| 1 | 
gezelter | 
1741 | 
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 | 
  | 
  | 
 | 
| 3 | 
  | 
  | 
/* | 
| 4 | 
  | 
  | 
  Copyright (C) 2007 Ferdinando Ametrano | 
| 5 | 
  | 
  | 
  Copyright (C) 2007 François du Vignaud | 
| 6 | 
  | 
  | 
  Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré | 
| 7 | 
  | 
  | 
 | 
| 8 | 
  | 
  | 
  This file is part of QuantLib, a free-software/open-source library | 
| 9 | 
  | 
  | 
  for financial quantitative analysts and developers - http://quantlib.org/ | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
  QuantLib is free software: you can redistribute it and/or modify it | 
| 12 | 
  | 
  | 
  under the terms of the QuantLib license.  You should have received a | 
| 13 | 
  | 
  | 
  copy of the license along with this program; if not, please email | 
| 14 | 
  | 
  | 
  <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 15 | 
  | 
  | 
  <http://quantlib.org/license.shtml>. | 
| 16 | 
  | 
  | 
 | 
| 17 | 
  | 
  | 
  This program is distributed in the hope that it will be useful, but WITHOUT | 
| 18 | 
  | 
  | 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 19 | 
  | 
  | 
  FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 20 | 
  | 
  | 
*/ | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
/*! \file problem.hpp | 
| 23 | 
  | 
  | 
  \brief Abstract optimization problem class | 
| 24 | 
  | 
  | 
*/ | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
#ifndef quantlib_optimization_problem_h | 
| 27 | 
  | 
  | 
#define quantlib_optimization_problem_h | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
#include "optimization/Method.hpp" | 
| 30 | 
  | 
  | 
#include "optimization/ObjectiveFunction.hpp" | 
| 31 | 
  | 
  | 
#include "optimization/StatusFunction.hpp" | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
namespace QuantLib { | 
| 34 | 
  | 
  | 
     | 
| 35 | 
  | 
  | 
    class Constraint; | 
| 36 | 
  | 
  | 
    //! Constrained optimization problem | 
| 37 | 
  | 
  | 
    class Problem { | 
| 38 | 
  | 
  | 
    public: | 
| 39 | 
  | 
  | 
        //! default constructor | 
| 40 | 
  | 
  | 
        Problem(ObjectiveFunction& objectiveFunction, | 
| 41 | 
  | 
  | 
                Constraint& constraint, | 
| 42 | 
  | 
  | 
                OpenMD::StatusFunction& statFunc, | 
| 43 | 
  | 
  | 
                const DynamicVector<RealType>& initialValue = DynamicVector<RealType>()) | 
| 44 | 
  | 
  | 
            : objectiveFunction_(objectiveFunction), constraint_(constraint), | 
| 45 | 
  | 
  | 
              currentValue_(initialValue), statusFunction_(statFunc) {} | 
| 46 | 
  | 
  | 
         | 
| 47 | 
  | 
  | 
        /*! \warning it does not reset the current minumum to any initial value | 
| 48 | 
  | 
  | 
         */ | 
| 49 | 
  | 
  | 
        void reset(); | 
| 50 | 
  | 
  | 
         | 
| 51 | 
  | 
  | 
        //! call objective function computation and increment evaluation counter | 
| 52 | 
  | 
  | 
        RealType value(const DynamicVector<RealType>& x); | 
| 53 | 
  | 
  | 
         | 
| 54 | 
  | 
  | 
        //! call objective function gradient computation and increment | 
| 55 | 
  | 
  | 
        //  evaluation counter | 
| 56 | 
  | 
  | 
        void gradient(DynamicVector<RealType>& grad_f, | 
| 57 | 
  | 
  | 
                      const DynamicVector<RealType>& x); | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
        //! call objective function computation and it gradient | 
| 60 | 
  | 
  | 
        RealType valueAndGradient(DynamicVector<RealType>& grad_f, | 
| 61 | 
  | 
  | 
                                  const DynamicVector<RealType>& x); | 
| 62 | 
  | 
  | 
 | 
| 63 | 
  | 
  | 
        //! Constraint | 
| 64 | 
  | 
  | 
        Constraint& constraint() const { return constraint_; } | 
| 65 | 
  | 
  | 
 | 
| 66 | 
  | 
  | 
        //! Objective function | 
| 67 | 
  | 
  | 
        ObjectiveFunction& objectiveFunction() const { return objectiveFunction_; } | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
        void setCurrentValue(const DynamicVector<RealType>& currentValue) { | 
| 70 | 
  | 
  | 
