1 |
gezelter |
1741 |
/* |
2 |
|
|
* Copyright (c) 2012 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
|
*/ |
42 |
|
|
|
43 |
|
|
#include "optimization/PotentialEnergyObjectiveFunction.hpp" |
44 |
|
|
|
45 |
|
|
namespace OpenMD{ |
46 |
|
|
|
47 |
|
|
PotentialEnergyObjectiveFunction::PotentialEnergyObjectiveFunction(SimInfo* info, ForceManager* forceMan) |
48 |
gezelter |
1748 |
: info_(info), forceMan_(forceMan), thermo(info) { |
49 |
|
|
shake_ = new Shake(info_); |
50 |
gezelter |
1741 |
} |
51 |
|
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
RealType PotentialEnergyObjectiveFunction::value(const DynamicVector<RealType>& x) { |
55 |
|
|
setCoor(x); |
56 |
gezelter |
1748 |
shake_->constraintR(); |
57 |
gezelter |
1741 |
forceMan_->calcForces(); |
58 |
gezelter |
1748 |
shake_->constraintF(); |
59 |
gezelter |
1741 |
return thermo.getPotential(); |
60 |
|
|
} |
61 |
|
|
|
62 |
|
|
void PotentialEnergyObjectiveFunction::gradient(DynamicVector<RealType>& grad, const DynamicVector<RealType>& x) { |
63 |
|
|
|
64 |
gezelter |
1748 |
setCoor(x); |
65 |
|
|
shake_->constraintR(); |
66 |
|
|
forceMan_->calcForces(); |
67 |
|
|
shake_->constraintF(); |
68 |
|
|
getGrad(grad); |
69 |
gezelter |
1741 |
} |
70 |
|
|
|
71 |
|
|
RealType PotentialEnergyObjectiveFunction::valueAndGradient(DynamicVector<RealType>& grad, |
72 |
|
|
const DynamicVector<RealType>& x) { |
73 |
gezelter |
1748 |
setCoor(x); |
74 |
|
|
shake_->constraintR(); |
75 |
|
|
forceMan_->calcForces(); |
76 |
|
|
shake_->constraintF(); |
77 |
gezelter |
1741 |
getGrad(grad); |
78 |
|
|
return thermo.getPotential(); |
79 |
|
|
} |
80 |
|
|
|
81 |
|
|
void PotentialEnergyObjectiveFunction::setCoor(const DynamicVector<RealType> &x) const { |
82 |
|
|
Vector3d position; |
83 |
|
|
Vector3d eulerAngle; |
84 |
|
|
SimInfo::MoleculeIterator i; |
85 |
|
|
Molecule::IntegrableObjectIterator j; |
86 |
|
|
Molecule* mol; |
87 |
gezelter |
1769 |
StuntDouble* sd; |
88 |
gezelter |
1741 |
int index = 0; |
89 |
|
|
|
90 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
91 |
|
|
mol = info_->nextMolecule(i)) { |
92 |
gezelter |
1769 |
|
93 |
|
|
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
94 |
|
|
sd = mol->nextIntegrableObject(j)) { |
95 |
gezelter |
1741 |
|
96 |
|
|
position[0] = x[index++]; |
97 |
|
|
position[1] = x[index++]; |
98 |
|
|
position[2] = x[index++]; |
99 |
|
|
|
100 |
gezelter |
1769 |
sd->setPos(position); |
101 |
gezelter |
1741 |
|
102 |
gezelter |
1769 |
if (sd->isDirectional()) { |
103 |
gezelter |
1741 |
eulerAngle[0] = x[index++]; |
104 |
|
|
eulerAngle[1] = x[index++]; |
105 |
|
|
eulerAngle[2] = x[index++]; |
106 |
|
|
|
107 |
gezelter |
1769 |
sd->setEuler(eulerAngle); |
108 |
gezelter |
1748 |
|
109 |
gezelter |
1769 |
if (sd->isRigidBody()) { |
110 |
|
|
RigidBody* rb = static_cast<RigidBody*>(sd); |
111 |
gezelter |
1748 |
rb->updateAtoms(); |
112 |
|
|
} |
113 |
gezelter |
1769 |
|
114 |
gezelter |
1748 |
} |
115 |
gezelter |
1741 |
} |
116 |
|
|
} |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
void PotentialEnergyObjectiveFunction::getGrad(DynamicVector<RealType> &grad) { |
120 |
|
|
SimInfo::MoleculeIterator i; |
121 |
|
|
Molecule::IntegrableObjectIterator j; |
122 |
|
|
Molecule* mol; |
123 |
gezelter |
1769 |
StuntDouble* sd; |
124 |
gezelter |
1741 |
std::vector<RealType> myGrad; |
125 |
|
|
|
126 |
|
|
int index = 0; |
127 |
|
|
|
128 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
129 |
|
|
mol = info_->nextMolecule(i)) { |
130 |
gezelter |
1750 |
|
131 |
gezelter |
1769 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
132 |
|
|
sd = mol->nextIntegrableObject(j)) { |
133 |
|
|
|
134 |
|
|
myGrad = sd->getGrad(); |
135 |
|
|
|
136 |
gezelter |
1750 |
for (size_t k = 0; k < myGrad.size(); ++k) { |
137 |
gezelter |
1741 |
grad[index++] = myGrad[k]; |
138 |
|
|
} |
139 |
gezelter |
1769 |
|
140 |
gezelter |
1741 |
} |
141 |
|
|
} |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
DynamicVector<RealType> PotentialEnergyObjectiveFunction::setInitialCoords() { |
145 |
|
|
SimInfo::MoleculeIterator i; |
146 |
|
|
Molecule::IntegrableObjectIterator j; |
147 |
|
|
Molecule* mol; |
148 |
gezelter |
1769 |
StuntDouble* sd; |
149 |
gezelter |
1741 |
|
150 |
|
|
Vector3d pos; |
151 |
|
|
Vector3d eulerAngle; |
152 |
|
|
|
153 |
|
|
DynamicVector<RealType> xinit(info_->getNdfLocal(), 0.0); |
154 |
|
|
|
155 |
|
|
int index = 0; |
156 |
|
|
|
157 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
158 |
|
|
mol = info_->nextMolecule(i)) { |
159 |
|
|
|
160 |
gezelter |
1769 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
161 |
|
|
sd = mol->nextIntegrableObject(j)) { |
162 |
gezelter |
1741 |
|
163 |
gezelter |
1769 |
pos = sd->getPos(); |
164 |
|
|
|
165 |
gezelter |
1741 |
xinit[index++] = pos[0]; |
166 |
|
|
xinit[index++] = pos[1]; |
167 |
|
|
xinit[index++] = pos[2]; |
168 |
|
|
|
169 |
gezelter |
1769 |
if (sd->isDirectional()) { |
170 |
|
|
eulerAngle = sd->getEuler(); |
171 |
gezelter |
1741 |
xinit[index++] = eulerAngle[0]; |
172 |
|
|
xinit[index++] = eulerAngle[1]; |
173 |
|
|
xinit[index++] = eulerAngle[2]; |
174 |
|
|
} |
175 |
gezelter |
1769 |
|
176 |
gezelter |
1741 |
} |
177 |
|
|
} |
178 |
|
|
return xinit; |
179 |
|
|
} |
180 |
|
|
} |