ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1613
Committed: Thu Aug 18 20:18:19 2011 UTC (13 years, 8 months ago) by gezelter
File size: 41919 byte(s)
Log Message:
Fixed a parallel bug in computing exclude lists.
Added file versioning information in MD files.
Still tracking down cutoff group bugs.

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1593 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51    
52     // In a parallel computation, row and colum scans must visit all
53     // surrounding cells (not just the 14 upper triangular blocks that
54     // are used when the processor can see all pairs)
55     #ifdef IS_MPI
56 gezelter 1612 cellOffsets_.clear();
57     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
58     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
59     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
60     cellOffsets_.push_back( Vector3i(-1, 0,-1) );
61     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
63     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
64     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
65     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
66 gezelter 1593 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
67     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
68     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
69 gezelter 1612 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
70     cellOffsets_.push_back( Vector3i( 0, 0, 0) );
71     cellOffsets_.push_back( Vector3i( 1, 0, 0) );
72     cellOffsets_.push_back( Vector3i(-1, 1, 0) );
73     cellOffsets_.push_back( Vector3i( 0, 1, 0) );
74     cellOffsets_.push_back( Vector3i( 1, 1, 0) );
75     cellOffsets_.push_back( Vector3i(-1,-1, 1) );
76     cellOffsets_.push_back( Vector3i( 0,-1, 1) );
77     cellOffsets_.push_back( Vector3i( 1,-1, 1) );
78 gezelter 1593 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
79 gezelter 1612 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
80     cellOffsets_.push_back( Vector3i( 1, 0, 1) );
81     cellOffsets_.push_back( Vector3i(-1, 1, 1) );
82     cellOffsets_.push_back( Vector3i( 0, 1, 1) );
83     cellOffsets_.push_back( Vector3i( 1, 1, 1) );
84 gezelter 1593 #endif
85     }
86    
87    
88 gezelter 1544 /**
89     * distributeInitialData is essentially a copy of the older fortran
90     * SimulationSetup
91     */
92 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
93 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
94     storageLayout_ = sman_->getStorageLayout();
95 gezelter 1571 ff_ = info_->getForceField();
96 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
97 gezelter 1587
98 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
99 gezelter 1569 // gather the information for atomtype IDs (atids):
100 gezelter 1583 idents = info_->getIdentArray();
101 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
102     cgLocalToGlobal = info_->getGlobalGroupIndices();
103     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
104 gezelter 1586
105 gezelter 1581 massFactors = info_->getMassFactors();
106 gezelter 1584
107 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
108     PairList* oneTwo = info_->getOneTwoInteractions();
109     PairList* oneThree = info_->getOneThreeInteractions();
110     PairList* oneFour = info_->getOneFourInteractions();
111 gezelter 1569
112 gezelter 1567 #ifdef IS_MPI
113    
114 gezelter 1593 MPI::Intracomm row = rowComm.getComm();
115     MPI::Intracomm col = colComm.getComm();
116 chuckv 1538
117 gezelter 1593 AtomPlanIntRow = new Plan<int>(row, nLocal_);
118     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
119     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
120     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
121     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
122 gezelter 1541
123 gezelter 1593 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
124     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
125     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
126     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
127     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
128 gezelter 1551
129 gezelter 1593 cgPlanIntRow = new Plan<int>(row, nGroups_);
130     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
131     cgPlanIntColumn = new Plan<int>(col, nGroups_);
132     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
133 gezelter 1567
134 gezelter 1593 nAtomsInRow_ = AtomPlanIntRow->getSize();
135     nAtomsInCol_ = AtomPlanIntColumn->getSize();
136     nGroupsInRow_ = cgPlanIntRow->getSize();
137     nGroupsInCol_ = cgPlanIntColumn->getSize();
138    
139 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
140 gezelter 1567 atomRowData.resize(nAtomsInRow_);
141 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
142 gezelter 1567 atomColData.resize(nAtomsInCol_);
143 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
144 gezelter 1567 cgRowData.resize(nGroupsInRow_);
145 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
146 gezelter 1567 cgColData.resize(nGroupsInCol_);
147 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
148 gezelter 1575
149 gezelter 1577 identsRow.resize(nAtomsInRow_);
150     identsCol.resize(nAtomsInCol_);
151 gezelter 1549
152 gezelter 1593 AtomPlanIntRow->gather(idents, identsRow);
153     AtomPlanIntColumn->gather(idents, identsCol);
154 gezelter 1549
155 gezelter 1589 // allocate memory for the parallel objects
156 gezelter 1591 atypesRow.resize(nAtomsInRow_);
157     atypesCol.resize(nAtomsInCol_);
158    
159     for (int i = 0; i < nAtomsInRow_; i++)
