ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Sticky.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Sticky.cpp (file contents):
Revision 1485 by gezelter, Wed Jul 28 19:52:00 2010 UTC vs.
Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 45 | Line 46
46   #include <cmath>
47   #include "nonbonded/Sticky.hpp"
48   #include "nonbonded/LJ.hpp"
49 + #include "types/StickyAdapter.hpp"
50   #include "utils/simError.h"
51  
52   using namespace std;
53   namespace OpenMD {
52
53  bool Sticky::initialized_ = false;
54  ForceField* Sticky::forceField_ = NULL;
55  map<int, AtomType*> Sticky::StickyMap;
56  map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap;
54    
55 <  Sticky* Sticky::_instance = NULL;
59 <  
60 <  Sticky* Sticky::Instance() {
61 <    if (!_instance) {
62 <      _instance = new Sticky();
63 <    }
64 <    return _instance;
65 <  }
66 <  
67 <  StickyParam Sticky::getStickyParam(AtomType* atomType) {
55 >  Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {}
56      
69    // Do sanity checking on the AtomType we were passed before
70    // building any data structures:
71    if (!atomType->isSticky() && !atomType->isStickyPower()) {
72      sprintf( painCave.errMsg,
73               "Sticky::getStickyParam was passed an atomType (%s) that does\n"
74               "\tnot appear to be a Sticky atom.\n",
75               atomType->getName().c_str());
76      painCave.severity = OPENMD_ERROR;
77      painCave.isFatal = 1;
78      simError();
79    }
80    
81    DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
82    GenericData* data = daType->getPropertyByName("Sticky");
83    if (data == NULL) {
84      sprintf( painCave.errMsg, "Sticky::getStickyParam could not find\n"
85               "\tSticky parameters for atomType %s.\n",
86               daType->getName().c_str());
87      painCave.severity = OPENMD_ERROR;
88      painCave.isFatal = 1;
89      simError();
90    }
91    
92    StickyParamGenericData* stickyData = dynamic_cast<StickyParamGenericData*>(data);
93    if (stickyData == NULL) {
94      sprintf( painCave.errMsg,
95               "Sticky::getStickyParam could not convert GenericData to\n"
96               "\tStickyParamGenericData for atom type %s\n",
97               daType->getName().c_str());
98      painCave.severity = OPENMD_ERROR;
99      painCave.isFatal = 1;
100      simError();          
101    }
102    
103    return stickyData->getData();
104  }
105  
57    void Sticky::initialize() {    
58      
59      ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
# Line 115 | Line 66 | namespace OpenMD {
66      for (at = atomTypes->beginType(i); at != NULL;
67           at = atomTypes->nextType(i)) {
68        
69 <      if (at->isSticky() || at->isStickyPower())
70 <        addType(at);
69 >      StickyAdapter sa = StickyAdapter(at);
70 >      if (sa.isSticky()) addType(at);
71      }
72      
73      initialized_ = true;
# Line 124 | Line 75 | namespace OpenMD {
75        
76    void Sticky::addType(AtomType* atomType){
77      // add it to the map:
127    AtomTypeProperties atp = atomType->getATP();    
78      
79      pair<map<int,AtomType*>::iterator,bool> ret;    
80 <    ret = StickyMap.insert( pair<int, AtomType*>(atp.ident, atomType) );
80 >    ret = StickyMap.insert( pair<int, AtomType*>(atomType->getIdent(),
81 >                                                 atomType) );
82      if (ret.second == false) {
83        sprintf( painCave.errMsg,
84                 "Sticky already had a previous entry with ident %d\n",
85 <               atp.ident);
85 >               atomType->getIdent() );
86        painCave.severity = OPENMD_INFO;
87        painCave.isFatal = 0;
88        simError();        
# Line 139 | Line 90 | namespace OpenMD {
90      
91      RealType w0i, v0i, v0pi, rli, rui, rlpi, rupi;
92      
93 <    StickyParam sticky1 = getStickyParam(atomType);
93 >    StickyAdapter sticky1 = StickyAdapter(atomType);
94  
95      // Now, iterate over all known types and add to the mixing map:
96      
# Line 147 | Line 98 | namespace OpenMD {
98      for( it = StickyMap.begin(); it != StickyMap.end(); ++it) {
99        
100        AtomType* atype2 = (*it).second;
101 <    
102 <      StickyParam sticky2 = getStickyParam(atype2);
101 >      
102 >      StickyAdapter sticky2 = StickyAdapter(atype2);
103  
104        StickyInteractionData mixer;        
105            
# Line 157 | Line 108 | namespace OpenMD {
108        // Lorentz- Berthelot mixing rules (which happen to do the right thing
109        // when atomType and atype2 happen to be the same.
