1428     } else if (m2v.z() < 0) {
1429     m2v.z() = nCells_.z() - 1;
1430     }
1431 gezelter 1612
1432 gezelter 1587 int m2 = Vlinear (m2v, nCells_);
1433    
1434 gezelter 1567 #ifdef IS_MPI
1435 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1436     j1 != cellListRow_[m1].end(); ++j1) {
1437     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1438     j2 != cellListCol_[m2].end(); ++j2) {
1439    
1440 gezelter 1612 // In parallel, we need to visit *all* pairs of row
1441     // & column indicies and will divide labor in the
1442     // force evaluation later.
1443 gezelter 1593 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1444     snap_->wrapVector(dr);
1445     cuts = getGroupCutoffs( (*j1), (*j2) );
1446     if (dr.lengthSquare() < cuts.third) {
1447     neighborList.push_back(make_pair((*j1), (*j2)));
1448     }
1449 gezelter 1562 }
1450     }
1451 gezelter 1567 #else
1452 gezelter 1587 for (vector<int>::iterator j1 = cellList_[m1].begin();
1453     j1 != cellList_[m1].end(); ++j1) {
1454     for (vector<int>::iterator j2 = cellList_[m2].begin();
1455     j2 != cellList_[m2].end(); ++j2) {
1456 gezelter 1616
1457 gezelter 1587 // Always do this if we're in different cells or if
1458 gezelter 1616 // we're in the same cell and the global index of
1459     // the j2 cutoff group is greater than or equal to
1460     // the j1 cutoff group. Note that Rappaport's code
1461     // has a "less than" conditional here, but that
1462     // deals with atom-by-atom computation. OpenMD
1463     // allows atoms within a single cutoff group to
1464     // interact with each other.
1465    
1466    
1467    
1468     if (m2 != m1 || (*j2) >= (*j1) ) {
1469    
1470 gezelter 1587 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1471     snap_->wrapVector(dr);
1472     cuts = getGroupCutoffs( (*j1), (*j2) );
1473     if (dr.lengthSquare() < cuts.third) {
1474     neighborList.push_back(make_pair((*j1), (*j2)));
1475     }
1476 gezelter 1567 }
1477     }
1478     }
1479 gezelter 1587 #endif
1480 gezelter 1567 }
1481 gezelter 1562 }
1482     }
1483     }
1484 gezelter 1587 } else {
1485     // branch to do all cutoff group pairs
1486     #ifdef IS_MPI
1487     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1488 gezelter 1616 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1489 gezelter 1587 dr = cgColData.position[j2] - cgRowData.position[j1];
1490     snap_->wrapVector(dr);
1491     cuts = getGroupCutoffs( j1, j2 );
1492     if (dr.lengthSquare() < cuts.third) {
1493     neighborList.push_back(make_pair(j1, j2));
1494     }
1495     }
1496 gezelter 1616 }
1497 gezelter 1587 #else
1498 gezelter 1616 // include all groups here.
1499     for (int j1 = 0; j1 < nGroups_; j1++) {
1500     // include self group interactions j2 == j1
1501     for (int j2 = j1; j2 < nGroups_; j2++) {
1502 gezelter 1587 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1503     snap_->wrapVector(dr);
1504     cuts = getGroupCutoffs( j1, j2 );
1505     if (dr.lengthSquare() < cuts.third) {
1506     neighborList.push_back(make_pair(j1, j2));
1507     }
1508 gezelter 1616 }
1509     }
1510 gezelter 1587 #endif
1511 gezelter 1562 }
1512 gezelter 1587
1513 gezelter 1568 // save the local cutoff group positions for the check that is
1514     // done on each loop:
1515     saved_CG_positions_.clear();
1516     for (int i = 0; i < nGroups_; i++)
1517     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1518 gezelter 1587
1519 gezelter 1567 return neighborList;
1520 gezelter 1562 }
1521 gezelter 1539 } //end namespace OpenMD