160     atypesRow[i] = ff_->getAtomType(identsRow[i]);
161     for (int i = 0; i < nAtomsInCol_; i++)
162     atypesCol[i] = ff_->getAtomType(identsCol[i]);
163    
164 gezelter 1589 pot_row.resize(nAtomsInRow_);
165     pot_col.resize(nAtomsInCol_);
166    
167 gezelter 1591 AtomRowToGlobal.resize(nAtomsInRow_);
168     AtomColToGlobal.resize(nAtomsInCol_);
169 gezelter 1593 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
170     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
171    
172 gezelter 1591 cgRowToGlobal.resize(nGroupsInRow_);
173     cgColToGlobal.resize(nGroupsInCol_);
174 gezelter 1593 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
175     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176 gezelter 1541
177 gezelter 1591 massFactorsRow.resize(nAtomsInRow_);
178     massFactorsCol.resize(nAtomsInCol_);
179 gezelter 1593 AtomPlanRealRow->gather(massFactors, massFactorsRow);
180     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
181 gezelter 1569
182     groupListRow_.clear();
183 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
184 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
185     int gid = cgRowToGlobal[i];
186     for (int j = 0; j < nAtomsInRow_; j++) {
187     int aid = AtomRowToGlobal[j];
188     if (globalGroupMembership[aid] == gid)
189     groupListRow_[i].push_back(j);
190     }
191     }
192    
193     groupListCol_.clear();
194 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
195 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
196     int gid = cgColToGlobal[i];
197     for (int j = 0; j < nAtomsInCol_; j++) {
198     int aid = AtomColToGlobal[j];
199     if (globalGroupMembership[aid] == gid)
200     groupListCol_[i].push_back(j);
201     }
202     }
203    
204 gezelter 1587 excludesForAtom.clear();
205     excludesForAtom.resize(nAtomsInRow_);
206 gezelter 1579 toposForAtom.clear();
207     toposForAtom.resize(nAtomsInRow_);
208     topoDist.clear();
209     topoDist.resize(nAtomsInRow_);
210 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
211 gezelter 1571 int iglob = AtomRowToGlobal[i];
212 gezelter 1579
213 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
214 gezelter 1579 int jglob = AtomColToGlobal[j];
215    
216 gezelter 1587 if (excludes->hasPair(iglob, jglob))
217     excludesForAtom[i].push_back(j);
218 gezelter 1579
219 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
220 gezelter 1579 toposForAtom[i].push_back(j);
221     topoDist[i].push_back(1);
222     } else {
223 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
224 gezelter 1579 toposForAtom[i].push_back(j);
225     topoDist[i].push_back(2);
226     } else {
227 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
228 gezelter 1579 toposForAtom[i].push_back(j);
229     topoDist[i].push_back(3);
230     }
231     }
232 gezelter 1570 }
233     }
234     }
235    
236 gezelter 1613 #else
237 gezelter 1587 excludesForAtom.clear();
238     excludesForAtom.resize(nLocal_);
239 gezelter 1579 toposForAtom.clear();
240     toposForAtom.resize(nLocal_);
241     topoDist.clear();
242     topoDist.resize(nLocal_);
243 gezelter 1569
244 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
245     int iglob = AtomLocalToGlobal[i];
246 gezelter 1579
247 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
248 gezelter 1579 int jglob = AtomLocalToGlobal[j];
249    
250 gezelter 1613 if (excludes->hasPair(iglob, jglob))
251 gezelter 1587 excludesForAtom[i].push_back(j);
252 gezelter 1579
253 gezelter 1613
254 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
255 gezelter 1579 toposForAtom[i].push_back(j);
256     topoDist[i].push_back(1);
257     } else {
258 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
259 gezelter 1579 toposForAtom[i].push_back(j);
260     topoDist[i].push_back(2);
261     } else {
262 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
263 gezelter 1579 toposForAtom[i].push_back(j);
264     topoDist[i].push_back(3);
265     }
266     }
267 gezelter 1570 }
268     }
269 gezelter 1579 }
270 gezelter 1613 #endif
271    
272     // allocate memory for the parallel objects
273     atypesLocal.resize(nLocal_);
274    
275     for (int i = 0; i < nLocal_; i++)
276     atypesLocal[i] = ff_->getAtomType(idents[i]);
277    
278     groupList_.clear();
279     groupList_.resize(nGroups_);
280     for (int i = 0; i < nGroups_; i++) {
281     int gid = cgLocalToGlobal[i];
282     for (int j = 0; j < nLocal_; j++) {
283     int aid = AtomLocalToGlobal[j];
284     if (globalGroupMembership[aid] == gid) {
285     groupList_[i].push_back(j);
286     }
287     }
288     }
289    
290    
291 gezelter 1579 createGtypeCutoffMap();
292 gezelter 1587
293 gezelter 1576 }
294    
295     void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 gezelter 1586
297 gezelter 1576 RealType tol = 1e-6;
298 gezelter 1592 largestRcut_ = 0.0;
299 gezelter 1576 RealType rc;
300     int atid;
301     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 gezelter 1592
303 gezelter 1587 map<int, RealType> atypeCutoff;
304 gezelter 1583
305 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
306     at != atypes.end(); ++at){
307 gezelter 1576 atid = (*at)->getIdent();
308 gezelter 1587 if (userChoseCutoff_)
309 gezelter 1583 atypeCutoff[atid] = userCutoff_;
310 gezelter 1592 else
311 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 gezelter 1570 }
313 gezelter 1592
314 gezelter 1576 vector<RealType> gTypeCutoffs;
315     // first we do a single loop over the cutoff groups to find the
316     // largest cutoff for any atypes present in this group.
