36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <stdio.h> |
46 |
|
#include <cmath> |
47 |
|
#include "nonbonded/Sticky.hpp" |
48 |
|
#include "nonbonded/LJ.hpp" |
49 |
+ |
#include "types/StickyAdapter.hpp" |
50 |
|
#include "utils/simError.h" |
51 |
|
|
52 |
|
using namespace std; |
53 |
|
namespace OpenMD { |
52 |
– |
|
53 |
– |
bool Sticky::initialized_ = false; |
54 |
– |
ForceField* Sticky::forceField_ = NULL; |
55 |
– |
map<int, AtomType*> Sticky::StickyMap; |
56 |
– |
map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap; |
54 |
|
|
55 |
< |
Sticky* Sticky::_instance = NULL; |
59 |
< |
|
60 |
< |
Sticky* Sticky::Instance() { |
61 |
< |
if (!_instance) { |
62 |
< |
_instance = new Sticky(); |
63 |
< |
} |
64 |
< |
return _instance; |
65 |
< |
} |
66 |
< |
|
67 |
< |
StickyParam Sticky::getStickyParam(AtomType* atomType) { |
55 |
> |
Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {} |
56 |
|
|
69 |
– |
// Do sanity checking on the AtomType we were passed before |
70 |
– |
// building any data structures: |
71 |
– |
if (!atomType->isSticky() && !atomType->isStickyPower()) { |
72 |
– |
sprintf( painCave.errMsg, |
73 |
– |
"Sticky::getStickyParam was passed an atomType (%s) that does\n" |
74 |
– |
"\tnot appear to be a Sticky atom.\n", |
75 |
– |
atomType->getName().c_str()); |
76 |
– |
painCave.severity = OPENMD_ERROR; |
77 |
– |
painCave.isFatal = 1; |
78 |
– |
simError(); |
79 |
– |
} |
80 |
– |
|
81 |
– |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
82 |
– |
GenericData* data = daType->getPropertyByName("Sticky"); |
83 |
– |
if (data == NULL) { |
84 |
– |
sprintf( painCave.errMsg, "Sticky::getStickyParam could not find\n" |
85 |
– |
"\tSticky parameters for atomType %s.\n", |
86 |
– |
daType->getName().c_str()); |
87 |
– |
painCave.severity = OPENMD_ERROR; |
88 |
– |
painCave.isFatal = 1; |
89 |
– |
simError(); |
90 |
– |
} |
91 |
– |
|
92 |
– |
StickyParamGenericData* stickyData = dynamic_cast<StickyParamGenericData*>(data); |
93 |
– |
if (stickyData == NULL) { |
94 |
– |
sprintf( painCave.errMsg, |
95 |
– |
"Sticky::getStickyParam could not convert GenericData to\n" |
96 |
– |
"\tStickyParamGenericData for atom type %s\n", |
97 |
– |
daType->getName().c_str()); |
98 |
– |
painCave.severity = OPENMD_ERROR; |
99 |
– |
painCave.isFatal = 1; |
100 |
– |
simError(); |
101 |
– |
} |
102 |
– |
|
103 |
– |
return stickyData->getData(); |
104 |
– |
} |
105 |
– |
|
57 |
|
void Sticky::initialize() { |
58 |
|
|
59 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
66 |
|
for (at = atomTypes->beginType(i); at != NULL; |
67 |
|
at = atomTypes->nextType(i)) { |
68 |
|
|
69 |
< |
if (at->isSticky() || at->isStickyPower()) |
70 |
< |
addType(at); |
69 |
> |
StickyAdapter sa = StickyAdapter(at); |
70 |
> |
if (sa.isSticky()) addType(at); |
71 |
|
} |
72 |
|
|
73 |
|
initialized_ = true; |
75 |
|
|
76 |
|
void Sticky::addType(AtomType* atomType){ |
77 |
|
// add it to the map: |
127 |
– |
AtomTypeProperties atp = atomType->getATP(); |
78 |
|
|
79 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
80 |
< |
ret = StickyMap.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
80 |
> |
ret = StickyMap.insert( pair<int, AtomType*>(atomType->getIdent(), |
