ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1612
Committed: Fri Aug 12 19:59:56 2011 UTC (13 years, 8 months ago) by gezelter
File size: 41745 byte(s)
Log Message:
fixed an offset bug causing problems in MPI

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1593 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51    
52     // In a parallel computation, row and colum scans must visit all
53     // surrounding cells (not just the 14 upper triangular blocks that
54     // are used when the processor can see all pairs)
55     #ifdef IS_MPI
56 gezelter 1612 cellOffsets_.clear();
57     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
58     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
59     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
60     cellOffsets_.push_back( Vector3i(-1, 0,-1) );
61     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
63     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
64     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
65     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
66 gezelter 1593 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
67     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
68     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
69 gezelter 1612 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
70     cellOffsets_.push_back( Vector3i( 0, 0, 0) );
71     cellOffsets_.push_back( Vector3i( 1, 0, 0) );
72     cellOffsets_.push_back( Vector3i(-1, 1, 0) );
73     cellOffsets_.push_back( Vector3i( 0, 1, 0) );
74     cellOffsets_.push_back( Vector3i( 1, 1, 0) );
75     cellOffsets_.push_back( Vector3i(-1,-1, 1) );
76     cellOffsets_.push_back( Vector3i( 0,-1, 1) );
77     cellOffsets_.push_back( Vector3i( 1,-1, 1) );
78 gezelter 1593 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
79 gezelter 1612 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
80     cellOffsets_.push_back( Vector3i( 1, 0, 1) );
81     cellOffsets_.push_back( Vector3i(-1, 1, 1) );
82     cellOffsets_.push_back( Vector3i( 0, 1, 1) );
83     cellOffsets_.push_back( Vector3i( 1, 1, 1) );
84 gezelter 1593 #endif
85     }
86    
87    
88 gezelter 1544 /**
89     * distributeInitialData is essentially a copy of the older fortran
90     * SimulationSetup
91     */
92 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
93 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
94     storageLayout_ = sman_->getStorageLayout();
95 gezelter 1571 ff_ = info_->getForceField();
96 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
97 gezelter 1587
98 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
99 gezelter 1569 // gather the information for atomtype IDs (atids):
100 gezelter 1583 idents = info_->getIdentArray();
101 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
102     cgLocalToGlobal = info_->getGlobalGroupIndices();
103     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
104 gezelter 1586
105 gezelter 1581 massFactors = info_->getMassFactors();
106 gezelter 1584
107 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
108     PairList* oneTwo = info_->getOneTwoInteractions();
109     PairList* oneThree = info_->getOneThreeInteractions();
110     PairList* oneFour = info_->getOneFourInteractions();
111 gezelter 1569
112 gezelter 1567 #ifdef IS_MPI
113    
114 gezelter 1593 MPI::Intracomm row = rowComm.getComm();
115     MPI::Intracomm col = colComm.getComm();
116 chuckv 1538
117 gezelter 1593 AtomPlanIntRow = new Plan<int>(row, nLocal_);
118     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
119     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
120     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
121     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
122 gezelter 1541
123 gezelter 1593 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
124     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
125     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
126     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
127     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
128 gezelter 1551
129 gezelter 1593 cgPlanIntRow = new Plan<int>(row, nGroups_);
130     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
131     cgPlanIntColumn = new Plan<int>(col, nGroups_);
132     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
133 gezelter 1567
134 gezelter 1593 nAtomsInRow_ = AtomPlanIntRow->getSize();
135     nAtomsInCol_ = AtomPlanIntColumn->getSize();
136     nGroupsInRow_ = cgPlanIntRow->getSize();
137     nGroupsInCol_ = cgPlanIntColumn->getSize();
138    
139 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
140 gezelter 1567 atomRowData.resize(nAtomsInRow_);
141 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
142 gezelter 1567 atomColData.resize(nAtomsInCol_);
143 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
144 gezelter 1567 cgRowData.resize(nGroupsInRow_);
145 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
146 gezelter 1567 cgColData.resize(nGroupsInCol_);
147 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
148 gezelter 1575
149 gezelter 1577 identsRow.resize(nAtomsInRow_);
150     identsCol.resize(nAtomsInCol_);
151 gezelter 1549
152 gezelter 1593 AtomPlanIntRow->gather(idents, identsRow);
153     AtomPlanIntColumn->gather(idents, identsCol);
154 gezelter 1549
155 gezelter 1589 // allocate memory for the parallel objects
156 gezelter 1591 atypesRow.resize(nAtomsInRow_);
157     atypesCol.resize(nAtomsInCol_);
158    
159     for (int i = 0; i < nAtomsInRow_; i++)
160     atypesRow[i] = ff_->getAtomType(identsRow[i]);
