| 49 |
|
|
| 50 |
|
using namespace std; |
| 51 |
|
namespace OpenMD { |
| 52 |
– |
|
| 53 |
– |
bool Sticky::initialized_ = false; |
| 54 |
– |
ForceField* Sticky::forceField_ = NULL; |
| 55 |
– |
map<int, AtomType*> Sticky::StickyMap; |
| 56 |
– |
map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap; |
| 52 |
|
|
| 53 |
< |
Sticky* Sticky::_instance = NULL; |
| 53 |
> |
Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {} |
| 54 |
|
|
| 60 |
– |
Sticky* Sticky::Instance() { |
| 61 |
– |
if (!_instance) { |
| 62 |
– |
_instance = new Sticky(); |
| 63 |
– |
} |
| 64 |
– |
return _instance; |
| 65 |
– |
} |
| 66 |
– |
|
| 55 |
|
StickyParam Sticky::getStickyParam(AtomType* atomType) { |
| 56 |
|
|
| 57 |
|
// Do sanity checking on the AtomType we were passed before |
| 177 |
|
} |
| 178 |
|
} |
| 179 |
|
|
| 180 |
< |
RealType Sticky::getStickyCut(int atid) { |
| 181 |
< |
if (!initialized_) initialize(); |
| 182 |
< |
std::map<int, AtomType*> :: const_iterator it; |
| 183 |
< |
it = StickyMap.find(atid); |
| 184 |
< |
if (it == StickyMap.end()) { |
| 185 |
< |
sprintf( painCave.errMsg, |
| 186 |
< |
"Sticky::getStickyCut could not find atid %d in StickyMap\n", |
| 187 |
< |
(atid)); |
| 188 |
< |
painCave.severity = OPENMD_ERROR; |
| 189 |
< |
painCave.isFatal = 1; |
| 190 |
< |
simError(); |
| 203 |
< |
} |
| 204 |
< |
|
| 205 |
< |
AtomType* atype = it->second; |
| 206 |
< |
return MixingMap[make_pair(atype, atype)].rbig; |
| 207 |
< |
} |
| 208 |
< |
|
| 209 |
< |
|
| 210 |
< |
void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
| 211 |
< |
RealType rij, RealType r2, RealType sw, |
| 212 |
< |
RealType &vpair, RealType &pot, |
| 213 |
< |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
| 214 |
< |
Vector3d &t1, Vector3d &t2) { |
| 215 |
< |
|
| 216 |
< |
// This routine does only the sticky portion of the SSD potential |
| 217 |
< |
// [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
| 218 |
< |
// The Lennard-Jones and dipolar interaction must be handled separately. |
| 219 |
< |
|
| 220 |
< |
// We assume that the rotation matrices have already been calculated |
| 221 |
< |
// and placed in the A array. |
| 222 |
< |
|
| 180 |
> |
/** |
| 181 |
> |
* This function does the sticky portion of the SSD potential |
| 182 |
> |
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
| 183 |
> |
* (1999)]. The Lennard-Jones and dipolar interaction must be |
| 184 |
> |
* handled separately. We assume that the rotation matrices have |
| 185 |
> |
* already been calculated and placed in the A1 & A2 entries in the |
| 186 |
> |
* idat structure. |
| 187 |
> |
*/ |
| 188 |
> |
|
| 189 |
> |
void Sticky::calcForce(InteractionData idat) { |
| 190 |
> |
|
| 191 |
|
if (!initialized_) initialize(); |
| 192 |
|
|
| 193 |
< |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
| 193 |
> |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
| 194 |
|
StickyInteractionData mixer = MixingMap[key]; |
| 195 |
|
|
| 196 |
|
RealType w0 = mixer.w0; |
| 203 |
|
RealType rbig = mixer.rbig; |
| 204 |
|
bool isPower = mixer.isPower; |
| 205 |
|
|
| 206 |
< |
if (rij <= rbig) { |
| 206 |
> |
if (idat.rij <= rbig) { |
| 207 |
|
|
| 208 |
< |
RealType r3 = r2 * rij; |
| 209 |
< |
RealType r5 = r3 * r2; |
| 208 |
> |
RealType r3 = idat.r2 * idat.rij; |
| 209 |
> |
RealType r5 = r3 * idat.r2; |
| 210 |
|
|
| 211 |
< |
RotMat3x3d A1trans = A1.transpose(); |
| 212 |
< |
RotMat3x3d A2trans = A2.transpose(); |
| 211 |
> |
RotMat3x3d A1trans = idat.A1.transpose(); |
| 212 |
> |