110        
111 <      mixer.rl   = 0.5 * ( sticky1.rl + sticky2.rl );
112 <      mixer.ru   = 0.5 * ( sticky1.ru + sticky2.ru );
113 <      mixer.rlp  = 0.5 * ( sticky1.rlp + sticky2.rlp );
114 <      mixer.rup  = 0.5 * ( sticky1.rup + sticky2.rup );
111 >      mixer.rl   = 0.5 * ( sticky1.getRl() + sticky2.getRl() );
112 >      mixer.ru   = 0.5 * ( sticky1.getRu() + sticky2.getRu() );
113 >      mixer.rlp  = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() );
114 >      mixer.rup  = 0.5 * ( sticky1.getRup() + sticky2.getRup() );
115        mixer.rbig = max(mixer.ru, mixer.rup);
116 <      mixer.w0  = sqrt( sticky1.w0   * sticky2.w0  );
117 <      mixer.v0  = sqrt( sticky1.v0   * sticky2.v0  );
118 <      mixer.v0p = sqrt( sticky1.v0p  * sticky2.v0p );
119 <      mixer.isPower = atomType->isStickyPower() && atype2->isStickyPower();
116 >      mixer.w0  = sqrt( sticky1.getW0()   * sticky2.getW0()  );
117 >      mixer.v0  = sqrt( sticky1.getW0()   * sticky2.getV0()  );
118 >      mixer.v0p = sqrt( sticky1.getV0p()  * sticky2.getV0p() );
119 >      mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower();
120  
121        CubicSpline* s = new CubicSpline();
122        s->addPoint(mixer.rl, 1.0);
# Line 189 | Line 140 | namespace OpenMD {
140      }
141    }
142  
143 <  RealType Sticky::getStickyCut(int atid) {
143 >  /**
144 >   * This function does the sticky portion of the SSD potential
145 >   * [Chandra and Ichiye, Journal of Chemical Physics 111, 2701
146 >   * (1999)].  The Lennard-Jones and dipolar interaction must be
147 >   * handled separately.  We assume that the rotation matrices have
148 >   * already been calculated and placed in the A1 & A2 entries in the
149 >   * idat structure.
150 >   */
151 >  
152 >  void Sticky::calcForce(InteractionData &idat) {
153 >  
154      if (!initialized_) initialize();
194    std::map<int, AtomType*> :: const_iterator it;
195    it = StickyMap.find(atid);
196    if (it == StickyMap.end()) {
197      sprintf( painCave.errMsg,
198               "Sticky::getStickyCut could not find atid %d in StickyMap\n",
199               (atid));
200      painCave.severity = OPENMD_ERROR;
201      painCave.isFatal = 1;
202      simError();          
203    }
204
205    AtomType* atype = it->second;
206    return MixingMap[make_pair(atype, atype)].rbig;
207  }
208
209
210  void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
211                         RealType rij, RealType r2, RealType sw,
212                         RealType &vpair, RealType &pot,
213                         RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
214                         Vector3d &t1, Vector3d &t2) {
215
216    // This routine does only the sticky portion of the SSD potential
217    // [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
218    // The Lennard-Jones and dipolar interaction must be handled separately.
155      
156 <    // We assume that the rotation matrices have already been calculated
157 <    // and placed in the A array.