161     for (int i = 0; i < nAtomsInCol_; i++)
162     atypesCol[i] = ff_->getAtomType(identsCol[i]);
163    
164 gezelter 1589 pot_row.resize(nAtomsInRow_);
165     pot_col.resize(nAtomsInCol_);
166    
167 gezelter 1591 AtomRowToGlobal.resize(nAtomsInRow_);
168     AtomColToGlobal.resize(nAtomsInCol_);
169 gezelter 1593 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
170     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
171    
172 gezelter 1591 cgRowToGlobal.resize(nGroupsInRow_);
173     cgColToGlobal.resize(nGroupsInCol_);
174 gezelter 1593 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
175     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
176 gezelter 1541
177 gezelter 1591 massFactorsRow.resize(nAtomsInRow_);
178     massFactorsCol.resize(nAtomsInCol_);
179 gezelter 1593 AtomPlanRealRow->gather(massFactors, massFactorsRow);
180     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
181 gezelter 1569
182     groupListRow_.clear();
183 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
184 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
185     int gid = cgRowToGlobal[i];
186     for (int j = 0; j < nAtomsInRow_; j++) {
187     int aid = AtomRowToGlobal[j];
188     if (globalGroupMembership[aid] == gid)
189     groupListRow_[i].push_back(j);
190     }
191     }
192    
193     groupListCol_.clear();
194 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
195 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
196     int gid = cgColToGlobal[i];
197     for (int j = 0; j < nAtomsInCol_; j++) {
198     int aid = AtomColToGlobal[j];
199     if (globalGroupMembership[aid] == gid)
200     groupListCol_[i].push_back(j);
201     }
202     }
203    
204 gezelter 1587 excludesForAtom.clear();
205     excludesForAtom.resize(nAtomsInRow_);
206 gezelter 1579 toposForAtom.clear();
207     toposForAtom.resize(nAtomsInRow_);
208     topoDist.clear();
209     topoDist.resize(nAtomsInRow_);
210 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
211 gezelter 1571 int iglob = AtomRowToGlobal[i];
212 gezelter 1579
213 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
214 gezelter 1579 int jglob = AtomColToGlobal[j];
215    
216 gezelter 1587 if (excludes->hasPair(iglob, jglob))
217     excludesForAtom[i].push_back(j);
218 gezelter 1579
219 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
220 gezelter 1579 toposForAtom[i].push_back(j);
221     topoDist[i].push_back(1);
222     } else {
223 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
224 gezelter 1579 toposForAtom[i].push_back(j);
225     topoDist[i].push_back(2);
226     } else {
227 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
228 gezelter 1579 toposForAtom[i].push_back(j);
229     topoDist[i].push_back(3);
230     }
231     }
232 gezelter 1570 }
233     }
234     }
235    
236 gezelter 1569 #endif
237 gezelter 1579
238 gezelter 1591 // allocate memory for the parallel objects
239     atypesLocal.resize(nLocal_);
240    
241     for (int i = 0; i < nLocal_; i++)
242     atypesLocal[i] = ff_->getAtomType(idents[i]);
243    
244 gezelter 1569 groupList_.clear();
245 gezelter 1577 groupList_.resize(nGroups_);
246 gezelter 1569 for (int i = 0; i < nGroups_; i++) {
247     int gid = cgLocalToGlobal[i];
248     for (int j = 0; j < nLocal_; j++) {
249     int aid = AtomLocalToGlobal[j];
250 gezelter 1577 if (globalGroupMembership[aid] == gid) {
251 gezelter 1569 groupList_[i].push_back(j);
252 gezelter 1577 }
253 gezelter 1569 }
254     }
255    
256 gezelter 1587 excludesForAtom.clear();
257     excludesForAtom.resize(nLocal_);
258 gezelter 1579 toposForAtom.clear();
259     toposForAtom.resize(nLocal_);
260     topoDist.clear();
261     topoDist.resize(nLocal_);
262 gezelter 1569
263 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
264     int iglob = AtomLocalToGlobal[i];
265 gezelter 1579
266 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
267 gezelter 1579 int jglob = AtomLocalToGlobal[j];
268    
269 gezelter 1587 if (excludes->hasPair(iglob, jglob))
270     excludesForAtom[i].push_back(j);
271 gezelter 1579
272 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
273 gezelter 1579 toposForAtom[i].push_back(j);
274     topoDist[i].push_back(1);
275     } else {
276 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
277 gezelter 1579 toposForAtom[i].push_back(j);
278     topoDist[i].push_back(2);
279     } else {
280 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
281 gezelter 1579 toposForAtom[i].push_back(j);
282     topoDist[i].push_back(3);
283     }
284     }
285 gezelter 1570 }
286     }
287 gezelter 1579 }
288    
289     createGtypeCutoffMap();
290 gezelter 1587
291 gezelter 1576 }
292    
293     void ForceMatrixDecomposition::createGtypeCutoffMap() {
294 gezelter 1586
295 gezelter 1576 RealType tol = 1e-6;
296 gezelter 1592 largestRcut_ = 0.0;
297 gezelter 1576 RealType rc;
298     int atid;
299     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
300 gezelter 1592
301 gezelter 1587 map<int, RealType> atypeCutoff;
302 gezelter 1583
303 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
304     at != atypes.end(); ++at){
305 gezelter 1576 atid = (*at)->getIdent();
306 gezelter 1587 if (userChoseCutoff_)
307 gezelter 1583 atypeCutoff[atid] = userCutoff_;
308 gezelter 1592 else
309 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
310 gezelter 1570 }
311 gezelter 1592
312 gezelter 1576 vector<RealType> gTypeCutoffs;
313     // first we do a single loop over the cutoff groups to find the
314     // largest cutoff for any atypes present in this group.