81 |
> |
atomType) ); |
82 |
|
if (ret.second == false) { |
83 |
|
sprintf( painCave.errMsg, |
84 |
|
"Sticky already had a previous entry with ident %d\n", |
85 |
< |
atp.ident); |
85 |
> |
atomType->getIdent() ); |
86 |
|
painCave.severity = OPENMD_INFO; |
87 |
|
painCave.isFatal = 0; |
88 |
|
simError(); |
90 |
|
|
91 |
|
RealType w0i, v0i, v0pi, rli, rui, rlpi, rupi; |
92 |
|
|
93 |
< |
StickyParam sticky1 = getStickyParam(atomType); |
93 |
> |
StickyAdapter sticky1 = StickyAdapter(atomType); |
94 |
|
|
95 |
|
// Now, iterate over all known types and add to the mixing map: |
96 |
|
|
98 |
|
for( it = StickyMap.begin(); it != StickyMap.end(); ++it) { |
99 |
|
|
100 |
|
AtomType* atype2 = (*it).second; |
101 |
< |
|
102 |
< |
StickyParam sticky2 = getStickyParam(atype2); |
101 |
> |
|
102 |
> |
StickyAdapter sticky2 = StickyAdapter(atype2); |
103 |
|
|
104 |
|
StickyInteractionData mixer; |
105 |
|
|
108 |
|
// Lorentz- Berthelot mixing rules (which happen to do the right thing |
109 |
|
// when atomType and atype2 happen to be the same. |
110 |
|
|
111 |
< |
mixer.rl = 0.5 * ( sticky1.rl + sticky2.rl ); |
112 |
< |
mixer.ru = 0.5 * ( sticky1.ru + sticky2.ru ); |
113 |
< |
mixer.rlp = 0.5 * ( sticky1.rlp + sticky2.rlp ); |
114 |
< |
mixer.rup = 0.5 * ( sticky1.rup + sticky2.rup ); |
111 |
> |
mixer.rl = 0.5 * ( sticky1.getRl() + sticky2.getRl() ); |
112 |
> |
mixer.ru = 0.5 * ( sticky1.getRu() + sticky2.getRu() ); |
113 |
> |
mixer.rlp = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() ); |
114 |
> |
mixer.rup = 0.5 * ( sticky1.getRup() + sticky2.getRup() ); |
115 |
|
mixer.rbig = max(mixer.ru, mixer.rup); |
116 |
< |
mixer.w0 = sqrt( sticky1.w0 * sticky2.w0 ); |
117 |
< |
mixer.v0 = sqrt( sticky1.v0 * sticky2.v0 ); |
118 |
< |
mixer.v0p = sqrt( sticky1.v0p * sticky2.v0p ); |
119 |
< |
mixer.isPower = atomType->isStickyPower() && atype2->isStickyPower(); |
116 |
> |
mixer.w0 = sqrt( sticky1.getW0() * sticky2.getW0() ); |
117 |
> |
mixer.v0 = sqrt( sticky1.getW0() * sticky2.getV0() ); |
118 |
> |
mixer.v0p = sqrt( sticky1.getV0p() * sticky2.getV0p() ); |
119 |
> |
mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower(); |
120 |
|
|
121 |
|
CubicSpline* s = new CubicSpline(); |
122 |
|
s->addPoint(mixer.rl, 1.0); |
140 |
|
} |
141 |
|
} |
142 |
|
|
143 |
< |
RealType Sticky::getStickyCut(int atid) { |
143 |
> |
/** |
144 |
> |
* This function does the sticky portion of the SSD potential |
145 |
> |
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
146 |
> |
* (1999)]. The Lennard-Jones and dipolar interaction must be |
147 |
> |
* handled separately. We assume that the rotation matrices have |
148 |
> |
* already been calculated and placed in the A1 & A2 entries in the |
149 |
> |
* idat structure. |
150 |
> |
*/ |
151 |
> |
|
152 |
> |
void Sticky::calcForce(InteractionData &idat) { |
153 |
> |
|
154 |
|
if (!initialized_) initialize(); |
194 |
– |
std::map<int, AtomType*> :: const_iterator it; |
195 |
– |
it = StickyMap.find(atid); |
196 |
– |
if (it == StickyMap.end()) { |
197 |
– |
sprintf( painCave.errMsg, |
198 |
– |
"Sticky::getStickyCut could not find atid %d in StickyMap\n", |
199 |
– |
(atid)); |
200 |
– |
