186 |
|
* idat structure. |
187 |
|
*/ |
188 |
|
|
189 |
< |
void Sticky::calcForce(InteractionData idat) { |
189 |
> |
void Sticky::calcForce(InteractionData &idat) { |
190 |
|
|
191 |
|
if (!initialized_) initialize(); |
192 |
|
|
193 |
– |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
193 |
|
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
194 |
< |
it = MixingMap.find(key); |
194 |
> |
it = MixingMap.find(*(idat.atypes)); |
195 |
|
if (it != MixingMap.end()) { |
196 |
|
|
197 |
|
StickyInteractionData mixer = (*it).second; |
206 |
|
RealType rbig = mixer.rbig; |
207 |
|
bool isPower = mixer.isPower; |
208 |
|
|
209 |
< |
if (idat.rij <= rbig) { |
209 |
> |
if ( *(idat.rij) <= rbig) { |
210 |
|
|
211 |
< |
RealType r3 = idat.r2 * idat.rij; |
212 |
< |
RealType r5 = r3 * idat.r2; |
211 |
> |
RealType r3 = *(idat.r2) * *(idat.rij); |
212 |
> |
RealType r5 = r3 * *(idat.r2); |
213 |
|
|
214 |
< |
RotMat3x3d A1trans = idat.A1.transpose(); |
215 |
< |
RotMat3x3d A2trans = idat.A2.transpose(); |
214 |
> |
RotMat3x3d A1trans = idat.A1->transpose(); |
215 |
> |
RotMat3x3d A2trans = idat.A2->transpose(); |
216 |
|
|
217 |
|
// rotate the inter-particle separation into the two different |
218 |
|
// body-fixed coordinate systems: |
219 |
|
|
220 |
< |
Vector3d ri = idat.A1 * idat.d; |
220 |
> |
Vector3d ri = *(idat.A1) * *(idat.d); |
221 |
|
|
222 |
|
// negative sign because this is the vector from j to i: |
223 |
|
|
224 |
< |
Vector3d rj = - idat.A2 * idat.d; |
224 |
> |
Vector3d rj = - *(idat.A2) * *(idat.d); |
225 |
|
|
226 |
|
RealType xi = ri.x(); |
227 |
|
RealType yi = ri.y(); |
246 |
|
RealType sp = 0.0; |
247 |
|
RealType dspdr = 0.0; |
248 |
|
|
249 |
< |
if (idat.rij < ru) { |
250 |
< |
if (idat.rij < rl) { |
249 |
> |
if ( *(idat.rij) < ru) { |
250 |
> |
if ( *(idat.rij) < rl) { |
251 |
|
s = 1.0; |
252 |
|
dsdr = 0.0; |
253 |
|
} else { |
254 |
|
// we are in the switching region |
255 |
|
|
256 |
< |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(idat.rij); |
256 |
> |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(*(idat.rij)); |
257 |
|
s = res.first; |
258 |
|
dsdr = res.second; |
259 |
|
} |
260 |
|
} |
261 |
|
|
262 |
< |
if (idat.rij < rup) { |
263 |
< |
if (idat.rij < rlp) { |
262 |
> |
if (*(idat.rij) < rup) { |
263 |
> |
if ( *(idat.rij) < rlp) { |
264 |
|
sp = 1.0; |
265 |
|
dspdr = 0.0; |
266 |
|
} else { |
267 |
|
// we are in the switching region |
268 |
|
|
269 |
< |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(idat.rij); |
269 |
> |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt( *(idat.rij)); |
270 |
|
sp = res.first; |
271 |
|
dspdr = res.second; |
272 |
|
} |
277 |
|
RealType w = wi+wj; |
278 |
|
|
279 |
|
|
280 |
< |
RealType zif = zi/idat.rij - 0.6; |
281 |
< |
RealType zis = zi/idat.rij + 0.8; |
280 |
> |
RealType zif = zi/ *(idat.rij) - 0.6; |
281 |
> |
RealType zis = zi/ *(idat.rij) + 0.8; |
282 |
|
|
283 |
< |
RealType zjf = zj/idat.rij - 0.6; |
284 |
< |
RealType zjs = zj/idat.rij + 0.8; |
283 |
> |
RealType zjf = zj/ *(idat.rij) - 0.6; |
284 |
> |
RealType zjs = zj/ *(idat.rij) + 0.8; |
285 |
|
|
286 |
|
RealType wip = zif*zif*zis*zis - w0; |
287 |
|
RealType wjp = zjf*zjf*zjs*zjs - w0; |
300 |
|
|
301 |
|
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
302 |
|
-2.0*yi*zi*uglyi/r3, |
303 |
< |
2.0*(1.0/idat.rij - zi2/r3)*uglyi); |