317     #ifdef IS_MPI
318     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
320 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321     vector<int> atomListRow = getAtomsInGroupRow(cg1);
322     for (vector<int>::iterator ia = atomListRow.begin();
323     ia != atomListRow.end(); ++ia) {
324     int atom1 = (*ia);
325     atid = identsRow[atom1];
326     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327     groupCutoffRow[cg1] = atypeCutoff[atid];
328     }
329     }
330    
331     bool gTypeFound = false;
332     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334     groupRowToGtype[cg1] = gt;
335     gTypeFound = true;
336     }
337     }
338     if (!gTypeFound) {
339     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341     }
342    
343     }
344     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
346 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348     for (vector<int>::iterator jb = atomListCol.begin();
349     jb != atomListCol.end(); ++jb) {
350     int atom2 = (*jb);
351     atid = identsCol[atom2];
352     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353     groupCutoffCol[cg2] = atypeCutoff[atid];
354     }
355     }
356     bool gTypeFound = false;
357     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359     groupColToGtype[cg2] = gt;
360     gTypeFound = true;
361     }
362     }
363     if (!gTypeFound) {
364     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366     }
367     }
368     #else
369 gezelter 1579
370 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
371 gezelter 1579 groupToGtype.resize(nGroups_);
372 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373     groupCutoff[cg1] = 0.0;
374     vector<int> atomList = getAtomsInGroupRow(cg1);
375     for (vector<int>::iterator ia = atomList.begin();
376     ia != atomList.end(); ++ia) {
377     int atom1 = (*ia);
378 gezelter 1583 atid = idents[atom1];
379 gezelter 1592 if (atypeCutoff[atid] > groupCutoff[cg1])
380 gezelter 1576 groupCutoff[cg1] = atypeCutoff[atid];
381     }
382 gezelter 1592
383 gezelter 1576 bool gTypeFound = false;
384     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386     groupToGtype[cg1] = gt;
387     gTypeFound = true;
388     }
389     }
390 gezelter 1592 if (!gTypeFound) {
391 gezelter 1576 gTypeCutoffs.push_back( groupCutoff[cg1] );
392     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393     }
394     }
395     #endif
396    
397     // Now we find the maximum group cutoff value present in the simulation
398    
399 gezelter 1590 RealType groupMax = *max_element(gTypeCutoffs.begin(),
400     gTypeCutoffs.end());
401 gezelter 1576
402     #ifdef IS_MPI
403 gezelter 1590 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404     MPI::MAX);
405 gezelter 1576 #endif
406    
407     RealType tradRcut = groupMax;
408    
409     for (int i = 0; i < gTypeCutoffs.size(); i++) {
410 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
411 gezelter 1576 RealType thisRcut;
412     switch(cutoffPolicy_) {
413     case TRADITIONAL:
414     thisRcut = tradRcut;
415 gezelter 1579 break;
416 gezelter 1576 case MIX:
417     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 gezelter 1579 break;
419 gezelter 1576 case MAX:
420     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 gezelter 1579 break;
422 gezelter 1576 default:
423     sprintf(painCave.errMsg,
424     "ForceMatrixDecomposition::createGtypeCutoffMap "
425     "hit an unknown cutoff policy!\n");
426     painCave.severity = OPENMD_ERROR;
427     painCave.isFatal = 1;
428 gezelter 1579 simError();
429     break;
430 gezelter 1576 }
431    
432     pair<int,int> key = make_pair(i,j);
433     gTypeCutoffMap[key].first = thisRcut;
434     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435     gTypeCutoffMap[key].second = thisRcut*thisRcut;
436     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437     // sanity check
438    
439     if (userChoseCutoff_) {
440     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441     sprintf(painCave.errMsg,
442     "ForceMatrixDecomposition::createGtypeCutoffMap "
443 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 gezelter 1576 painCave.severity = OPENMD_ERROR;
445     painCave.isFatal = 1;
446     simError();
447     }
448     }
449     }
450     }
451 gezelter 1539 }
452 gezelter 1576
453    
454     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 gezelter 1579 int i, j;
456 gezelter 1576 #ifdef IS_MPI
457     i = groupRowToGtype[cg1];
458     j = groupColToGtype[cg2];
459     #else
460     i = groupToGtype[cg1];
461     j = groupToGtype[cg2];
462 gezelter 1579 #endif
463 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
464     }