RotMat3x3d A2trans = idat.A2.transpose(); |
| 213 |
|
|
| 214 |
|
// rotate the inter-particle separation into the two different |
| 215 |
|
// body-fixed coordinate systems: |
| 216 |
|
|
| 217 |
< |
Vector3d ri = A1 * d; |
| 217 |
> |
Vector3d ri = idat.A1 * idat.d; |
| 218 |
|
|
| 219 |
|
// negative sign because this is the vector from j to i: |
| 220 |
|
|
| 221 |
< |
Vector3d rj = -A2 * d; |
| 221 |
> |
Vector3d rj = - idat.A2 * idat.d; |
| 222 |
|
|
| 223 |
|
RealType xi = ri.x(); |
| 224 |
|
RealType yi = ri.y(); |
| 243 |
|
RealType sp = 0.0; |
| 244 |
|
RealType dspdr = 0.0; |
| 245 |
|
|
| 246 |
< |
if (rij < ru) { |
| 247 |
< |
if (rij < rl) { |
| 246 |
> |
if (idat.rij < ru) { |
| 247 |
> |
if (idat.rij < rl) { |
| 248 |
|
s = 1.0; |
| 249 |
|
dsdr = 0.0; |
| 250 |
|
} else { |
| 251 |
|
// we are in the switching region |
| 252 |
|
|
| 253 |
< |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij); |
| 253 |
> |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(idat.rij); |
| 254 |
|
s = res.first; |
| 255 |
|
dsdr = res.second; |
| 256 |
|
} |
| 257 |
|
} |
| 258 |
|
|
| 259 |
< |
if (rij < rup) { |
| 260 |
< |
if (rij < rlp) { |
| 259 |
> |
if (idat.rij < rup) { |
| 260 |
> |
if (idat.rij < rlp) { |
| 261 |
|
sp = 1.0; |
| 262 |
|
dspdr = 0.0; |
| 263 |
|
} else { |
| 264 |
|
// we are in the switching region |
| 265 |
|
|
| 266 |
< |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij); |
| 266 |
> |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(idat.rij); |
| 267 |
|
sp = res.first; |
| 268 |
|
dspdr = res.second; |
| 269 |
|
} |
| 274 |
|
RealType w = wi+wj; |
| 275 |
|
|
| 276 |
|
|
| 277 |
< |
RealType zif = zi/rij - 0.6; |
| 278 |
< |
RealType zis = zi/rij + 0.8; |
| 277 |
> |
RealType zif = zi/idat.rij - 0.6; |
| 278 |
> |
RealType zis = zi/idat.rij + 0.8; |
| 279 |
|
|
| 280 |
< |
RealType zjf = zj/rij - 0.6; |
| 281 |
< |
RealType zjs = zj/rij + 0.8; |
| 280 |
> |
RealType zjf = zj/idat.rij - 0.6; |
| 281 |
> |
RealType zjs = zj/idat.rij + 0.8; |
| 282 |
|
|
| 283 |
|
RealType wip = zif*zif*zis*zis - w0; |
| 284 |
|
RealType wjp = zjf*zjf*zjs*zjs - w0; |
| 297 |
|
|
| 298 |
|
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
| 299 |
|
-2.0*yi*zi*uglyi/r3, |
| 300 |
< |
2.0*(1.0/rij - zi2/r3)*uglyi); |
| 300 |
> |
2.0*(1.0/idat.rij - zi2/r3)*uglyi); |
| 301 |
|
|
| 302 |
|
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
| 303 |
|
-2.0*yj*zj*uglyj/r3, |
| 304 |
< |
2.0*(1.0/rij - zj2/r3)*uglyj); |
| 304 |
> |
2.0*(1.0/idat.rij - zj2/r3)*uglyj); |
| 305 |
|
|
| 306 |
|
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
| 307 |
|
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
| 311 |
|
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
| 312 |
|
- 8.0*xj*yj*zj/r3); |
| 313 |
|
|
| 314 |
< |
Vector3d dwipdu(2.0*yi*uglyi/rij, |
| 315 |
< |
-2.0*xi*uglyi/rij, |
| 314 |
> |
Vector3d dwipdu(2.0*yi*uglyi/idat.rij, |
| 315 |
> |
-2.0*xi*uglyi/idat.rij, |
| 316 |
|
0.0); |
| 317 |
|
|
| 318 |
< |
Vector3d dwjpdu(2.0*yj*uglyj/rij, |
| 319 |
< |
-2.0*xj*uglyj/rij, |
| 318 |
> |
Vector3d dwjpdu(2.0*yj*uglyj/idat.rij, |
| 319 |
> |
-2.0*xj*uglyj/idat.rij, |
| 320 |
|
0.0); |
| 321 |
|
|
| 322 |
|
if (isPower) { |
| 339 |
|
dspdr = 0.0; |
| 340 |
|
} |
| 341 |
|
|
| 342 |
< |
vpair += 0.5*(v0*s*w + v0p*sp*wp); |
| 343 |
< |
pot += 0.5*(v0*s*w + v0p*sp*wp)*sw; |
| 342 |
> |
idat.vpair += 0.5*(v0*s*w + v0p*sp*wp); |
| 343 |
> |
idat.pot += 0.5*(v0*s*w + v0p*sp*wp)*idat.sw; |
| 344 |
|
|
| 345 |
|
// do the torques first since they are easy: |