303 |
> |
2.0*(1.0/ *(idat.rij) - zi2/r3)*uglyi); |
304 |
|
|
305 |
|
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
306 |
|
-2.0*yj*zj*uglyj/r3, |
307 |
< |
2.0*(1.0/idat.rij - zj2/r3)*uglyj); |
307 |
> |
2.0*(1.0/ *(idat.rij) - zj2/r3)*uglyj); |
308 |
|
|
309 |
|
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
310 |
|
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
314 |
|
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
315 |
|
- 8.0*xj*yj*zj/r3); |
316 |
|
|
317 |
< |
Vector3d dwipdu(2.0*yi*uglyi/idat.rij, |
318 |
< |
-2.0*xi*uglyi/idat.rij, |
317 |
> |
Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) , |
318 |
> |
-2.0*xi*uglyi/ *(idat.rij) , |
319 |
|
0.0); |
320 |
|
|
321 |
< |
Vector3d dwjpdu(2.0*yj*uglyj/idat.rij, |
322 |
< |
-2.0*xj*uglyj/idat.rij, |
321 |
> |
Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) , |
322 |
> |
-2.0*xj*uglyj/ *(idat.rij) , |
323 |
|
0.0); |
324 |
|
|
325 |
|
if (isPower) { |
342 |
|
dspdr = 0.0; |
343 |
|
} |
344 |
|
|
345 |
< |
idat.vpair += 0.5*(v0*s*w + v0p*sp*wp); |
346 |
< |
idat.pot += 0.5*(v0*s*w + v0p*sp*wp)*idat.sw; |
345 |
> |
*(idat.vpair) += 0.5*(v0*s*w + v0p*sp*wp); |
346 |
> |
idat.pot[HYDROGENBONDING_FAMILY] += 0.5*(v0*s*w + v0p*sp*wp)* *(idat.sw) ; |
347 |
|
|
348 |
|
// do the torques first since they are easy: |
349 |
|
// remember that these are still in the body-fixed axes |
350 |
|
|
351 |
< |
Vector3d ti = 0.5*idat.sw*(v0*s*dwidu + v0p*sp*dwipdu); |
352 |
< |
Vector3d tj = 0.5*idat.sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
351 |
> |
Vector3d ti = 0.5* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu); |
352 |
> |
Vector3d tj = 0.5* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu); |
353 |
|
|
354 |
|
// go back to lab frame using transpose of rotation matrix: |
355 |
|
|
356 |
< |
idat.t1 += A1trans * ti; |
357 |
< |
idat.t2 += A2trans * tj; |
356 |
> |
*(idat.t1) += A1trans * ti; |
357 |
> |
*(idat.t2) += A2trans * tj; |
358 |
|
|
359 |
|
// Now, on to the forces: |
360 |
|
|
361 |
|
// first rotate the i terms back into the lab frame: |
362 |
|
|
363 |
< |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * idat.sw; |
364 |
< |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * idat.sw; |
363 |
> |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * *(idat.sw); |
364 |
> |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * *(idat.sw); |
365 |
|
|
366 |
|
Vector3d fii = A1trans * radcomi; |
367 |
|
Vector3d fjj = A2trans * radcomj; |
368 |
|
|
369 |
|
// now assemble these with the radial-only terms: |
370 |
|
|
371 |
< |
idat.f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * idat.d / |
372 |
< |
idat.rij + fii - fjj); |
371 |
> |
*(idat.f1) += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) / |
372 |
> |
*(idat.rij) + fii - fjj); |
373 |
|
|
374 |
|
} |
375 |
|
} |
377 |
|
return; |
378 |
|
} |
379 |
|
|
380 |
< |
RealType Sticky::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
380 |
> |
RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
381 |
|
if (!initialized_) initialize(); |
383 |
– |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
382 |
|
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
383 |
< |
it = MixingMap.find(key); |
383 |
> |
it = MixingMap.find(atypes); |
384 |
|
if (it == MixingMap.end()) |
385 |
|
return 0.0; |
386 |
|
else { |