painCave.severity = OPENMD_ERROR; |
201 |
– |
painCave.isFatal = 1; |
202 |
– |
simError(); |
203 |
– |
} |
204 |
– |
|
205 |
– |
AtomType* atype = it->second; |
206 |
– |
return MixingMap[make_pair(atype, atype)].rbig; |
207 |
– |
} |
208 |
– |
|
209 |
– |
|
210 |
– |
void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
211 |
– |
RealType rij, RealType r2, RealType sw, |
212 |
– |
RealType &vpair, RealType &pot, |
213 |
– |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
214 |
– |
Vector3d &t1, Vector3d &t2) { |
215 |
– |
|
216 |
– |
// This routine does only the sticky portion of the SSD potential |
217 |
– |
// [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
218 |
– |
// The Lennard-Jones and dipolar interaction must be handled separately. |
155 |
|
|
156 |
< |
// We assume that the rotation matrices have already been calculated |
157 |
< |
// and placed in the A array. |
158 |
< |
|
223 |
< |
if (!initialized_) initialize(); |
224 |
< |
|
225 |
< |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
226 |
< |
StickyInteractionData mixer = MixingMap[key]; |
156 |
> |
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
157 |
> |
it = MixingMap.find(idat.atypes); |
158 |
> |
if (it != MixingMap.end()) { |
159 |
|
|
160 |
< |
RealType w0 = mixer.w0; |
229 |
< |
RealType v0 = mixer.v0; |
230 |
< |
RealType v0p = mixer.v0p; |
231 |
< |
RealType rl = mixer.rl; |
232 |
< |
RealType ru = mixer.ru; |
233 |
< |
RealType rlp = mixer.rlp; |
234 |
< |
RealType rup = mixer.rup; |
235 |
< |
RealType rbig = mixer.rbig; |
236 |
< |
bool isPower = mixer.isPower; |
237 |
< |
|
238 |
< |
if (rij <= rbig) { |
239 |
< |
|
240 |
< |
RealType r3 = r2 * rij; |
241 |
< |
RealType r5 = r3 * r2; |
242 |
< |
|
243 |
< |
RotMat3x3d A1trans = A1.transpose(); |
244 |
< |
RotMat3x3d A2trans = A2.transpose(); |
245 |
< |
|
246 |
< |
// rotate the inter-particle separation into the two different |
247 |
< |
// body-fixed coordinate systems: |
248 |
< |
|
249 |
< |
Vector3d ri = A1 * d; |
250 |
< |
|
251 |
< |
// negative sign because this is the vector from j to i: |
252 |
< |
|
253 |
< |
Vector3d rj = -A2 * d; |
254 |
< |
|
255 |
< |
RealType xi = ri.x(); |
256 |
< |
RealType yi = ri.y(); |
257 |
< |
RealType zi = ri.z(); |
258 |
< |
|
259 |
< |
RealType xj = rj.x(); |
260 |
< |
RealType yj = rj.y(); |
261 |
< |
RealType zj = rj.z(); |
262 |
< |
|
263 |
< |
RealType xi2 = xi * xi; |
264 |
< |
RealType yi2 = yi * yi; |
265 |
< |
RealType zi2 = zi * zi; |
266 |
< |
|
267 |
< |
RealType xj2 = xj * xj; |
268 |
< |
RealType yj2 = yj * yj; |
269 |
< |
RealType zj2 = zj * zj; |
270 |
< |
|
271 |
< |
// calculate the switching info. from the splines |
272 |
< |
|
273 |
< |
RealType s = 0.0; |
274 |
< |
RealType dsdr = 0.0; |
275 |
< |
RealType sp = 0.0; |
276 |
< |
RealType dspdr = 0.0; |
277 |
< |
|
278 |
< |
if (rij < ru) { |
279 |
< |
if (rij < rl) { |
280 |
< |
s = 1.0; |
281 |
< |
dsdr = 0.0; |
282 |
< |
} else { |
283 |
< |
// we are in the switching region |
284 |
< |
|
285 |
< |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij); |
286 |
< |
s = res.first; |
287 |
< |
dsdr = res.second; |
288 |
< |
} |
289 |
< |
} |
290 |
< |
|
291 |
< |
if (rij < rup) { |
292 |
< |