465    
466 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468     if (toposForAtom[atom1][j] == atom2)
469     return topoDist[atom1][j];
470     }
471     return 0;
472     }
473 gezelter 1576
474 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
475 gezelter 1583 pairwisePot = 0.0;
476     embeddingPot = 0.0;
477 gezelter 1575
478     #ifdef IS_MPI
479     if (storageLayout_ & DataStorage::dslForce) {
480     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482     }
483    
484     if (storageLayout_ & DataStorage::dslTorque) {
485     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487     }
488    
489     fill(pot_row.begin(), pot_row.end(),
490     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491    
492     fill(pot_col.begin(), pot_col.end(),
493 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
494 gezelter 1575
495     if (storageLayout_ & DataStorage::dslParticlePot) {
496 gezelter 1590 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497     0.0);
498     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499     0.0);
500 gezelter 1575 }
501    
502     if (storageLayout_ & DataStorage::dslDensity) {
503     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505     }
506    
507     if (storageLayout_ & DataStorage::dslFunctional) {
508 gezelter 1590 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509     0.0);
510     fill(atomColData.functional.begin(), atomColData.functional.end(),
511     0.0);
512 gezelter 1575 }
513    
514     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
515     fill(atomRowData.functionalDerivative.begin(),
516     atomRowData.functionalDerivative.end(), 0.0);
517     fill(atomColData.functionalDerivative.begin(),
518     atomColData.functionalDerivative.end(), 0.0);
519     }
520    
521 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
522 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
523     atomRowData.skippedCharge.end(), 0.0);
524     fill(atomColData.skippedCharge.begin(),
525     atomColData.skippedCharge.end(), 0.0);
526 gezelter 1586 }
527    
528 gezelter 1590 #endif
529     // even in parallel, we need to zero out the local arrays:
530    
531 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
532     fill(snap_->atomData.particlePot.begin(),
533     snap_->atomData.particlePot.end(), 0.0);
534     }
535    
536     if (storageLayout_ & DataStorage::dslDensity) {
537     fill(snap_->atomData.density.begin(),
538     snap_->atomData.density.end(), 0.0);
539     }
540     if (storageLayout_ & DataStorage::dslFunctional) {
541     fill(snap_->atomData.functional.begin(),
542     snap_->atomData.functional.end(), 0.0);
543     }
544     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
545     fill(snap_->atomData.functionalDerivative.begin(),
546     snap_->atomData.functionalDerivative.end(), 0.0);
547     }
548 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
549     fill(snap_->atomData.skippedCharge.begin(),
550     snap_->atomData.skippedCharge.end(), 0.0);
551     }
552 gezelter 1575
553     }
554    
555    
556 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
557 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
558     storageLayout_ = sman_->getStorageLayout();
559 chuckv 1538 #ifdef IS_MPI
560 gezelter 1540
561 gezelter 1539 // gather up the atomic positions
562 gezelter 1593 AtomPlanVectorRow->gather(snap_->atomData.position,
563 gezelter 1551 atomRowData.position);
564 gezelter 1593 AtomPlanVectorColumn->gather(snap_->atomData.position,
565 gezelter 1551 atomColData.position);
566 gezelter 1539
567     // gather up the cutoff group positions
568 gezelter 1593
569     cgPlanVectorRow->gather(snap_->cgData.position,
570 gezelter 1551 cgRowData.position);
571 gezelter 1593
572     cgPlanVectorColumn->gather(snap_->cgData.position,
573 gezelter 1551 cgColData.position);
574 gezelter 1593
575 gezelter 1539
576     // if needed, gather the atomic rotation matrices
577 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
578 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
579 gezelter 1551 atomRowData.aMat);
580 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
581 gezelter 1551 atomColData.aMat);
582 gezelter 1539 }
583    
584     // if needed, gather the atomic eletrostatic frames
585 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
586 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
587 gezelter 1551 atomRowData.electroFrame);
588 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
589 gezelter 1551 atomColData.electroFrame);
590 gezelter 1539 }
591 gezelter 1590
592 gezelter 1539 #endif
593     }
594    
595 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
596     * data structures.
