1 |
gezelter |
1741 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
Copyright (C) 2007 Ferdinando Ametrano |
5 |
|
|
Copyright (C) 2007 François du Vignaud |
6 |
|
|
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
7 |
|
|
|
8 |
|
|
This file is part of QuantLib, a free-software/open-source library |
9 |
|
|
for financial quantitative analysts and developers - http://quantlib.org/ |
10 |
|
|
|
11 |
|
|
QuantLib is free software: you can redistribute it and/or modify it |
12 |
|
|
under the terms of the QuantLib license. You should have received a |
13 |
|
|
copy of the license along with this program; if not, please email |
14 |
|
|
<quantlib-dev@lists.sf.net>. The license is also available online at |
15 |
|
|
<http://quantlib.org/license.shtml>. |
16 |
|
|
|
17 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT |
18 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 |
|
|
FOR A PARTICULAR PURPOSE. See the license for more details. |
20 |
|
|
*/ |
21 |
|
|
|
22 |
|
|
/*! \file problem.hpp |
23 |
|
|
\brief Abstract optimization problem class |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
#ifndef quantlib_optimization_problem_h |
27 |
|
|
#define quantlib_optimization_problem_h |
28 |
|
|
|
29 |
|
|
#include "optimization/Method.hpp" |
30 |
|
|
#include "optimization/ObjectiveFunction.hpp" |
31 |
|
|
#include "optimization/StatusFunction.hpp" |
32 |
|
|
|
33 |
|
|
namespace QuantLib { |
34 |
|
|
|
35 |
|
|
class Constraint; |
36 |
|
|
//! Constrained optimization problem |
37 |
|
|
class Problem { |
38 |
|
|
public: |
39 |
|
|
//! default constructor |
40 |
|
|
Problem(ObjectiveFunction& objectiveFunction, |
41 |
|
|
Constraint& constraint, |
42 |
|
|
OpenMD::StatusFunction& statFunc, |
43 |
|
|
const DynamicVector<RealType>& initialValue = DynamicVector<RealType>()) |
44 |
|
|
: objectiveFunction_(objectiveFunction), constraint_(constraint), |
45 |
|
|
currentValue_(initialValue), statusFunction_(statFunc) {} |
46 |
|
|
|
47 |
|
|
/*! \warning it does not reset the current minumum to any initial value |
48 |
|
|
*/ |
49 |
|
|
void reset(); |
50 |
|
|
|
51 |
|
|
//! call objective function computation and increment evaluation counter |
52 |
|
|
RealType value(const DynamicVector<RealType>& x); |
53 |
|
|
|
54 |
|
|
//! call objective function gradient computation and increment |
55 |
|
|
// evaluation counter |
56 |
|
|
void gradient(DynamicVector<RealType>& grad_f, |
57 |
|
|
const DynamicVector<RealType>& x); |
58 |
|
|
|
59 |
|
|
//! call objective function computation and it gradient |
60 |
|
|
RealType valueAndGradient(DynamicVector<RealType>& grad_f, |
61 |
|
|
const DynamicVector<RealType>& x); |
62 |
|
|
|
63 |
|
|
//! Constraint |
64 |
|
|
Constraint& constraint() const { return constraint_; } |
65 |
|
|
|
66 |
|
|
//! Objective function |
67 |
|
|
ObjectiveFunction& objectiveFunction() const { return objectiveFunction_; } |
68 |
|
|
|
69 |
|
|
void setCurrentValue(const DynamicVector<RealType>& currentValue) { |
70 |
|
|
currentValue_=currentValue; |
71 |
|
|
statusFunction_.writeStatus(); |
72 |
|
|
} |
73 |
|
|
|
74 |
|
|
//! current value of the local minimum |
75 |
|
|
const DynamicVector<RealType>& currentValue() const { return currentValue_; } |
76 |
|
|
|
77 |
|
|
void setFunctionValue(RealType functionValue) { |
78 |
|
|
functionValue_=functionValue; |
79 |
|
|
} |
80 |
|
|
|
81 |
|
|
//! value of objective function |
82 |
|
|
RealType functionValue() const { return functionValue_; } |
83 |
|
|
|
84 |
|
|
void setGradientNormValue(RealType squaredNorm) { |
85 |
|
|
squaredNorm_=squaredNorm; |
86 |
|
|
} |
87 |
|
|
//! value of objective function gradient norm |
88 |
|
|
RealType gradientNormValue() const { return squaredNorm_; } |
89 |
|
|
|
90 |
|
|
//! number of evaluation of objective function |
91 |
|
|
int functionEvaluation() const { return functionEvaluation_; } |
92 |
|
|
|
93 |
|
|
//! number of evaluation of objective function gradient |
94 |
|
|
int gradientEvaluation() const { return gradientEvaluation_; } |
95 |
|
|
|
96 |
|
|
RealType DotProduct(DynamicVector<RealType>& v1, DynamicVector<RealType>& v2); |
97 |
|
|
RealType computeGradientNormValue(DynamicVector<RealType>& grad_f); |
98 |
|
|
|
99 |
|
|
|
100 |
|
|
protected: |
101 |
|
|
//! Unconstrained objective function |
102 |
|
|
ObjectiveFunction& objectiveFunction_; |
103 |
|
|
//! Constraint |
104 |
|
|
Constraint& constraint_; |
105 |
|
|
//! current value of the local minimum |
106 |
|
|
DynamicVector<RealType> currentValue_; |
107 |
|
|
//! function and gradient norm values at the curentValue_ (i.e. the last step) |
108 |
|
|
RealType functionValue_, squaredNorm_; |
109 |
|
|
//! number of evaluation of objective function and its gradient |
110 |
|
|
int functionEvaluation_, gradientEvaluation_; |
111 |
|
|
//! status function |
112 |
|
|
StatusFunction& statusFunction_; |
113 |
|
|
|
114 |
|
|
}; |
115 |
|
|
|
116 |
|
|
// inline definitions |
117 |
|
|
inline RealType Problem::value(const DynamicVector<RealType>& x) { |
118 |
|
|
++functionEvaluation_; |
119 |
|
|
return objectiveFunction_.value(x); |
120 |
|
|
} |
121 |
|
|
|
122 |
|
|
inline void Problem::gradient(DynamicVector<RealType>& grad_f, |
123 |
|
|
const DynamicVector<RealType>& x) { |
124 |
|
|
++gradientEvaluation_; |
125 |
|
|
objectiveFunction_.gradient(grad_f, x); |
126 |
|
|
} |
127 |
|
|
|
128 |
|
|
inline RealType Problem::valueAndGradient(DynamicVector<RealType>& grad_f, |
129 |
|
|
const DynamicVector<RealType>& x) { |
130 |
|
|
++functionEvaluation_; |
131 |
|
|
++gradientEvaluation_; |
132 |
|
|
return objectiveFunction_.valueAndGradient(grad_f, x); |
133 |
|
|
} |
134 |
|
|
|
135 |
|
|
inline void Problem::reset() { |
136 |
|
|
functionEvaluation_ = gradientEvaluation_ = 0; |
137 |
|
|
functionValue_ = squaredNorm_ = NULL; |
138 |
|
|
} |
139 |
|
|
|
140 |
|
|
} |
141 |
|
|
|
142 |
|
|
#endif |