| 346 |
|
// remember that these are still in the body-fixed axes |
| 347 |
|
|
| 348 |
< |
Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu); |
| 349 |
< |
Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
| 348 |
> |
Vector3d ti = 0.5*idat.sw*(v0*s*dwidu + v0p*sp*dwipdu); |
| 349 |
> |
Vector3d tj = 0.5*idat.sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
| 350 |
|
|
| 351 |
|
// go back to lab frame using transpose of rotation matrix: |
| 352 |
|
|
| 353 |
< |
t1 += A1trans * ti; |
| 354 |
< |
t2 += A2trans * tj; |
| 353 |
> |
idat.t1 += A1trans * ti; |
| 354 |
> |
idat.t2 += A2trans * tj; |
| 355 |
|
|
| 356 |
|
// Now, on to the forces: |
| 357 |
|
|
| 358 |
|
// first rotate the i terms back into the lab frame: |
| 359 |
|
|
| 360 |
< |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw; |
| 361 |
< |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw; |
| 360 |
> |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * idat.sw; |
| 361 |
> |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * idat.sw; |
| 362 |
|
|
| 363 |
|
Vector3d fii = A1trans * radcomi; |
| 364 |
|
Vector3d fjj = A2trans * radcomj; |
| 365 |
|
|
| 366 |
|
// now assemble these with the radial-only terms: |
| 367 |
|
|
| 368 |
< |
f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj); |
| 368 |
> |
idat.f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * idat.d / |
| 369 |
> |
idat.rij + fii - fjj); |
| 370 |
|
|
| 371 |
|
} |
| 372 |
|
|
| 373 |
|
return; |
| 374 |
|
|
| 375 |
|
} |
| 407 |
– |
|
| 408 |
– |
void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d, |
| 409 |
– |
RealType *r, RealType *r2, RealType *sw, |
| 410 |
– |
RealType *vpair, RealType *pot, RealType *A1, |
| 411 |
– |
RealType *A2, RealType *f1, |
| 412 |
– |
RealType *t1, RealType *t2) { |
| 413 |
– |
|
| 414 |
– |
if (!initialized_) initialize(); |
| 415 |
– |
|
| 416 |
– |
AtomType* atype1 = StickyMap[*atid1]; |
| 417 |
– |
AtomType* atype2 = StickyMap[*atid2]; |
| 418 |
– |
|
| 419 |
– |
Vector3d disp(d); |
| 420 |
– |
Vector3d frc(f1); |
| 421 |
– |
Vector3d trq1(t1); |
| 422 |
– |
Vector3d trq2(t2); |
| 423 |
– |
RotMat3x3d Ai(A1); |
| 424 |
– |
RotMat3x3d Aj(A2); |
| 425 |
– |
|
| 426 |
– |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot, |
| 427 |
– |
Ai, Aj, frc, trq1, trq2); |
| 428 |
– |
|
| 429 |
– |
f1[0] = frc.x(); |
| 430 |
– |
f1[1] = frc.y(); |
| 431 |
– |
f1[2] = frc.z(); |
| 432 |
– |
|
| 433 |
– |
t1[0] = trq1.x(); |
| 434 |
– |
t1[1] = trq1.y(); |
| 435 |
– |
t1[2] = trq1.z(); |
| 436 |
– |
|
| 437 |
– |
t2[0] = trq2.x(); |
| 438 |
– |
t2[1] = trq2.y(); |
| 439 |
– |
t2[2] = trq2.z(); |
| 440 |
– |
|
| 441 |
– |
return; |
| 442 |
– |
} |
| 376 |
|
} |
| 444 |
– |
|
| 445 |
– |
extern "C" { |
| 446 |
– |
|
| 447 |
– |
#define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT) |
| 448 |
– |
#define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR) |
| 449 |
– |
|
| 450 |
– |
RealType fortranGetStickyCut(int* atid) { |
| 451 |
– |
return OpenMD::Sticky::Instance()->getStickyCut(*atid); |
| 452 |
– |
} |
| 453 |
– |
|
| 454 |
– |
void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r, |
| 455 |
– |
RealType *r2, RealType *sw, RealType *vpair, RealType *pot, |
| 456 |
– |
RealType *A1, RealType *A2, RealType *f1, |
| 457 |
– |
RealType *t1, RealType *t2){ |
| 458 |
– |
|
| 459 |
– |
return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2, |
| 460 |
– |
sw, vpair, pot, A1, A2, |
| 461 |
– |
f1, t1, t2); |
| 462 |
– |
} |
| 463 |
– |
} |