597     */
598 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
599 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
600     storageLayout_ = sman_->getStorageLayout();
601 gezelter 1539 #ifdef IS_MPI
602    
603 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
604    
605 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.density,
606 gezelter 1551 snap_->atomData.density);
607    
608     int n = snap_->atomData.density.size();
609 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
610 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
611 gezelter 1539 for (int i = 0; i < n; i++)
612 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
613 gezelter 1539 }
614 chuckv 1538 #endif
615 gezelter 1539 }
616 gezelter 1575
617     /*
618     * redistributes information obtained during the pre-pair loop out to
619     * row and column-indexed data structures
620     */
621 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
622 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
623     storageLayout_ = sman_->getStorageLayout();
624 chuckv 1538 #ifdef IS_MPI
625 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
626 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functional,
627 gezelter 1551 atomRowData.functional);
628 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functional,
629 gezelter 1551 atomColData.functional);
630 gezelter 1539 }
631    
632 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
633 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
634 gezelter 1551 atomRowData.functionalDerivative);
635 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
636 gezelter 1551 atomColData.functionalDerivative);
637 gezelter 1539 }
638 chuckv 1538 #endif
639     }
640 gezelter 1539
641    
642 gezelter 1549 void ForceMatrixDecomposition::collectData() {
643 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
644     storageLayout_ = sman_->getStorageLayout();
645     #ifdef IS_MPI
646     int n = snap_->atomData.force.size();
647 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
648 gezelter 1541
649 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
650 gezelter 1541 for (int i = 0; i < n; i++) {
651 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
652 gezelter 1541 frc_tmp[i] = 0.0;
653     }
654 gezelter 1540
655 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
656     for (int i = 0; i < n; i++) {
657 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
658 gezelter 1593 }
659 gezelter 1590
660 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
661 gezelter 1541
662 gezelter 1587 int nt = snap_->atomData.torque.size();
663 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
664 gezelter 1541
665 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
666 gezelter 1587 for (int i = 0; i < nt; i++) {
667 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
668 gezelter 1541 trq_tmp[i] = 0.0;
669     }
670 gezelter 1540
671 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
672 gezelter 1587 for (int i = 0; i < nt; i++)
673 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
674 gezelter 1540 }
675 gezelter 1587
676     if (storageLayout_ & DataStorage::dslSkippedCharge) {
677    
678     int ns = snap_->atomData.skippedCharge.size();
679     vector<RealType> skch_tmp(ns, 0.0);
680    
681 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
682 gezelter 1587 for (int i = 0; i < ns; i++) {
683 gezelter 1590 snap_->atomData.skippedCharge[i] += skch_tmp[i];
684 gezelter 1587 skch_tmp[i] = 0.0;
685     }
686    
687 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
688 gezelter 1613 for (int i = 0; i < ns; i++)
689 gezelter 1587 snap_->atomData.skippedCharge[i] += skch_tmp[i];
690 gezelter 1613
691 gezelter 1587 }
692 gezelter 1540
693 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
694 gezelter 1544
695 gezelter 1575 vector<potVec> pot_temp(nLocal_,
696     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
697    
698     // scatter/gather pot_row into the members of my column
699    
700 gezelter 1593 AtomPlanPotRow->scatter(pot_row, pot_temp);
701 gezelter 1575
702     for (int ii = 0; ii < pot_temp.size(); ii++ )
703 gezelter 1583 pairwisePot += pot_temp[ii];
704 gezelter 1540
705 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
706     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
707    
708 gezelter 1593 AtomPlanPotColumn->scatter(pot_col, pot_temp);
709 gezelter 1575
710     for (int ii = 0; ii < pot_temp.size(); ii++ )
711 gezelter 1583 pairwisePot += pot_temp[ii];
712 gezelter 1601
713     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
714     RealType ploc1 = pairwisePot[ii];
715     RealType ploc2 = 0.0;
716     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
717     pairwisePot[ii] = ploc2;
718     }
719    
720 gezelter 1613 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
721     RealType ploc1 = embeddingPot[ii];
722     RealType ploc2 = 0.0;
723     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
724     embeddingPot[ii] = ploc2;
725     }
726    
727 gezelter 1539 #endif
728 gezelter 1583
729 chuckv 1538 }
730 gezelter 1551
731 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
732     #ifdef IS_MPI
733     return nAtomsInRow_;
734     #else
735     return nLocal_;
736     #endif
737     }
738    
739 gezelter 1569 /**
740     * returns the list of atoms belonging to this group.
741     */
742     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
743     #ifdef IS_MPI
744     return groupListRow_[cg1];
745     #else
746     return groupList_[cg1];
747     #endif
748     }
749    
750     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
751     #ifdef IS_MPI
752     return groupListCol_[cg2];
753     #else
754     return groupList_[cg2];
755     #endif
756     }
757 chuckv 1538
758 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
759     Vector3d d;
760    
761     #ifdef IS_MPI
762     d = cgColData.position[cg2] - cgRowData.position[cg1];
763     #else
764     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
765     #endif
766    
767     snap_->wrapVector(d);
768     return d;
769     }
770    
771    
772     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
773    
774     Vector3d d;
775    
776     #ifdef IS_MPI
777     d = cgRowData.position[cg1] - atomRowData.position[atom1];
778     #else
779     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
780     #endif
781    
782     snap_->wrapVector(d);
783     return d;
784     }
785    
786     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
787     Vector3d d;
788    
789     #ifdef IS_MPI
790     d = cgColData.position[cg2] - atomColData.position[atom2];
791     #else
792     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
793     #endif
794    
795     snap_->wrapVector(d);
796     return d;
797     }
798 gezelter 1569
799     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
800     #ifdef IS_MPI
801     return massFactorsRow[atom1];
802     #else
803 gezelter 1581 return massFactors[atom1];
804 gezelter 1569 #endif
805     }
806    
807     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
808     #ifdef IS_MPI
809     return massFactorsCol[atom2];
810     #else
811 gezelter 1581 return massFactors[atom2];
812 gezelter 1569 #endif
813    
814     }
815 gezelter 1551
816     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
817     Vector3d d;
818    
819     #ifdef IS_MPI
820     d = atomColData.position[atom2] - atomRowData.position[atom1];
821     #else
822     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
823     #endif
824    
825     snap_->wrapVector(d);
826     return d;
827     }
828    
829 gezelter 1587 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
830     return excludesForAtom[atom1];
831 gezelter 1570 }
832    
833     /**
834 gezelter 1587 * We need to exclude some overcounted interactions that result from
835 gezelter 1575 * the parallel decomposition.