315     #ifdef IS_MPI
316     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
317 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
318 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
319     vector<int> atomListRow = getAtomsInGroupRow(cg1);
320     for (vector<int>::iterator ia = atomListRow.begin();
321     ia != atomListRow.end(); ++ia) {
322     int atom1 = (*ia);
323     atid = identsRow[atom1];
324     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
325     groupCutoffRow[cg1] = atypeCutoff[atid];
326     }
327     }
328    
329     bool gTypeFound = false;
330     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
331     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
332     groupRowToGtype[cg1] = gt;
333     gTypeFound = true;
334     }
335     }
336     if (!gTypeFound) {
337     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
338     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
339     }
340    
341     }
342     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
343 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
344 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
345     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
346     for (vector<int>::iterator jb = atomListCol.begin();
347     jb != atomListCol.end(); ++jb) {
348     int atom2 = (*jb);
349     atid = identsCol[atom2];
350     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
351     groupCutoffCol[cg2] = atypeCutoff[atid];
352     }
353     }
354     bool gTypeFound = false;
355     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
356     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
357     groupColToGtype[cg2] = gt;
358     gTypeFound = true;
359     }
360     }
361     if (!gTypeFound) {
362     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
363     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
364     }
365     }
366     #else
367 gezelter 1579
368 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
369 gezelter 1579 groupToGtype.resize(nGroups_);
370 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
371     groupCutoff[cg1] = 0.0;
372     vector<int> atomList = getAtomsInGroupRow(cg1);
373     for (vector<int>::iterator ia = atomList.begin();
374     ia != atomList.end(); ++ia) {
375     int atom1 = (*ia);
376 gezelter 1583 atid = idents[atom1];
377 gezelter 1592 if (atypeCutoff[atid] > groupCutoff[cg1])
378 gezelter 1576 groupCutoff[cg1] = atypeCutoff[atid];
379     }
380 gezelter 1592
381 gezelter 1576 bool gTypeFound = false;
382     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
383     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
384     groupToGtype[cg1] = gt;
385     gTypeFound = true;
386     }
387     }
388 gezelter 1592 if (!gTypeFound) {
389 gezelter 1576 gTypeCutoffs.push_back( groupCutoff[cg1] );
390     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
391     }
392     }
393     #endif
394    
395     // Now we find the maximum group cutoff value present in the simulation
396    
397 gezelter 1590 RealType groupMax = *max_element(gTypeCutoffs.begin(),
398     gTypeCutoffs.end());
399 gezelter 1576
400     #ifdef IS_MPI
401 gezelter 1590 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
402     MPI::MAX);
403 gezelter 1576 #endif
404    
405     RealType tradRcut = groupMax;
406    
407     for (int i = 0; i < gTypeCutoffs.size(); i++) {
408 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
409 gezelter 1576 RealType thisRcut;
410     switch(cutoffPolicy_) {
411     case TRADITIONAL:
412     thisRcut = tradRcut;
413 gezelter 1579 break;
414 gezelter 1576 case MIX:
415     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
416 gezelter 1579 break;
417 gezelter 1576 case MAX:
418     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
419 gezelter 1579 break;
420 gezelter 1576 default:
421     sprintf(painCave.errMsg,
422     "ForceMatrixDecomposition::createGtypeCutoffMap "
423     "hit an unknown cutoff policy!\n");
424     painCave.severity = OPENMD_ERROR;
425     painCave.isFatal = 1;
426 gezelter 1579 simError();
427     break;
428 gezelter 1576 }
429    
430     pair<int,int> key = make_pair(i,j);
431     gTypeCutoffMap[key].first = thisRcut;
432     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
433     gTypeCutoffMap[key].second = thisRcut*thisRcut;
434     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
435     // sanity check
436    
437     if (userChoseCutoff_) {
438     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
439     sprintf(painCave.errMsg,
440     "ForceMatrixDecomposition::createGtypeCutoffMap "
441 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
442 gezelter 1576 painCave.severity = OPENMD_ERROR;
443     painCave.isFatal = 1;
444     simError();
445     }
446     }
447     }
448     }
449 gezelter 1539 }
450 gezelter 1576
451    
452     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
453 gezelter 1579 int i, j;
454 gezelter 1576 #ifdef IS_MPI
455     i = groupRowToGtype[cg1];
456     j = groupColToGtype[cg2];
457     #else
458     i = groupToGtype[cg1];
