1 |
gezelter |
1741 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 |
|
|
|
3 |
|
|
/* |
4 |
|
|
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
5 |
|
|
|
6 |
|
|
This file is part of QuantLib, a free-software/open-source library |
7 |
|
|
for financial quantitative analysts and developers - http://quantlib.org/ |
8 |
|
|
|
9 |
|
|
QuantLib is free software: you can redistribute it and/or modify it |
10 |
|
|
under the terms of the QuantLib license. You should have received a |
11 |
|
|
copy of the license along with this program; if not, please email |
12 |
|
|
<quantlib-dev@lists.sf.net>. The license is also available online at |
13 |
|
|
<http://quantlib.org/license.shtml>. |
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT |
16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
17 |
|
|
FOR A PARTICULAR PURPOSE. See the license for more details. |
18 |
|
|
*/ |
19 |
|
|
|
20 |
|
|
#include "optimization/Armijo.hpp" |
21 |
|
|
#include "optimization/Method.hpp" |
22 |
|
|
#include "optimization/Problem.hpp" |
23 |
|
|
|
24 |
|
|
namespace QuantLib { |
25 |
|
|
|
26 |
|
|
RealType ArmijoLineSearch::operator()(Problem& P, |
27 |
|
|
EndCriteria::Type& ecType, |
28 |
|
|
const EndCriteria& endCriteria, |
29 |
|
|
const RealType t_ini) |
30 |
|
|
{ |
31 |
|
|
//OptimizationMethod& method = P.method(); |
32 |
|
|
Constraint& constraint = P.constraint(); |
33 |
|
|
succeed_=true; |
34 |
|
|
bool maxIter = false; |
35 |
|
|
RealType qtold, t = t_ini; |
36 |
|
|
size_t loopNumber = 0; |
37 |
|
|
|
38 |
|
|
RealType q0 = P.functionValue(); |
39 |
|
|
RealType qp0 = P.gradientNormValue(); |
40 |
|
|
|
41 |
|
|
qt_ = q0; |
42 |
|
|
qpt_ = (gradient_.empty()) ? qp0 : -P.DotProduct(gradient_,searchDirection_); |
43 |
|
|
|
44 |
|
|
// Initialize gradient |
45 |
|
|
gradient_ = DynamicVector<RealType>(P.currentValue().size()); |
46 |
|
|
// Compute new point |
47 |
|
|
xtd_ = P.currentValue(); |
48 |
|
|
t = update(xtd_, searchDirection_, t, constraint); |
49 |
|
|
// Compute function value at the new point |
50 |
|
|
qt_ = P.value (xtd_); |
51 |
|
|
|
52 |
|
|
// Enter in the loop if the criterion is not satisfied |
53 |
|
|
if ((qt_-q0) > -alpha_*t*qpt_) { |
54 |
|
|
do { |
55 |
|
|
loopNumber++; |
56 |
|
|
// Decrease step |
57 |
|
|
t *= beta_; |
58 |
|
|
// Store old value of the function |
59 |
|
|
qtold = qt_; |
60 |
|
|
// New point value |
61 |
|
|
xtd_ = P.currentValue(); |
62 |
|
|
t = update(xtd_, searchDirection_, t, constraint); |
63 |
|
|
|
64 |
|
|
// Compute function value at the new point |
65 |
|
|
qt_ = P.value (xtd_); |
66 |
|
|
P.gradient (gradient_, xtd_); |
67 |
|
|
// and it squared norm |
68 |
|
|
maxIter = endCriteria.checkMaxIterations(loopNumber, ecType); |
69 |
|
|
} while ( |
70 |
|
|
(((qt_ - q0) > (-alpha_ * t * qpt_)) || |
71 |
|
|
((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) && |
72 |
|
|
(!maxIter)); |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
if (maxIter) |
76 |
|
|
succeed_ = false; |
77 |
|
|
|
78 |
|
|
// Compute new gradient |
79 |
|
|
P.gradient(gradient_, xtd_); |
80 |
|
|
// and it squared norm |
81 |
|
|
qpt_ = P.computeGradientNormValue(gradient_); |
82 |
|
|
//qpt_ = P.DotProduct(gradient_, gradient_); |
83 |
|
|
|
84 |
|
|
// Return new step value |
85 |
|
|
return t; |
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
} |