836 gezelter 1570 */
837     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
838     int unique_id_1, unique_id_2;
839 gezelter 1593
840 gezelter 1570 #ifdef IS_MPI
841     // in MPI, we have to look up the unique IDs for each atom
842     unique_id_1 = AtomRowToGlobal[atom1];
843     unique_id_2 = AtomColToGlobal[atom2];
844    
845     // this situation should only arise in MPI simulations
846     if (unique_id_1 == unique_id_2) return true;
847    
848     // this prevents us from doing the pair on multiple processors
849     if (unique_id_1 < unique_id_2) {
850     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
851     } else {
852     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
853     }
854 gezelter 1587 #endif
855     return false;
856     }
857    
858     /**
859     * We need to handle the interactions for atoms who are involved in
860     * the same rigid body as well as some short range interactions
861     * (bonds, bends, torsions) differently from other interactions.
862     * We'll still visit the pairwise routines, but with a flag that
863     * tells those routines to exclude the pair from direct long range
864     * interactions. Some indirect interactions (notably reaction
865     * field) must still be handled for these pairs.
866     */
867     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
868 gezelter 1613
869     // excludesForAtom was constructed to use row/column indices in the MPI
870     // version, and to use local IDs in the non-MPI version:
871 gezelter 1570
872 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
873     i != excludesForAtom[atom1].end(); ++i) {
874 gezelter 1613 if ( (*i) == atom2 ) return true;
875 gezelter 1583 }
876 gezelter 1579
877 gezelter 1583 return false;
878 gezelter 1570 }
879    
880    
881 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
882     #ifdef IS_MPI
883     atomRowData.force[atom1] += fg;
884     #else
885     snap_->atomData.force[atom1] += fg;
886     #endif
887     }
888    
889     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
890     #ifdef IS_MPI
891     atomColData.force[atom2] += fg;
892     #else
893     snap_->atomData.force[atom2] += fg;
894     #endif
895     }
896    
897     // filling interaction blocks with pointers
898 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
899 gezelter 1587 int atom1, int atom2) {
900    
901     idat.excluded = excludeAtomPair(atom1, atom2);
902    
903 gezelter 1551 #ifdef IS_MPI
904 gezelter 1591 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
905     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
906     // ff_->getAtomType(identsCol[atom2]) );
907 gezelter 1571
908 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
909 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
910     idat.A2 = &(atomColData.aMat[atom2]);
911 gezelter 1551 }
912 gezelter 1567
913 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
914 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
915     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
916 gezelter 1551 }
917    
918     if (storageLayout_ & DataStorage::dslTorque) {
919 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
920     idat.t2 = &(atomColData.torque[atom2]);
921 gezelter 1551 }
922    
923     if (storageLayout_ & DataStorage::dslDensity) {
924 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
925     idat.rho2 = &(atomColData.density[atom2]);
926 gezelter 1551 }
927    
928 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
929     idat.frho1 = &(atomRowData.functional[atom1]);
930     idat.frho2 = &(atomColData.functional[atom2]);
931     }
932    
933 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
934 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
935     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
936 gezelter 1551 }
937 gezelter 1570
938 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
939     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
940     idat.particlePot2 = &(atomColData.particlePot[atom2]);
941     }
942    
943 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
944     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
945     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
946     }
947    
948 gezelter 1562 #else
949 gezelter 1571
950 gezelter 1591 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
951     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
952     // ff_->getAtomType(idents[atom2]) );
953 gezelter 1571
954 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
955     idat.A1 = &(snap_->atomData.aMat[atom1]);
956     idat.A2 = &(snap_->atomData.aMat[atom2]);
957     }
958    
959     if (storageLayout_ & DataStorage::dslElectroFrame) {
960     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
961     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
962     }
963    
964     if (storageLayout_ & DataStorage::dslTorque) {
965     idat.t1 = &(snap_->atomData.torque[atom1]);
966     idat.t2 = &(snap_->atomData.torque[atom2]);
967     }
968    
969 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
970 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
971     idat.rho2 = &(snap_->atomData.density[atom2]);
972     }
973    
974 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
975     idat.frho1 = &(snap_->atomData.functional[atom1]);
976     idat.frho2 = &(snap_->atomData.functional[atom2]);