459     j = groupToGtype[cg2];
460 gezelter 1579 #endif
461 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
462     }
463    
464 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
465     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
466     if (toposForAtom[atom1][j] == atom2)
467     return topoDist[atom1][j];
468     }
469     return 0;
470     }
471 gezelter 1576
472 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
473 gezelter 1583 pairwisePot = 0.0;
474     embeddingPot = 0.0;
475 gezelter 1575
476     #ifdef IS_MPI
477     if (storageLayout_ & DataStorage::dslForce) {
478     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
479     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
480     }
481    
482     if (storageLayout_ & DataStorage::dslTorque) {
483     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
484     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
485     }
486    
487     fill(pot_row.begin(), pot_row.end(),
488     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
489    
490     fill(pot_col.begin(), pot_col.end(),
491 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
492 gezelter 1575
493     if (storageLayout_ & DataStorage::dslParticlePot) {
494 gezelter 1590 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
495     0.0);
496     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
497     0.0);
498 gezelter 1575 }
499    
500     if (storageLayout_ & DataStorage::dslDensity) {
501     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
502     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
503     }
504    
505     if (storageLayout_ & DataStorage::dslFunctional) {
506 gezelter 1590 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
507     0.0);
508     fill(atomColData.functional.begin(), atomColData.functional.end(),
509     0.0);
510 gezelter 1575 }
511    
512     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
513     fill(atomRowData.functionalDerivative.begin(),
514     atomRowData.functionalDerivative.end(), 0.0);
515     fill(atomColData.functionalDerivative.begin(),
516     atomColData.functionalDerivative.end(), 0.0);
517     }
518    
519 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
520 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
521     atomRowData.skippedCharge.end(), 0.0);
522     fill(atomColData.skippedCharge.begin(),
523     atomColData.skippedCharge.end(), 0.0);
524 gezelter 1586 }
525    
526 gezelter 1590 #endif
527     // even in parallel, we need to zero out the local arrays:
528    
529 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
530     fill(snap_->atomData.particlePot.begin(),
531     snap_->atomData.particlePot.end(), 0.0);
532     }
533    
534     if (storageLayout_ & DataStorage::dslDensity) {
535     fill(snap_->atomData.density.begin(),
536     snap_->atomData.density.end(), 0.0);
537     }
538     if (storageLayout_ & DataStorage::dslFunctional) {
539     fill(snap_->atomData.functional.begin(),
540     snap_->atomData.functional.end(), 0.0);
541     }
542     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
543     fill(snap_->atomData.functionalDerivative.begin(),
544     snap_->atomData.functionalDerivative.end(), 0.0);
545     }
546 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
547     fill(snap_->atomData.skippedCharge.begin(),
548     snap_->atomData.skippedCharge.end(), 0.0);
549     }
550 gezelter 1575
551     }
552    
553    
554 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
555 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
556     storageLayout_ = sman_->getStorageLayout();
557 chuckv 1538 #ifdef IS_MPI
558 gezelter 1540
559 gezelter 1539 // gather up the atomic positions
560 gezelter 1593 AtomPlanVectorRow->gather(snap_->atomData.position,
561 gezelter 1551 atomRowData.position);
562 gezelter 1593 AtomPlanVectorColumn->gather(snap_->atomData.position,
563 gezelter 1551 atomColData.position);
564 gezelter 1539
565     // gather up the cutoff group positions
566 gezelter 1593
567     cgPlanVectorRow->gather(snap_->cgData.position,
568 gezelter 1551 cgRowData.position);
569 gezelter 1593
570     cgPlanVectorColumn->gather(snap_->cgData.position,
571 gezelter 1551 cgColData.position);
572 gezelter 1593
573 gezelter 1539
574     // if needed, gather the atomic rotation matrices
575 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
576 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
577 gezelter 1551 atomRowData.aMat);
578 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
579 gezelter 1551 atomColData.aMat);
580 gezelter 1539 }
581    
582     // if needed, gather the atomic eletrostatic frames
583 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
584 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
585 gezelter 1551 atomRowData.electroFrame);
586 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
587 gezelter 1551 atomColData.electroFrame);
588 gezelter 1539 }
589 gezelter 1590
590 gezelter 1539 #endif
591     }
592    
593 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
594     * data structures.
