1 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 |
|
3 |
/* |
4 |
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
5 |
|
6 |
This file is part of QuantLib, a free-software/open-source library |
7 |
for financial quantitative analysts and developers - http://quantlib.org/ |
8 |
|
9 |
QuantLib is free software: you can redistribute it and/or modify it |
10 |
under the terms of the QuantLib license. You should have received a |
11 |
copy of the license along with this program; if not, please email |
12 |
<quantlib-dev@lists.sf.net>. The license is also available online at |
13 |
<http://quantlib.org/license.shtml>. |
14 |
|
15 |
This program is distributed in the hope that it will be useful, but WITHOUT |
16 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 |
FOR A PARTICULAR PURPOSE. See the license for more details. |
18 |
*/ |
19 |
|
20 |
#include "optimization/Armijo.hpp" |
21 |
#include "optimization/Method.hpp" |
22 |
#include "optimization/Problem.hpp" |
23 |
|
24 |
namespace QuantLib { |
25 |
|
26 |
RealType ArmijoLineSearch::operator()(Problem& P, |
27 |
EndCriteria::Type& ecType, |
28 |
const EndCriteria& endCriteria, |
29 |
const RealType t_ini) |
30 |
{ |
31 |
//OptimizationMethod& method = P.method(); |
32 |
Constraint& constraint = P.constraint(); |
33 |
succeed_=true; |
34 |
bool maxIter = false; |
35 |
RealType t = t_ini; |
36 |
|
37 |
|
38 |
RealType q0 = P.functionValue(); |
39 |
RealType qp0 = P.gradientNormValue(); |
40 |
|
41 |
qt_ = q0; |
42 |
qpt_ = (gradient_.empty()) ? qp0 : -P.DotProduct(gradient_,searchDirection_); |
43 |
|
44 |
// Initialize gradient |
45 |
gradient_ = DynamicVector<RealType>(P.currentValue().size()); |
46 |
// Compute new point |
47 |
xtd_ = P.currentValue(); |
48 |
t = update(xtd_, searchDirection_, t, constraint); |
49 |
// Compute function value at the new point |
50 |
qt_ = P.value (xtd_); |
51 |
|
52 |
// Enter in the loop if the criterion is not satisfied |
53 |
if ((qt_-q0) > -alpha_*t*qpt_) { |
54 |
RealType qtold; |
55 |
size_t loopNumber = 0; |
56 |
do { |
57 |
loopNumber++; |
58 |
// Decrease step |
59 |
t *= beta_; |
60 |
// Store old value of the function |
61 |
qtold = qt_; |
62 |
// New point value |
63 |
xtd_ = P.currentValue(); |
64 |
t = update(xtd_, searchDirection_, t, constraint); |
65 |
|
66 |
// Compute function value at the new point |
67 |
qt_ = P.value (xtd_); |
68 |
P.gradient (gradient_, xtd_); |
69 |
// and it squared norm |
70 |
maxIter = endCriteria.checkMaxIterations(loopNumber, ecType); |
71 |
} while ( |
72 |
(((qt_ - q0) > (-alpha_ * t * qpt_)) || |
73 |
((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) && |
74 |
(!maxIter)); |
75 |
} |
76 |
|
77 |
if (maxIter) |
78 |
succeed_ = false; |
79 |
|
80 |
// Compute new gradient |
81 |
P.gradient(gradient_, xtd_); |
82 |
// and it squared norm |
83 |
qpt_ = P.computeGradientNormValue(gradient_); |
84 |
//qpt_ = P.DotProduct(gradient_, gradient_); |
85 |
|
86 |
// Return new step value |
87 |
return t; |
88 |
} |
89 |
|
90 |
} |