if (rij < rlp) { |
293 |
< |
sp = 1.0; |
294 |
< |
dspdr = 0.0; |
295 |
< |
} else { |
296 |
< |
// we are in the switching region |
297 |
< |
|
298 |
< |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij); |
299 |
< |
sp = res.first; |
300 |
< |
dspdr = res.second; |
301 |
< |
} |
302 |
< |
} |
303 |
< |
|
304 |
< |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
305 |
< |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
306 |
< |
RealType w = wi+wj; |
307 |
< |
|
308 |
< |
|
309 |
< |
RealType zif = zi/rij - 0.6; |
310 |
< |
RealType zis = zi/rij + 0.8; |
311 |
< |
|
312 |
< |
RealType zjf = zj/rij - 0.6; |
313 |
< |
RealType zjs = zj/rij + 0.8; |
314 |
< |
|
315 |
< |
RealType wip = zif*zif*zis*zis - w0; |
316 |
< |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
317 |
< |
RealType wp = wip + wjp; |
318 |
< |
|
319 |
< |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
320 |
< |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
321 |
< |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
160 |
> |
StickyInteractionData mixer = (*it).second; |
161 |
|
|
162 |
< |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
163 |
< |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
164 |
< |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
165 |
< |
|
166 |
< |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
167 |
< |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
168 |
< |
|
169 |
< |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
170 |
< |
-2.0*yi*zi*uglyi/r3, |
332 |
< |
2.0*(1.0/rij - zi2/r3)*uglyi); |
333 |
< |
|
334 |
< |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
335 |
< |
-2.0*yj*zj*uglyj/r3, |
336 |
< |
2.0*(1.0/rij - zj2/r3)*uglyj); |
337 |
< |
|
338 |
< |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
339 |
< |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
340 |
< |
- 8.0*xi*yi*zi/r3); |
341 |
< |
|
342 |
< |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
343 |
< |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
344 |
< |
- 8.0*xj*yj*zj/r3); |
162 |
> |
RealType w0 = mixer.w0; |
163 |
> |
RealType v0 = mixer.v0; |
164 |
> |
RealType v0p = mixer.v0p; |
165 |
> |
RealType rl = mixer.rl; |
166 |
> |
RealType ru = mixer.ru; |
167 |
> |
RealType rlp = mixer.rlp; |
168 |
> |
RealType rup = mixer.rup; |
169 |
> |
RealType rbig = mixer.rbig; |
170 |
> |
bool isPower = mixer.isPower; |
171 |
|
|
172 |
< |
Vector3d dwipdu(2.0*yi*uglyi/rij, |
173 |
< |
-2.0*xi*uglyi/rij, |
174 |
< |
0.0); |
175 |
< |
|
176 |
< |
Vector3d dwjpdu(2.0*yj*uglyj/rij, |
177 |
< |
-2.0*xj*uglyj/rij, |
178 |
< |
0.0); |
172 |
> |
if ( *(idat.rij) <= rbig) { |
173 |
> |
|
174 |
> |
RealType r3 = *(idat.r2) * *(idat.rij); |
175 |
> |
RealType r5 = r3 * *(idat.r2); |
176 |
> |
|
177 |
> |
RotMat3x3d A1trans = idat.A1->transpose(); |
178 |
> |
RotMat3x3d A2trans = idat.A2->transpose(); |
179 |
> |
|
180 |
> |
// rotate the inter-particle separation into the two different |
181 |
> |
// body-fixed coordinate systems: |
182 |
> |
|
183 |
> |
Vector3d ri = *(idat.A1) * *(idat.d); |
184 |
> |
|
185 |
> |
// negative sign because this is the vector from j to i: |
186 |
> |
|
187 |
> |
Vector3d rj = - *(idat.A2) * *(idat.d); |
