1 |
gezelter |
1741 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
5 |
|
|
|
6 |
|
|
This file is part of QuantLib, a free-software/open-source library |
7 |
|
|
for financial quantitative analysts and developers - http://quantlib.org/ |
8 |
|
|
|
9 |
|
|
QuantLib is free software: you can redistribute it and/or modify it |
10 |
|
|
under the terms of the QuantLib license. You should have received a |
11 |
|
|
copy of the license along with this program; if not, please email |
12 |
|
|
<quantlib-dev@lists.sf.net>. The license is also available online at |
13 |
|
|
<http://quantlib.org/license.shtml>. |
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT |
16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 |
|
|
FOR A PARTICULAR PURPOSE. See the license for more details. |
18 |
|
|
*/ |
19 |
|
|
|
20 |
|
|
/*! \file ObjectiveFunction.hpp |
21 |
|
|
\brief Optimization objective function class |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#ifndef optimization_objectivefunction_h |
25 |
|
|
#define optimization_objectivefunction_h |
26 |
|
|
#include "config.h" |
27 |
|
|
#include "math/DynamicVector.hpp" |
28 |
|
|
|
29 |
|
|
using namespace OpenMD; |
30 |
|
|
namespace QuantLib { |
31 |
|
|
|
32 |
|
|
//! Objective function abstract class for optimization problem |
33 |
|
|
class ObjectiveFunction { |
34 |
|
|
public: |
35 |
|
|
virtual ~ObjectiveFunction() {} |
36 |
|
|
//! method to overload to compute the objective function value in x |
37 |
|
|
virtual RealType value(const DynamicVector<RealType>& x) = 0; |
38 |
|
|
|
39 |
|
|
//! method to overload to compute grad_f, the first derivative of |
40 |
|
|
// the objective function with respect to x |
41 |
|
|
virtual void gradient(DynamicVector<RealType>& grad, const DynamicVector<RealType>& x) { |
42 |
|
|
RealType eps = finiteDifferenceEpsilon(), fp, fm; |
43 |
|
|
DynamicVector<RealType> xx(x); |
44 |
|
|
for (size_t i=0; i<x.size(); i++) { |
45 |
|
|
xx[i] += eps; |
46 |
|
|
fp = value(xx); |
47 |
|
|
xx[i] -= 2.0*eps; |
48 |
|
|
fm = value(xx); |
49 |
|
|
grad[i] = 0.5*(fp - fm)/eps; |
50 |
|
|
xx[i] = x[i]; |
51 |
|
|
} |
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
//! method to overload to compute grad_f, the first derivative |
55 |
|
|
// of the objective function with respect to x and also the |
56 |
|
|
// objective function |
57 |
|
|
virtual RealType valueAndGradient(DynamicVector<RealType>& grad, |
58 |
|
|
const DynamicVector<RealType>& x) { |
59 |
|
|
gradient(grad, x); |
60 |
|
|
return value(x); |
61 |
|
|
} |
62 |
|
|
|
63 |
|
|
//! Default epsilon for finite difference method : |
64 |
|
|
virtual RealType finiteDifferenceEpsilon() const { return 1e-8; } |
65 |
|
|
}; |
66 |
|
|
|
67 |
|
|
class ParametersTransformation { |
68 |
|
|
public: |
69 |
|
|
virtual ~ParametersTransformation() {} |
70 |
|
|
virtual DynamicVector<RealType> direct(const DynamicVector<RealType>& x) const = 0; |
71 |
|
|
virtual DynamicVector<RealType> inverse(const DynamicVector<RealType>& x) const = 0; |
72 |
|
|
}; |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
#endif |