595     */
596 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
597 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
598     storageLayout_ = sman_->getStorageLayout();
599 gezelter 1539 #ifdef IS_MPI
600    
601 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
602    
603 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.density,
604 gezelter 1551 snap_->atomData.density);
605    
606     int n = snap_->atomData.density.size();
607 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
608 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
609 gezelter 1539 for (int i = 0; i < n; i++)
610 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
611 gezelter 1539 }
612 chuckv 1538 #endif
613 gezelter 1539 }
614 gezelter 1575
615     /*
616     * redistributes information obtained during the pre-pair loop out to
617     * row and column-indexed data structures
618     */
619 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
620 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
621     storageLayout_ = sman_->getStorageLayout();
622 chuckv 1538 #ifdef IS_MPI
623 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
624 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functional,
625 gezelter 1551 atomRowData.functional);
626 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functional,
627 gezelter 1551 atomColData.functional);
628 gezelter 1539 }
629    
630 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
631 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
632 gezelter 1551 atomRowData.functionalDerivative);
633 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
634 gezelter 1551 atomColData.functionalDerivative);
635 gezelter 1539 }
636 chuckv 1538 #endif
637     }
638 gezelter 1539
639    
640 gezelter 1549 void ForceMatrixDecomposition::collectData() {
641 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
642     storageLayout_ = sman_->getStorageLayout();
643     #ifdef IS_MPI
644     int n = snap_->atomData.force.size();
645 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
646 gezelter 1541
647 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
648 gezelter 1541 for (int i = 0; i < n; i++) {
649 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
650 gezelter 1541 frc_tmp[i] = 0.0;
651     }
652 gezelter 1540
653 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
654     for (int i = 0; i < n; i++) {
655 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
656 gezelter 1593 }
657 gezelter 1590
658 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
659 gezelter 1541
660 gezelter 1587 int nt = snap_->atomData.torque.size();
661 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
662 gezelter 1541
663 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
664 gezelter 1587 for (int i = 0; i < nt; i++) {
665 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
666 gezelter 1541 trq_tmp[i] = 0.0;
667     }
668 gezelter 1540
669 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
670 gezelter 1587 for (int i = 0; i < nt; i++)
671 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
672 gezelter 1540 }
673 gezelter 1587
674     if (storageLayout_ & DataStorage::dslSkippedCharge) {
675    
676     int ns = snap_->atomData.skippedCharge.size();
677     vector<RealType> skch_tmp(ns, 0.0);
678    
679 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
680 gezelter 1587 for (int i = 0; i < ns; i++) {
681 gezelter 1590 snap_->atomData.skippedCharge[i] += skch_tmp[i];
682 gezelter 1587 skch_tmp[i] = 0.0;
683     }
684    
685 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
686 gezelter 1587 for (int i = 0; i < ns; i++)
687     snap_->atomData.skippedCharge[i] += skch_tmp[i];
688     }
689 gezelter 1540
690 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
691 gezelter 1544
692 gezelter 1575 vector<potVec> pot_temp(nLocal_,
693     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
694    
695     // scatter/gather pot_row into the members of my column
696    
697 gezelter 1593 AtomPlanPotRow->scatter(pot_row, pot_temp);
698 gezelter 1575
699     for (int ii = 0; ii < pot_temp.size(); ii++ )
700 gezelter 1583 pairwisePot += pot_temp[ii];
701 gezelter 1540
702 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
703     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
704    
705 gezelter 1593 AtomPlanPotColumn->scatter(pot_col, pot_temp);
706 gezelter 1575
707     for (int ii = 0; ii < pot_temp.size(); ii++ )
708 gezelter 1583 pairwisePot += pot_temp[ii];
709 gezelter 1601
710     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
711     RealType ploc1 = pairwisePot[ii];
712     RealType ploc2 = 0.0;
713     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
714     pairwisePot[ii] = ploc2;
715     }
716    
717 gezelter 1539 #endif
718 gezelter 1583
719 chuckv 1538 }
720 gezelter 1551
721 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
722     #ifdef IS_MPI
723     return nAtomsInRow_;
724     #else
725     return nLocal_;
726     #endif
727     }
728    
729 gezelter 1569 /**
730     * returns the list of atoms belonging to this group.
731     */
732     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
733     #ifdef IS_MPI
734     return groupListRow_[cg1];
735     #else
736     return groupList_[cg1];
737     #endif
738     }
739    
740     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
741     #ifdef IS_MPI
742     return groupListCol_[cg2];
743     #else
744     return groupList_[cg2];
745     #endif
746     }
747 chuckv 1538
748 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
749     Vector3d d;
750    
751     #ifdef IS_MPI
752     d = cgColData.position[cg2] - cgRowData.position[cg1];
753     #else
754     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
755     #endif
756    
757     snap_->wrapVector(d);
758     return d;
759     }
760    
761    
762     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
763    
764     Vector3d d;
765    
766     #ifdef IS_MPI
767     d = cgRowData.position[cg1] - atomRowData.position[atom1];
768     #else
769     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
770     #endif
771    
772     snap_->wrapVector(d);
773     return d;
774     }
775    
776     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
777     Vector3d d;
778    
779     #ifdef IS_MPI
780     d = cgColData.position[cg2] - atomColData.position[atom2];
781     #else
782     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
783     #endif
784    
785     snap_->wrapVector(d);
786     return d;
787     }
788 gezelter 1569
789     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
790     #ifdef IS_MPI
791     return massFactorsRow[atom1];
792     #else
793 gezelter 1581 return massFactors[atom1];
794 gezelter 1569 #endif
795     }
796    
797     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
798     #ifdef IS_MPI
799     return massFactorsCol[atom2];
800     #else
801 gezelter 1581 return massFactors[atom2];
802 gezelter 1569 #endif
803    
804     }
805 gezelter 1551
806     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
807     Vector3d d;
808    
809     #ifdef IS_MPI
810     d = atomColData.position[atom2] - atomRowData.position[atom1];
811     #else
812     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
813     #endif
814    
815     snap_->wrapVector(d);
816     return d;
817     }
818    
819 gezelter 1587 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
820     return excludesForAtom[atom1];
821 gezelter 1570 }
822    
823     /**
824 gezelter 1587 * We need to exclude some overcounted interactions that result from
825 gezelter 1575 * the parallel decomposition.