            currentValue_=currentValue; | 
| 71 | 
  | 
  | 
            statusFunction_.writeStatus(); | 
| 72 | 
  | 
  | 
        } | 
| 73 | 
  | 
  | 
 | 
| 74 | 
  | 
  | 
        //! current value of the local minimum | 
| 75 | 
  | 
  | 
        const DynamicVector<RealType>& currentValue() const { return currentValue_; } | 
| 76 | 
  | 
  | 
 | 
| 77 | 
  | 
  | 
        void setFunctionValue(RealType functionValue) { | 
| 78 | 
  | 
  | 
            functionValue_=functionValue; | 
| 79 | 
  | 
  | 
        } | 
| 80 | 
  | 
  | 
 | 
| 81 | 
  | 
  | 
        //! value of objective function | 
| 82 | 
  | 
  | 
        RealType functionValue() const { return functionValue_; } | 
| 83 | 
  | 
  | 
 | 
| 84 | 
  | 
  | 
        void setGradientNormValue(RealType squaredNorm) { | 
| 85 | 
  | 
  | 
            squaredNorm_=squaredNorm; | 
| 86 | 
  | 
  | 
        } | 
| 87 | 
  | 
  | 
        //! value of objective function gradient norm | 
| 88 | 
  | 
  | 
        RealType gradientNormValue() const { return squaredNorm_; } | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
        //! number of evaluation of objective function | 
| 91 | 
  | 
  | 
        int functionEvaluation() const { return functionEvaluation_; } | 
| 92 | 
  | 
  | 
 | 
| 93 | 
  | 
  | 
        //! number of evaluation of objective function gradient | 
| 94 | 
  | 
  | 
        int gradientEvaluation() const { return gradientEvaluation_; } | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
        RealType DotProduct(DynamicVector<RealType>& v1, DynamicVector<RealType>& v2); | 
| 97 | 
  | 
  | 
        RealType computeGradientNormValue(DynamicVector<RealType>& grad_f); | 
| 98 | 
  | 
  | 
         | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
    protected: | 
| 101 | 
  | 
  | 
        //! Unconstrained objective function | 
| 102 | 
  | 
  | 
        ObjectiveFunction& objectiveFunction_; | 
| 103 | 
  | 
  | 
        //! Constraint | 
| 104 | 
  | 
  | 
        Constraint& constraint_; | 
| 105 | 
  | 
  | 
        //! current value of the local minimum | 
| 106 | 
  | 
  | 
        DynamicVector<RealType> currentValue_; | 
| 107 | 
  | 
  | 
        //! function and gradient norm values at the curentValue_ (i.e. the last step) | 
| 108 | 
  | 
  | 
        RealType functionValue_, squaredNorm_; | 
| 109 | 
  | 
  | 
        //! number of evaluation of objective function and its gradient | 
| 110 | 
  | 
  | 
        int functionEvaluation_, gradientEvaluation_; | 
| 111 | 
  | 
  | 
        //! status function | 
| 112 | 
  | 
  | 
        StatusFunction& statusFunction_; | 
| 113 | 
  | 
  | 
 | 
| 114 | 
  | 
  | 
    }; | 
| 115 | 
  | 
  | 
     | 
| 116 | 
  | 
  | 
    // inline definitions | 
| 117 | 
  | 
  | 
    inline RealType Problem::value(const DynamicVector<RealType>& x) { | 
| 118 | 
  | 
  | 
        ++functionEvaluation_; | 
| 119 | 
  | 
  | 
        return objectiveFunction_.value(x); | 
| 120 | 
  | 
  | 
    } | 
| 121 | 
  | 
  | 
     | 
| 122 | 
  | 
  | 
    inline void Problem::gradient(DynamicVector<RealType>& grad_f, | 
| 123 | 
  | 
  | 
                                  const DynamicVector<RealType>& x) { | 
| 124 | 
  | 
  | 
        ++gradientEvaluation_; | 
| 125 | 
  | 
  | 
        objectiveFunction_.gradient(grad_f, x); | 
| 126 | 
  | 
  | 
    } | 
| 127 | 
  | 
  | 
     | 
| 128 | 
  | 
  | 
    inline RealType Problem::valueAndGradient(DynamicVector<RealType>& grad_f, | 
| 129 | 
  | 
  | 
                                              const DynamicVector<RealType>& x) { | 
| 130 | 
  | 
  | 
        ++functionEvaluation_; | 
| 131 | 
  | 
  | 
        ++gradientEvaluation_; | 
| 132 | 
  | 
  | 
        return objectiveFunction_.valueAndGradient(grad_f, x); | 
| 133 | 
  | 
  | 
    } | 
| 134 | 
  | 
  | 
     | 
| 135 | 
  | 
  | 
    inline void Problem::reset() { | 
| 136 | 
  | 
  | 
        functionEvaluation_ = gradientEvaluation_ = 0; | 
| 137 | 
  | 
  | 
        functionValue_ = squaredNorm_ = NULL; | 
| 138 | 
  | 
  | 
    } | 
| 139 | 
  | 
  | 
     | 
| 140 | 
  | 
  | 
} | 
| 141 | 
  | 
  | 
 | 
| 142 | 
  | 
  | 
#endif |