977     }
978    
979 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
980     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
981     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
982     }
983 gezelter 1575
984     if (storageLayout_ & DataStorage::dslParticlePot) {
985     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
986     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
987     }
988    
989 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
990     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
991     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
992     }
993 gezelter 1551 #endif
994     }
995 gezelter 1567
996 gezelter 1575
997 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
998 gezelter 1575 #ifdef IS_MPI
999     pot_row[atom1] += 0.5 * *(idat.pot);
1000     pot_col[atom2] += 0.5 * *(idat.pot);
1001    
1002     atomRowData.force[atom1] += *(idat.f1);
1003     atomColData.force[atom2] -= *(idat.f1);
1004     #else
1005 gezelter 1583 pairwisePot += *(idat.pot);
1006    
1007 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
1008     snap_->atomData.force[atom2] -= *(idat.f1);
1009     #endif
1010 gezelter 1586
1011 gezelter 1575 }
1012    
1013 gezelter 1562 /*
1014     * buildNeighborList
1015     *
1016     * first element of pair is row-indexed CutoffGroup
1017     * second element of pair is column-indexed CutoffGroup
1018     */
1019 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1020    
1021     vector<pair<int, int> > neighborList;
1022 gezelter 1576 groupCutoffs cuts;
1023 gezelter 1587 bool doAllPairs = false;
1024    
1025 gezelter 1567 #ifdef IS_MPI
1026 gezelter 1568 cellListRow_.clear();
1027     cellListCol_.clear();
1028 gezelter 1567 #else
1029 gezelter 1568 cellList_.clear();
1030 gezelter 1567 #endif
1031 gezelter 1562
1032 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
1033 gezelter 1567 RealType rl2 = rList_ * rList_;
1034     Snapshot* snap_ = sman_->getCurrentSnapshot();
1035 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
1036     Vector3d Hx = Hmat.getColumn(0);
1037     Vector3d Hy = Hmat.getColumn(1);
1038     Vector3d Hz = Hmat.getColumn(2);
1039    
1040 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
1041     nCells_.y() = (int) ( Hy.length() )/ rList_;
1042     nCells_.z() = (int) ( Hz.length() )/ rList_;
1043 gezelter 1562
1044 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
1045    
1046     if (nCells_.x() < 3) doAllPairs = true;
1047     if (nCells_.y() < 3) doAllPairs = true;
1048     if (nCells_.z() < 3) doAllPairs = true;
1049    
1050 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
1051     Vector3d rs, scaled, dr;
1052     Vector3i whichCell;
1053     int cellIndex;
1054 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1055 gezelter 1567
1056     #ifdef IS_MPI
1057 gezelter 1579 cellListRow_.resize(nCtot);
1058     cellListCol_.resize(nCtot);
1059     #else
1060     cellList_.resize(nCtot);
1061     #endif
1062 gezelter 1582
1063 gezelter 1587 if (!doAllPairs) {
1064 gezelter 1579 #ifdef IS_MPI
1065 gezelter 1581
1066 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
1067     rs = cgRowData.position[i];
1068    
1069     // scaled positions relative to the box vectors
1070     scaled = invHmat * rs;
1071    
1072     // wrap the vector back into the unit box by subtracting integer box
1073     // numbers
1074     for (int j = 0; j < 3; j++) {
1075     scaled[j] -= roundMe(scaled[j]);
1076     scaled[j] += 0.5;
1077     }
1078    
1079     // find xyz-indices of cell that cutoffGroup is in.
1080     whichCell.x() = nCells_.x() * scaled.x();
1081     whichCell.y() = nCells_.y() * scaled.y();
1082     whichCell.z() = nCells_.z() * scaled.z();
1083    
1084     // find single index of this cell:
1085     cellIndex = Vlinear(whichCell, nCells_);
1086    
1087     // add this cutoff group to the list of groups in this cell;
1088     cellListRow_[cellIndex].push_back(i);
1089 gezelter 1581 }
1090 gezelter 1587 for (int i = 0; i < nGroupsInCol_; i++) {
1091     rs = cgColData.position[i];
1092    
1093     // scaled positions relative to the box vectors
1094     scaled = invHmat * rs;
1095    
1096     // wrap the vector back into the unit box by subtracting integer box
1097     // numbers
1098     for (int j = 0; j < 3; j++) {
1099     scaled[j] -= roundMe(scaled[j]);
1100     scaled[j] += 0.5;
1101     }
1102    
1103     // find xyz-indices of cell that cutoffGroup is in.
1104     whichCell.x() = nCells_.x() * scaled.x();
1105     whichCell.y() = nCells_.y() * scaled.y();
1106     whichCell.z() = nCells_.z() * scaled.z();
1107    
1108     // find single index of this cell:
1109     cellIndex = Vlinear(whichCell, nCells_);
1110    
1111     // add this cutoff group to the list of groups in this cell;
1112     cellListCol_[cellIndex].push_back(i);
1113 gezelter 1581 }
1114 gezelter 1612
1115 gezelter 1567 #else
1116 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1117     rs = snap_->cgData.position[i];
1118    
1119     // scaled positions relative to the box vectors
1120     scaled = invHmat * rs;
1121    
1122     // wrap the vector back into the unit box by subtracting integer box
1123     // numbers
1124     for (int j = 0; j < 3; j++) {
1125     scaled[j] -= roundMe(scaled[j]);
1126     scaled[j] += 0.5;
1127     }
1128    
1129     // find xyz-indices of cell that cutoffGroup is in.