826 gezelter 1570 */
827     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
828     int unique_id_1, unique_id_2;
829 gezelter 1593
830 gezelter 1570 #ifdef IS_MPI
831     // in MPI, we have to look up the unique IDs for each atom
832     unique_id_1 = AtomRowToGlobal[atom1];
833     unique_id_2 = AtomColToGlobal[atom2];
834    
835     // this situation should only arise in MPI simulations
836     if (unique_id_1 == unique_id_2) return true;
837    
838     // this prevents us from doing the pair on multiple processors
839     if (unique_id_1 < unique_id_2) {
840     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
841     } else {
842     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
843     }
844 gezelter 1587 #endif
845     return false;
846     }
847    
848     /**
849     * We need to handle the interactions for atoms who are involved in
850     * the same rigid body as well as some short range interactions
851     * (bonds, bends, torsions) differently from other interactions.
852     * We'll still visit the pairwise routines, but with a flag that
853     * tells those routines to exclude the pair from direct long range
854     * interactions. Some indirect interactions (notably reaction
855     * field) must still be handled for these pairs.
856     */
857     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
858     int unique_id_2;
859     #ifdef IS_MPI
860     // in MPI, we have to look up the unique IDs for the row atom.
861     unique_id_2 = AtomColToGlobal[atom2];
862 gezelter 1570 #else
863     // in the normal loop, the atom numbers are unique
864     unique_id_2 = atom2;
865     #endif
866    
867 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
868     i != excludesForAtom[atom1].end(); ++i) {
869 gezelter 1570 if ( (*i) == unique_id_2 ) return true;
870 gezelter 1583 }
871 gezelter 1579
872 gezelter 1583 return false;
873 gezelter 1570 }
874    
875    
876 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
877     #ifdef IS_MPI
878     atomRowData.force[atom1] += fg;
879     #else
880     snap_->atomData.force[atom1] += fg;
881     #endif
882     }
883    
884     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
885     #ifdef IS_MPI
886     atomColData.force[atom2] += fg;
887     #else
888     snap_->atomData.force[atom2] += fg;
889     #endif
890     }
891    
892     // filling interaction blocks with pointers
893 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
894 gezelter 1587 int atom1, int atom2) {
895    
896     idat.excluded = excludeAtomPair(atom1, atom2);
897    
898 gezelter 1551 #ifdef IS_MPI
899 gezelter 1591 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
900     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
901     // ff_->getAtomType(identsCol[atom2]) );
902 gezelter 1571
903 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
904 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
905     idat.A2 = &(atomColData.aMat[atom2]);
906 gezelter 1551 }
907 gezelter 1567
908 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
909 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
910     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
911 gezelter 1551 }
912    
913     if (storageLayout_ & DataStorage::dslTorque) {
914 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
915     idat.t2 = &(atomColData.torque[atom2]);
916 gezelter 1551 }
917    
918     if (storageLayout_ & DataStorage::dslDensity) {
919 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
920     idat.rho2 = &(atomColData.density[atom2]);
921 gezelter 1551 }
922    
923 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
924     idat.frho1 = &(atomRowData.functional[atom1]);
925     idat.frho2 = &(atomColData.functional[atom2]);
926     }
927    
928 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
929 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
930     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
931 gezelter 1551 }
932 gezelter 1570
933 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
934     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
935     idat.particlePot2 = &(atomColData.particlePot[atom2]);
936     }
937    
938 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
939     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
940     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
941     }
942    
943 gezelter 1562 #else
944 gezelter 1571
945 gezelter 1591 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
946     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
947     // ff_->getAtomType(idents[atom2]) );
948 gezelter 1571
949 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
950     idat.A1 = &(snap_->atomData.aMat[atom1]);
951     idat.A2 = &(snap_->atomData.aMat[atom2]);
952     }
953    
954     if (storageLayout_ & DataStorage::dslElectroFrame) {
955     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
956     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
957     }
958    
959     if (storageLayout_ & DataStorage::dslTorque) {
960     idat.t1 = &(snap_->atomData.torque[atom1]);
961     idat.t2 = &(snap_->atomData.torque[atom2]);
962     }
963    
964 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
965 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
966     idat.rho2 = &(snap_->atomData.density[atom2]);
967     }
968    
969 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
970     idat.frho1 = &(snap_->atomData.functional[atom1]);