158 <    
223 <    if (!initialized_) initialize();
224 <    
225 <    pair<AtomType*, AtomType*> key = make_pair(at1, at2);
226 <    StickyInteractionData mixer = MixingMap[key];
156 >    map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it;
157 >    it = MixingMap.find(idat.atypes);
158 >    if (it != MixingMap.end()) {
159  
160 <    RealType w0  = mixer.w0;
229 <    RealType v0  = mixer.v0;
230 <    RealType v0p = mixer.v0p;
231 <    RealType rl  = mixer.rl;
232 <    RealType ru  = mixer.ru;
233 <    RealType rlp = mixer.rlp;
234 <    RealType rup = mixer.rup;
235 <    RealType rbig = mixer.rbig;
236 <    bool isPower = mixer.isPower;
237 <
238 <    if (rij <= rbig) {
239 <
240 <      RealType r3 = r2 * rij;
241 <      RealType r5 = r3 * r2;
242 <          
243 <      RotMat3x3d A1trans = A1.transpose();
244 <      RotMat3x3d A2trans = A2.transpose();
245 <
246 <      // rotate the inter-particle separation into the two different
247 <      // body-fixed coordinate systems:
248 <
249 <      Vector3d ri = A1 * d;
250 <
251 <      // negative sign because this is the vector from j to i:
252 <
253 <      Vector3d rj = -A2 * d;
254 <
255 <      RealType xi = ri.x();
256 <      RealType yi = ri.y();
257 <      RealType zi = ri.z();
258 <
259 <      RealType xj = rj.x();
260 <      RealType yj = rj.y();
261 <      RealType zj = rj.z();
262 <
263 <      RealType xi2 = xi * xi;
264 <      RealType yi2 = yi * yi;
265 <      RealType zi2 = zi * zi;
266 <
267 <      RealType xj2 = xj * xj;
268 <      RealType yj2 = yj * yj;
269 <      RealType zj2 = zj * zj;    
270 <
271 <      // calculate the switching info. from the splines
272 <
273 <      RealType s = 0.0;
274 <      RealType dsdr = 0.0;
275 <      RealType sp = 0.0;
276 <      RealType dspdr = 0.0;
277 <
278 <      if (rij < ru) {
279 <        if (rij < rl) {
280 <          s = 1.0;
281 <          dsdr = 0.0;
282 <        } else {          
283 <          // we are in the switching region
284 <
285 <          pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij);
286 <          s = res.first;
287 <          dsdr = res.second;
288 <        }
289 <      }
290 <
291 <      if (rij < rup) {
292 <        if (rij < rlp) {
293 <          sp = 1.0;
294 <          dspdr = 0.0;
295 <        } else {
296 <          // we are in the switching region
297 <
298 <          pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij);
299 <          sp = res.first;
300 <          dspdr = res.second;
301 <        }
302 <      }
303 <
304 <      RealType wi = 2.0*(xi2-yi2)*zi / r3;
305 <      RealType wj = 2.0*(xj2-yj2)*zj / r3;
306 <      RealType w = wi+wj;
307 <
308 <
309 <      RealType zif = zi/rij - 0.6;
310 <      RealType zis = zi/rij + 0.8;
311 <
312 <      RealType zjf = zj/rij - 0.6;
313 <      RealType zjs = zj/rij + 0.8;
314 <
315 <      RealType wip = zif*zif*zis*zis - w0;
316 <      RealType wjp = zjf*zjf*zjs*zjs - w0;
317 <      RealType wp = wip + wjp;
318 <
319 <      Vector3d dwi(4.0*xi*zi/r3  - 6.0*xi*zi*(xi2-yi2)/r5,
320 <                   - 4.0*yi*zi/r3  - 6.0*yi*zi*(xi2-yi2)/r5,
321 <                   2.0*(xi2-yi2)/r3  - 6.0*zi2*(xi2-yi2)/r5);
160 >      StickyInteractionData mixer = (*it).second;
161        
162 <      Vector3d dwj(4.0*xj*zj/r3  - 6.0*xj*zj*(xj2-yj2)/r5,
163 <                   - 4.0*yj*zj/r3  - 6.0*yj*zj*(xj2-yj2)/r5,
164 <                   2.0*(xj2-yj2)/r3  - 6.0*zj2*(xj2-yj2)/r5);
165 <
166 <      RealType uglyi = zif*zif*zis + zif*zis*zis;
167 <      RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs;
168 <
169 <      Vector3d dwip(-2.0*xi*zi*uglyi/r3,
170 <                    -2.0*yi*zi*uglyi/r3,
332 <                    2.0*(1.0/rij - zi2/r3)*uglyi);
333 <
334 <      Vector3d dwjp(-2.0*xj*zj*uglyj/r3,
335 <                    -2.0*yj*zj*uglyj/r3,
336 <                    2.0*(1.0/rij - zj2/r3)*uglyj);
337 <