188 |
> |
|
189 |
> |
RealType xi = ri.x(); |
190 |
> |
RealType yi = ri.y(); |
191 |
> |
RealType zi = ri.z(); |
192 |
> |
|
193 |
> |
RealType xj = rj.x(); |
194 |
> |
RealType yj = rj.y(); |
195 |
> |
RealType zj = rj.z(); |
196 |
> |
|
197 |
> |
RealType xi2 = xi * xi; |
198 |
> |
RealType yi2 = yi * yi; |
199 |
> |
RealType zi2 = zi * zi; |
200 |
> |
|
201 |
> |
RealType xj2 = xj * xj; |
202 |
> |
RealType yj2 = yj * yj; |
203 |
> |
RealType zj2 = zj * zj; |
204 |
> |
|
205 |
> |
// calculate the switching info. from the splines |
206 |
> |
|
207 |
> |
RealType s = 0.0; |
208 |
> |
RealType dsdr = 0.0; |
209 |
> |
RealType sp = 0.0; |
210 |
> |
RealType dspdr = 0.0; |
211 |
> |
|
212 |
> |
if ( *(idat.rij) < ru) { |
213 |
> |
if ( *(idat.rij) < rl) { |
214 |
> |
s = 1.0; |
215 |
> |
dsdr = 0.0; |
216 |
> |
} else { |
217 |
> |
// we are in the switching region |
218 |
> |
|
219 |
> |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(*(idat.rij)); |
220 |
> |
s = res.first; |
221 |
> |
dsdr = res.second; |
222 |
> |
} |
223 |
> |
} |
224 |
> |
|
225 |
> |
if (*(idat.rij) < rup) { |
226 |
> |
if ( *(idat.rij) < rlp) { |
227 |
> |
sp = 1.0; |
228 |
> |
dspdr = 0.0; |
229 |
> |
} else { |
230 |
> |
// we are in the switching region |
231 |
> |
|
232 |
> |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt( *(idat.rij)); |
233 |
> |
sp = res.first; |
234 |
> |
dspdr = res.second; |
235 |
> |
} |
236 |
> |
} |
237 |
> |
|
238 |
> |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
239 |
> |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
240 |
> |
RealType w = wi+wj; |
241 |
> |
|
242 |
> |
|
243 |
> |
RealType zif = zi/ *(idat.rij) - 0.6; |
244 |
> |
RealType zis = zi/ *(idat.rij) + 0.8; |
245 |
> |
|
246 |
> |
RealType zjf = zj/ *(idat.rij) - 0.6; |
247 |
> |
RealType zjs = zj/ *(idat.rij) + 0.8; |
248 |
> |
|
249 |
> |
RealType wip = zif*zif*zis*zis - w0; |
250 |
> |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
251 |
> |
RealType wp = wip + wjp; |
252 |
> |
|
253 |
> |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
254 |
> |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
255 |
> |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
256 |
> |
|
257 |
> |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
258 |
> |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
259 |
> |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
260 |
> |
|
261 |
> |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
262 |
> |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
263 |
|
|
264 |
< |
if (isPower) { |
265 |
< |
RealType frac1 = 0.25; |
266 |
< |
RealType frac2 = 0.75; |
267 |
< |
RealType wi2 = wi*wi; |
268 |
< |
RealType wj2 = wj*wj; |
269 |
< |
// sticky power has no w' function: |
270 |
< |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
271 |
< |
wp = 0.0; |
272 |
< |
dwi = frac1*3.0*wi2*dwi + frac2*dwi; |
273 |
< |
dwj = frac1*3.0*wj2*dwi + frac2*dwi; |
274 |
< |
dwip = V3Zero; |
275 |
< |
dwjp = V3Zero; |
276 |
< |
dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu; |
277 |
< |
dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu; |
278 |
< |
dwipdu = V3Zero; |
279 |
< |
dwjpdu = V3Zero; |
280 |