971     idat.frho2 = &(snap_->atomData.functional[atom2]);
972     }
973    
974 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
975     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
976     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
977     }
978 gezelter 1575
979     if (storageLayout_ & DataStorage::dslParticlePot) {
980     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
981     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
982     }
983    
984 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
985     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
986     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
987     }
988 gezelter 1551 #endif
989     }
990 gezelter 1567
991 gezelter 1575
992 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
993 gezelter 1575 #ifdef IS_MPI
994     pot_row[atom1] += 0.5 * *(idat.pot);
995     pot_col[atom2] += 0.5 * *(idat.pot);
996    
997     atomRowData.force[atom1] += *(idat.f1);
998     atomColData.force[atom2] -= *(idat.f1);
999     #else
1000 gezelter 1583 pairwisePot += *(idat.pot);
1001    
1002 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
1003     snap_->atomData.force[atom2] -= *(idat.f1);
1004     #endif
1005 gezelter 1586
1006 gezelter 1575 }
1007    
1008 gezelter 1562 /*
1009     * buildNeighborList
1010     *
1011     * first element of pair is row-indexed CutoffGroup
1012     * second element of pair is column-indexed CutoffGroup
1013     */
1014 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1015    
1016     vector<pair<int, int> > neighborList;
1017 gezelter 1576 groupCutoffs cuts;
1018 gezelter 1587 bool doAllPairs = false;
1019    
1020 gezelter 1567 #ifdef IS_MPI
1021 gezelter 1568 cellListRow_.clear();
1022     cellListCol_.clear();
1023 gezelter 1567 #else
1024 gezelter 1568 cellList_.clear();
1025 gezelter 1567 #endif
1026 gezelter 1562
1027 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
1028 gezelter 1567 RealType rl2 = rList_ * rList_;
1029     Snapshot* snap_ = sman_->getCurrentSnapshot();
1030 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
1031     Vector3d Hx = Hmat.getColumn(0);
1032     Vector3d Hy = Hmat.getColumn(1);
1033     Vector3d Hz = Hmat.getColumn(2);
1034    
1035 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
1036     nCells_.y() = (int) ( Hy.length() )/ rList_;
1037     nCells_.z() = (int) ( Hz.length() )/ rList_;
1038 gezelter 1562
1039 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
1040    
1041     if (nCells_.x() < 3) doAllPairs = true;
1042     if (nCells_.y() < 3) doAllPairs = true;
1043     if (nCells_.z() < 3) doAllPairs = true;
1044    
1045 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
1046     Vector3d rs, scaled, dr;
1047     Vector3i whichCell;
1048     int cellIndex;
1049 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1050 gezelter 1567
1051     #ifdef IS_MPI
1052 gezelter 1579 cellListRow_.resize(nCtot);
1053     cellListCol_.resize(nCtot);
1054     #else
1055     cellList_.resize(nCtot);
1056     #endif
1057 gezelter 1582
1058 gezelter 1587 if (!doAllPairs) {
1059 gezelter 1579 #ifdef IS_MPI
1060 gezelter 1581
1061 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
1062     rs = cgRowData.position[i];
1063    
1064     // scaled positions relative to the box vectors
1065     scaled = invHmat * rs;
1066    
1067     // wrap the vector back into the unit box by subtracting integer box
1068     // numbers
1069     for (int j = 0; j < 3; j++) {
1070     scaled[j] -= roundMe(scaled[j]);
1071     scaled[j] += 0.5;
1072     }
1073    
1074     // find xyz-indices of cell that cutoffGroup is in.
1075     whichCell.x() = nCells_.x() * scaled.x();
1076     whichCell.y() = nCells_.y() * scaled.y();
1077     whichCell.z() = nCells_.z() * scaled.z();
1078    
1079     // find single index of this cell:
1080     cellIndex = Vlinear(whichCell, nCells_);
1081    
1082     // add this cutoff group to the list of groups in this cell;
1083     cellListRow_[cellIndex].push_back(i);
1084 gezelter 1581 }
1085 gezelter 1587 for (int i = 0; i < nGroupsInCol_; i++) {
1086     rs = cgColData.position[i];
1087    
1088     // scaled positions relative to the box vectors
1089     scaled = invHmat * rs;
1090    
1091     // wrap the vector back into the unit box by subtracting integer box
1092     // numbers
1093     for (int j = 0; j < 3; j++) {
1094     scaled[j] -= roundMe(scaled[j]);
1095     scaled[j] += 0.5;
1096     }
1097    
1098     // find xyz-indices of cell that cutoffGroup is in.
1099     whichCell.x() = nCells_.x() * scaled.x();
1100     whichCell.y() = nCells_.y() * scaled.y();
1101     whichCell.z() = nCells_.z() * scaled.z();
1102    
1103     // find single index of this cell:
1104     cellIndex = Vlinear(whichCell, nCells_);
1105    
1106     // add this cutoff group to the list of groups in this cell;
1107     cellListCol_[cellIndex].push_back(i);
1108 gezelter 1581 }
1109 gezelter 1612
1110 gezelter 1567 #else
1111 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1112     rs = snap_->cgData.position[i];
1113    
1114     // scaled positions relative to the box vectors
1115     scaled = invHmat * rs;
1116    
1117     // wrap the vector back into the unit box by subtracting integer box
1118     // numbers
1119     for (int j = 0; j < 3; j++) {
1120     scaled[j] -= roundMe(scaled[j]);
1121     scaled[j] += 0.5;
1122     }
1123    
1124     // find xyz-indices of cell that cutoffGroup is in.