338 <      Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3,
339 <                     4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3,
340 <                     - 8.0*xi*yi*zi/r3);
341 <
342 <      Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3,
343 <                     4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3,
344 <                     - 8.0*xj*yj*zj/r3);
162 >      RealType w0  = mixer.w0;
163 >      RealType v0  = mixer.v0;
164 >      RealType v0p = mixer.v0p;
165 >      RealType rl  = mixer.rl;
166 >      RealType ru  = mixer.ru;
167 >      RealType rlp = mixer.rlp;
168 >      RealType rup = mixer.rup;
169 >      RealType rbig = mixer.rbig;
170 >      bool isPower = mixer.isPower;
171        
172 <      Vector3d dwipdu(2.0*yi*uglyi/rij,
173 <                      -2.0*xi*uglyi/rij,
174 <                      0.0);
175 <
176 <      Vector3d dwjpdu(2.0*yj*uglyj/rij,
177 <                      -2.0*xj*uglyj/rij,
178 <                      0.0);
172 >      if ( *(idat.rij) <= rbig) {
173 >        
174 >        RealType r3 = *(idat.r2) * *(idat.rij);
175 >        RealType r5 = r3 * *(idat.r2);
176 >        
177 >        RotMat3x3d A1trans = idat.A1->transpose();
178 >        RotMat3x3d A2trans = idat.A2->transpose();
179 >        
180 >        // rotate the inter-particle separation into the two different
181 >        // body-fixed coordinate systems:
182 >        
183 >        Vector3d ri = *(idat.A1) * *(idat.d);
184 >        
185 >        // negative sign because this is the vector from j to i:
186 >        
187 >        Vector3d rj = - *(idat.A2) * *(idat.d);
188 >        
189 >        RealType xi = ri.x();
190 >        RealType yi = ri.y();
191 >        RealType zi = ri.z();
192 >        
193 >        RealType xj = rj.x();
194 >        RealType yj = rj.y();
195 >        RealType zj = rj.z();
196 >        
197 >        RealType xi2 = xi * xi;
198 >        RealType yi2 = yi * yi;
199 >        RealType zi2 = zi * zi;
200 >        
201 >        RealType xj2 = xj * xj;
202 >        RealType yj2 = yj * yj;
203 >        RealType zj2 = zj * zj;    
204 >        
205 >        // calculate the switching info. from the splines
206 >        
207 >        RealType s = 0.0;
208 >        RealType dsdr = 0.0;
209 >        RealType sp = 0.0;
210 >        RealType dspdr = 0.0;
211 >        
212 >        if ( *(idat.rij) < ru) {
213 >          if ( *(idat.rij) < rl) {
214 >            s = 1.0;
215 >            dsdr = 0.0;
216 >          } else {          
217 >            // we are in the switching region
218 >            
219 >            pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(*(idat.rij));
220 >            s = res.first;
221 >            dsdr = res.second;
222 >          }
223 >        }
224 >        
225 >        if (*(idat.rij) < rup) {
226 >          if ( *(idat.rij) < rlp) {
227 >            sp = 1.0;
228 >            dspdr = 0.0;
229 >          } else {
230 >            // we are in the switching region
231 >            
232 >            pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt( *(idat.rij));
233 >            sp = res.first;
234 >            dspdr = res.second;
235 >          }
236 >        }
237 >        
238 >        RealType wi = 2.0*(xi2-yi2)*zi / r3;
239 >        RealType wj = 2.0*(xj2-yj2)*zj / r3;
240 >        RealType w = wi+wj;
241 >        
242 >        
243 >        RealType zif = zi/ *(idat.rij)  - 0.6;
244 >        RealType zis = zi/ *(idat.rij)  + 0.8;
245 >        
246 >        RealType zjf = zj/ *(idat.rij)  - 0.6;
247 >        RealType zjs = zj/ *(idat.rij)  + 0.8;
248 >        
249 >        RealType wip = zif*zif*zis*zis - w0;
250 >        RealType wjp = zjf*zjf*zjs*zjs - w0;
251 >        RealType wp = wip + wjp;
252 >        
253 >        Vector3d dwi(4.0*xi*zi/r3  - 6.0*xi*zi*(xi2-yi2)/r5,
254 >                     - 4.0*yi*zi/r3  - 6.0*yi*zi*(xi2-yi2)/r5,