1130     whichCell.x() = nCells_.x() * scaled.x();
1131     whichCell.y() = nCells_.y() * scaled.y();
1132     whichCell.z() = nCells_.z() * scaled.z();
1133    
1134     // find single index of this cell:
1135 gezelter 1593 cellIndex = Vlinear(whichCell, nCells_);
1136 gezelter 1587
1137     // add this cutoff group to the list of groups in this cell;
1138     cellList_[cellIndex].push_back(i);
1139 gezelter 1581 }
1140 gezelter 1612
1141 gezelter 1567 #endif
1142    
1143 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1144     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1145     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1146     Vector3i m1v(m1x, m1y, m1z);
1147     int m1 = Vlinear(m1v, nCells_);
1148 gezelter 1568
1149 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1150     os != cellOffsets_.end(); ++os) {
1151    
1152     Vector3i m2v = m1v + (*os);
1153 gezelter 1612
1154    
1155 gezelter 1587 if (m2v.x() >= nCells_.x()) {
1156     m2v.x() = 0;
1157     } else if (m2v.x() < 0) {
1158     m2v.x() = nCells_.x() - 1;
1159     }
1160    
1161     if (m2v.y() >= nCells_.y()) {
1162     m2v.y() = 0;
1163     } else if (m2v.y() < 0) {
1164     m2v.y() = nCells_.y() - 1;
1165     }
1166    
1167     if (m2v.z() >= nCells_.z()) {
1168     m2v.z() = 0;
1169     } else if (m2v.z() < 0) {
1170     m2v.z() = nCells_.z() - 1;
1171     }
1172 gezelter 1612
1173 gezelter 1587 int m2 = Vlinear (m2v, nCells_);
1174    
1175 gezelter 1567 #ifdef IS_MPI
1176 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1177     j1 != cellListRow_[m1].end(); ++j1) {
1178     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1179     j2 != cellListCol_[m2].end(); ++j2) {
1180    
1181 gezelter 1612 // In parallel, we need to visit *all* pairs of row
1182     // & column indicies and will divide labor in the
1183     // force evaluation later.
1184 gezelter 1593 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1185     snap_->wrapVector(dr);
1186     cuts = getGroupCutoffs( (*j1), (*j2) );
1187     if (dr.lengthSquare() < cuts.third) {
1188     neighborList.push_back(make_pair((*j1), (*j2)));
1189     }
1190 gezelter 1562 }
1191     }
1192 gezelter 1567 #else
1193 gezelter 1587
1194     for (vector<int>::iterator j1 = cellList_[m1].begin();
1195     j1 != cellList_[m1].end(); ++j1) {
1196     for (vector<int>::iterator j2 = cellList_[m2].begin();
1197     j2 != cellList_[m2].end(); ++j2) {
1198    
1199     // Always do this if we're in different cells or if
1200     // we're in the same cell and the global index of the
1201     // j2 cutoff group is less than the j1 cutoff group
1202    
1203     if (m2 != m1 || (*j2) < (*j1)) {
1204     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1205     snap_->wrapVector(dr);
1206     cuts = getGroupCutoffs( (*j1), (*j2) );
1207     if (dr.lengthSquare() < cuts.third) {
1208     neighborList.push_back(make_pair((*j1), (*j2)));
1209     }
1210 gezelter 1567 }
1211     }
1212     }
1213 gezelter 1587 #endif
1214 gezelter 1567 }
1215 gezelter 1562 }
1216     }
1217     }
1218 gezelter 1587 } else {
1219     // branch to do all cutoff group pairs
1220     #ifdef IS_MPI
1221     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1222     for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1223     dr = cgColData.position[j2] - cgRowData.position[j1];
1224     snap_->wrapVector(dr);
1225     cuts = getGroupCutoffs( j1, j2 );
1226     if (dr.lengthSquare() < cuts.third) {
1227     neighborList.push_back(make_pair(j1, j2));
1228     }
1229     }
1230     }
1231     #else
1232     for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1233     for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1234     dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1235     snap_->wrapVector(dr);
1236     cuts = getGroupCutoffs( j1, j2 );
1237     if (dr.lengthSquare() < cuts.third) {
1238     neighborList.push_back(make_pair(j1, j2));
1239     }
1240     }
1241     }
1242     #endif
1243 gezelter 1562 }
1244 gezelter 1587
1245 gezelter 1568 // save the local cutoff group positions for the check that is
1246     // done on each loop:
1247     saved_CG_positions_.clear();
1248     for (int i = 0; i < nGroups_; i++)
1249     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1250 gezelter 1587
1251 gezelter 1567 return neighborList;
1252 gezelter 1562 }
1253 gezelter 1539 } //end namespace OpenMD