1125     whichCell.x() = nCells_.x() * scaled.x();
1126     whichCell.y() = nCells_.y() * scaled.y();
1127     whichCell.z() = nCells_.z() * scaled.z();
1128    
1129     // find single index of this cell:
1130 gezelter 1593 cellIndex = Vlinear(whichCell, nCells_);
1131 gezelter 1587
1132     // add this cutoff group to the list of groups in this cell;
1133     cellList_[cellIndex].push_back(i);
1134 gezelter 1581 }
1135 gezelter 1612
1136 gezelter 1567 #endif
1137    
1138 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1139     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1140     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1141     Vector3i m1v(m1x, m1y, m1z);
1142     int m1 = Vlinear(m1v, nCells_);
1143 gezelter 1568
1144 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1145     os != cellOffsets_.end(); ++os) {
1146    
1147     Vector3i m2v = m1v + (*os);
1148 gezelter 1612
1149    
1150 gezelter 1587 if (m2v.x() >= nCells_.x()) {
1151     m2v.x() = 0;
1152     } else if (m2v.x() < 0) {
1153     m2v.x() = nCells_.x() - 1;
1154     }
1155    
1156     if (m2v.y() >= nCells_.y()) {
1157     m2v.y() = 0;
1158     } else if (m2v.y() < 0) {
1159     m2v.y() = nCells_.y() - 1;
1160     }
1161    
1162     if (m2v.z() >= nCells_.z()) {
1163     m2v.z() = 0;
1164     } else if (m2v.z() < 0) {
1165     m2v.z() = nCells_.z() - 1;
1166     }
1167 gezelter 1612
1168 gezelter 1587 int m2 = Vlinear (m2v, nCells_);
1169    
1170 gezelter 1567 #ifdef IS_MPI
1171 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1172     j1 != cellListRow_[m1].end(); ++j1) {
1173     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1174     j2 != cellListCol_[m2].end(); ++j2) {
1175    
1176 gezelter 1612 // In parallel, we need to visit *all* pairs of row
1177     // & column indicies and will divide labor in the
1178     // force evaluation later.
1179 gezelter 1593 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1180     snap_->wrapVector(dr);
1181     cuts = getGroupCutoffs( (*j1), (*j2) );
1182     if (dr.lengthSquare() < cuts.third) {
1183     neighborList.push_back(make_pair((*j1), (*j2)));
1184     }
1185 gezelter 1562 }
1186     }
1187 gezelter 1567 #else
1188 gezelter 1587
1189     for (vector<int>::iterator j1 = cellList_[m1].begin();
1190     j1 != cellList_[m1].end(); ++j1) {
1191     for (vector<int>::iterator j2 = cellList_[m2].begin();
1192     j2 != cellList_[m2].end(); ++j2) {
1193    
1194     // Always do this if we're in different cells or if
1195     // we're in the same cell and the global index of the
1196     // j2 cutoff group is less than the j1 cutoff group
1197    
1198     if (m2 != m1 || (*j2) < (*j1)) {
1199     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1200     snap_->wrapVector(dr);
1201     cuts = getGroupCutoffs( (*j1), (*j2) );
1202     if (dr.lengthSquare() < cuts.third) {
1203     neighborList.push_back(make_pair((*j1), (*j2)));
1204     }
1205 gezelter 1567 }
1206     }
1207     }
1208 gezelter 1587 #endif
1209 gezelter 1567 }
1210 gezelter 1562 }
1211     }
1212     }
1213 gezelter 1587 } else {
1214     // branch to do all cutoff group pairs
1215     #ifdef IS_MPI
1216     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1217     for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1218     dr = cgColData.position[j2] - cgRowData.position[j1];
1219     snap_->wrapVector(dr);
1220     cuts = getGroupCutoffs( j1, j2 );
1221     if (dr.lengthSquare() < cuts.third) {
1222     neighborList.push_back(make_pair(j1, j2));
1223     }
1224     }
1225     }
1226     #else
1227     for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1228     for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1229     dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1230     snap_->wrapVector(dr);
1231     cuts = getGroupCutoffs( j1, j2 );
1232     if (dr.lengthSquare() < cuts.third) {
1233     neighborList.push_back(make_pair(j1, j2));
1234     }
1235     }
1236     }
1237     #endif
1238 gezelter 1562 }
1239 gezelter 1587
1240 gezelter 1568 // save the local cutoff group positions for the check that is
1241     // done on each loop:
1242     saved_CG_positions_.clear();
1243     for (int i = 0; i < nGroups_; i++)
1244     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1245 gezelter 1587
1246 gezelter 1567 return neighborList;
1247 gezelter 1562 }
1248 gezelter 1539 } //end namespace OpenMD