< |
sp = 0.0; |
281 |
< |
dspdr = 0.0; |
264 |
> |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
265 |
> |
-2.0*yi*zi*uglyi/r3, |
266 |
> |
2.0*(1.0/ *(idat.rij) - zi2/r3)*uglyi); |
267 |
> |
|
268 |
> |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
269 |
> |
-2.0*yj*zj*uglyj/r3, |
270 |
> |
2.0*(1.0/ *(idat.rij) - zj2/r3)*uglyj); |
271 |
> |
|
272 |
> |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
273 |
> |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
274 |
> |
- 8.0*xi*yi*zi/r3); |
275 |
> |
|
276 |
> |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
277 |
> |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
278 |
> |
- 8.0*xj*yj*zj/r3); |
279 |
> |
|
280 |
> |
Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) , |
281 |
> |
-2.0*xi*uglyi/ *(idat.rij) , |
282 |
> |
0.0); |
283 |
> |
|
284 |
> |
Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) , |
285 |
> |
-2.0*xj*uglyj/ *(idat.rij) , |
286 |
> |
0.0); |
287 |
> |
|
288 |
> |
if (isPower) { |
289 |
> |
RealType frac1 = 0.25; |
290 |
> |
RealType frac2 = 0.75; |
291 |
> |
RealType wi2 = wi*wi; |
292 |
> |
RealType wj2 = wj*wj; |
293 |
> |
// sticky power has no w' function: |
294 |
> |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
295 |
> |
wp = 0.0; |
296 |
> |
dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi; |
297 |
> |
dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi; |
298 |
> |
dwip = V3Zero; |
299 |
> |
dwjp = V3Zero; |
300 |
> |
dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu; |
301 |
> |
dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu; |
302 |
> |
dwipdu = V3Zero; |
303 |
> |
dwjpdu = V3Zero; |
304 |
> |
sp = 0.0; |
305 |
> |
dspdr = 0.0; |
306 |
> |
} |
307 |
> |
|
308 |
> |
*(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp); |
309 |
> |
(*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ; |
310 |
> |
|
311 |
> |
// do the torques first since they are easy: |
312 |
> |
// remember that these are still in the body-fixed axes |
313 |
> |
|
314 |
> |
Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu); |
315 |
> |
Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu); |
316 |
> |
|
317 |
> |
// go back to lab frame using transpose of rotation matrix: |
318 |
> |
|
319 |
> |
*(idat.t1) += A1trans * ti; |
320 |
> |
*(idat.t2) += A2trans * tj; |
321 |
> |
|
322 |
> |
// Now, on to the forces: |
323 |
> |
|
324 |
> |
// first rotate the i terms back into the lab frame: |
325 |
> |
|
326 |
> |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * *(idat.sw); |
327 |
> |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * *(idat.sw); |
328 |
> |
|
329 |
> |
Vector3d fii = A1trans * radcomi; |
330 |
> |
Vector3d fjj = A2trans * radcomj; |
331 |
> |
|
332 |
> |
// now assemble these with the radial-only terms: |
333 |
> |
|
334 |
> |
*(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) / |
335 |
> |
*(idat.rij) + fii - fjj); |
336 |
> |
|
337 |
|
} |
373 |
– |
|
374 |
– |
vpair += 0.5*(v0*s*w + v0p*sp*wp); |
375 |
– |
pot += 0.5*(v0*s*w + v0p*sp*wp)*sw; |
376 |
– |
|
377 |
– |
// do the torques first since they are easy: |
378 |
– |
// remember that these are still in the body-fixed axes |
379 |
– |
|
380 |
– |
Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu); |
381 |
– |
Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
382 |
– |
|
383 |
– |
// go back to lab frame using transpose of rotation matrix: |
384 |
– |
|
385 |
– |
t1 += A1trans * ti; |
386 |
– |
t2 += A2trans * tj; |
387 |
– |
|
388 |
– |
// Now, on to the forces: |
389 |
– |
|
390 |
– |
// first rotate the i terms back into the lab frame: |
391 |
– |
|
392 |
– |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw; |
393 |
– |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw; |
394 |
– |
|
395 |
– |
Vector3d fii = A1trans * radcomi; |
396 |
– |
Vector3d fjj = A2trans * radcomj; |
397 |
– |
|
398 |
– |
// now assemble these with the radial-only terms: |
399 |
– |
|
400 |
– |
f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj); |
401 |
– |
|
338 |
|
} |
403 |
– |
|
404 |
– |
return; |
339 |
|
|
340 |
+ |
return; |
341 |
|
} |
342 |
|
|
343 |
< |
void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d, |
344 |
< |
RealType *r, RealType *r2, RealType *sw, |
345 |
< |
RealType *vpair, RealType *pot, RealType *A1, |
346 |
< |
RealType *A2, RealType *f1, |
347 |
< |
RealType *t1, RealType *t2) { |
348 |
< |
|
349 |
< |
if (!initialized_) initialize(); |
350 |
< |
|
351 |
< |
AtomType* atype1 = StickyMap[*atid1]; |
352 |
< |
AtomType* atype2 = StickyMap[*atid2]; |
418 |
< |
|
419 |
< |
Vector3d disp(d); |
420 |
< |
Vector3d frc(f1); |
421 |
< |
Vector3d trq1(t1); |
422 |
< |
Vector3d trq2(t2); |
423 |
< |
RotMat3x3d Ai(A1); |
424 |
< |
RotMat3x3d Aj(A2); |
425 |
< |
|
426 |
< |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot, |
427 |
< |
Ai, Aj, frc, trq1, trq2); |
428 |
< |
|
429 |
< |
f1[0] = frc.x(); |
430 |
< |
f1[1] = frc.y(); |
431 |
< |
f1[2] = frc.z(); |
432 |
< |
|
433 |
< |
t1[0] = trq1.x(); |
434 |
< |
t1[1] = trq1.y(); |
435 |
< |
t1[2] = trq1.z(); |
436 |
< |
|
437 |
< |
t2[0] = trq2.x(); |
438 |
< |
t2[1] = trq2.y(); |
439 |
< |
t2[2] = trq2.z(); |
440 |
< |
|
441 |
< |
return; |
343 |
> |
RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
344 |
> |
if (!initialized_) initialize(); |
345 |
> |
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
346 |
> |
it = MixingMap.find(atypes); |
347 |
> |
if (it == MixingMap.end()) |
348 |
> |
return 0.0; |
349 |
> |
else { |
350 |
> |
StickyInteractionData mixer = (*it).second; |
351 |
> |
return mixer.rbig; |
352 |
> |
} |
353 |
|
} |
354 |
|
} |
444 |
– |
|
445 |
– |
extern "C" { |
446 |
– |
|
447 |
– |
#define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT) |
448 |
– |
#define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR) |
449 |
– |
|
450 |
– |
RealType fortranGetStickyCut(int* atid) { |
451 |
– |
return OpenMD::Sticky::Instance()->getStickyCut(*atid); |
452 |
– |
} |
453 |
– |
|
454 |
– |
void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r, |
455 |
– |
RealType *r2, RealType *sw, RealType *vpair, RealType *pot, |
456 |
– |
RealType *A1, RealType *A2, RealType *f1, |
457 |
– |
RealType *t1, RealType *t2){ |
458 |
– |
|
459 |
– |
return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2, |
460 |
– |
sw, vpair, pot, A1, A2, |
461 |
– |
f1, t1, t2); |
462 |
– |
} |
463 |
– |
} |