255 >                     2.0*(xi2-yi2)/r3  - 6.0*zi2*(xi2-yi2)/r5);
256 >        
257 >        Vector3d dwj(4.0*xj*zj/r3  - 6.0*xj*zj*(xj2-yj2)/r5,
258 >                     - 4.0*yj*zj/r3  - 6.0*yj*zj*(xj2-yj2)/r5,
259 >                     2.0*(xj2-yj2)/r3  - 6.0*zj2*(xj2-yj2)/r5);
260 >        
261 >        RealType uglyi = zif*zif*zis + zif*zis*zis;
262 >        RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs;
263  
264 <      if (isPower) {
265 <        RealType frac1 = 0.25;
266 <        RealType frac2 = 0.75;      
267 <        RealType wi2 = wi*wi;
268 <        RealType wj2 = wj*wj;
269 <        // sticky power has no w' function:
270 <        w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p;
271 <        wp = 0.0;
272 <        dwi = frac1*3.0*wi2*dwi + frac2*dwi;
273 <        dwj = frac1*3.0*wj2*dwi + frac2*dwi;
274 <        dwip = V3Zero;
275 <        dwjp = V3Zero;
276 <        dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu;
277 <        dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu;
278 <        dwipdu = V3Zero;
279 <        dwjpdu = V3Zero;
280 <        sp = 0.0;
281 <        dspdr = 0.0;
264 >        Vector3d dwip(-2.0*xi*zi*uglyi/r3,
265 >                      -2.0*yi*zi*uglyi/r3,
266 >                      2.0*(1.0/ *(idat.rij)  - zi2/r3)*uglyi);
267 >        
268 >        Vector3d dwjp(-2.0*xj*zj*uglyj/r3,
269 >                      -2.0*yj*zj*uglyj/r3,
270 >                      2.0*(1.0/ *(idat.rij)  - zj2/r3)*uglyj);
271 >        
272 >        Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3,
273 >                       4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3,
274 >                       - 8.0*xi*yi*zi/r3);
275 >        
276 >        Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3,
277 >                       4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3,
278 >                       - 8.0*xj*yj*zj/r3);
279 >        
280 >        Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) ,
281 >                        -2.0*xi*uglyi/ *(idat.rij) ,
282 >                        0.0);
283 >        
284 >        Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) ,
285 >                        -2.0*xj*uglyj/ *(idat.rij) ,
286 >                        0.0);
287 >        
288 >        if (isPower) {
289 >          RealType frac1 = 0.25;
290 >          RealType frac2 = 0.75;      
291 >          RealType wi2 = wi*wi;
292 >          RealType wj2 = wj*wj;
293 >          // sticky power has no w' function:
294 >          w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p;
295 >          wp = 0.0;
296 >          dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi;
297 >          dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi;
298 >          dwip = V3Zero;
299 >          dwjp = V3Zero;
300 >          dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu;
301 >          dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu;
302 >          dwipdu = V3Zero;
303 >          dwjpdu = V3Zero;
304 >          sp = 0.0;
305 >          dspdr = 0.0;
306 >        }
307 >        
308 >        *(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp);
309 >        (*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ;
310 >        
311 >        // do the torques first since they are easy:
312 >        // remember that these are still in the body-fixed axes
313 >        
314 >        Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu);
315 >        Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu);
316 >        
317 >        // go back to lab frame using transpose of rotation matrix:
318 >        
319 >        *(idat.t1) += A1trans * ti;
320 >        *(idat.t2) += A2trans * tj;
321 >        
322 >        // Now, on to the forces:
323 >        
324 >        // first rotate the i terms back into the lab frame:
325 >        
326 >        Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) *  *(idat.sw);
327 >        Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) *  *(idat.sw);
328 >        
329 >        Vector3d fii = A1trans * radcomi;
330 >        Vector3d fjj = A2trans * radcomj;
331 >        
332 >        // now assemble these with the radial-only terms:
333 >        
334 >        *(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) /
335 >                                       *(idat.rij)  + fii - fjj);
336 >        
337        }
373
374      vpair += 0.5*(v0*s*w + v0p*sp*wp);
375      pot += 0.5*(v0*s*w + v0p*sp*wp)*sw;
376
377      // do the torques first since they are easy:
378      // remember that these are still in the body-fixed axes
379
380      Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu);
381      Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu);
382
383      // go back to lab frame using transpose of rotation matrix:
384
385      t1 += A1trans * ti;
386      t2 += A2trans * tj;
387
388      // Now, on to the forces:
389
390      // first rotate the i terms back into the lab frame:
391
392      Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw;
393      Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw;
394
395      Vector3d fii = A1trans * radcomi;
396      Vector3d fjj = A2trans * radcomj;
397      
398      // now assemble these with the radial-only terms:
399      
400      f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj);
401
338      }
403      
404    return;
339      
340 +    return;      
341    }
342  
343 <  void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d,
344 <                              RealType *r, RealType *r2, RealType *sw,
345 <                              RealType *vpair, RealType *pot, RealType *A1,
346 <                              RealType *A2, RealType *f1,
347 <                              RealType *t1, RealType *t2) {
348 <    
349 <    if (!initialized_) initialize();
350 <    
351 <    AtomType* atype1 = StickyMap[*atid1];
352 <    AtomType* atype2 = StickyMap[*atid2];
418 <    
419 <    Vector3d disp(d);
420 <    Vector3d frc(f1);
421 <    Vector3d trq1(t1);
422 <    Vector3d trq2(t2);
423 <    RotMat3x3d Ai(A1);
424 <    RotMat3x3d Aj(A2);
425 <  
426 <    calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot,
427 <              Ai, Aj, frc, trq1, trq2);
428 <      
429 <    f1[0] = frc.x();
430 <    f1[1] = frc.y();
431 <    f1[2] = frc.z();
432 <
433 <    t1[0] = trq1.x();
434 <    t1[1] = trq1.y();
435 <    t1[2] = trq1.z();
436 <
437 <    t2[0] = trq2.x();
438 <    t2[1] = trq2.y();
439 <    t2[2] = trq2.z();
440 <
441 <    return;    
343 >  RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
344 >    if (!initialized_) initialize();  
345 >    map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it;
346 >    it = MixingMap.find(atypes);
347 >    if (it == MixingMap.end())
348 >      return 0.0;
349 >    else  {
350 >      StickyInteractionData mixer = (*it).second;
351 >      return mixer.rbig;
352 >    }
353    }
354   }
444
445 extern "C" {
446  
447 #define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT)
448 #define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR)
449  
450  RealType fortranGetStickyCut(int* atid) {
451    return OpenMD::Sticky::Instance()->getStickyCut(*atid);
452  }
453
454  void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r,
455                       RealType *r2, RealType *sw, RealType *vpair, RealType *pot,
456                       RealType *A1, RealType *A2, RealType *f1,
457                       RealType *t1, RealType *t2){
458    
459    return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2,
460                                                      sw, vpair, pot, A1, A2,
461                                                      f1, t1, t2);
462  }
463 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines