49 |
|
|
50 |
|
using namespace std; |
51 |
|
namespace OpenMD { |
52 |
– |
|
53 |
– |
bool Sticky::initialized_ = false; |
54 |
– |
ForceField* Sticky::forceField_ = NULL; |
55 |
– |
map<int, AtomType*> Sticky::StickyMap; |
56 |
– |
map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap; |
52 |
|
|
53 |
< |
Sticky* Sticky::_instance = NULL; |
53 |
> |
Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {} |
54 |
|
|
60 |
– |
Sticky* Sticky::Instance() { |
61 |
– |
if (!_instance) { |
62 |
– |
_instance = new Sticky(); |
63 |
– |
} |
64 |
– |
return _instance; |
65 |
– |
} |
66 |
– |
|
55 |
|
StickyParam Sticky::getStickyParam(AtomType* atomType) { |
56 |
|
|
57 |
|
// Do sanity checking on the AtomType we were passed before |
177 |
|
} |
178 |
|
} |
179 |
|
|
180 |
< |
RealType Sticky::getStickyCut(int atid) { |
180 |
> |
/** |
181 |
> |
* This function does the sticky portion of the SSD potential |
182 |
> |
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
183 |
> |
* (1999)]. The Lennard-Jones and dipolar interaction must be |
184 |
> |
* handled separately. We assume that the rotation matrices have |
185 |
> |
* already been calculated and placed in the A1 & A2 entries in the |
186 |
> |
* idat structure. |
187 |
> |
*/ |
188 |
> |
|
189 |
> |
void Sticky::calcForce(InteractionData idat) { |
190 |
> |
|
191 |
|
if (!initialized_) initialize(); |
194 |
– |
std::map<int, AtomType*> :: const_iterator it; |
195 |
– |
it = StickyMap.find(atid); |
196 |
– |
if (it == StickyMap.end()) { |
197 |
– |
sprintf( painCave.errMsg, |
198 |
– |
"Sticky::getStickyCut could not find atid %d in StickyMap\n", |
199 |
– |
(atid)); |
200 |
– |
painCave.severity = OPENMD_ERROR; |
201 |
– |
painCave.isFatal = 1; |
202 |
– |
simError(); |
203 |
– |
} |
204 |
– |
|
205 |
– |
AtomType* atype = it->second; |
206 |
– |
return MixingMap[make_pair(atype, atype)].rbig; |
207 |
– |
} |
208 |
– |
|
209 |
– |
|
210 |
– |
void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
211 |
– |
RealType rij, RealType r2, RealType sw, |
212 |
– |
RealType &vpair, RealType &pot, |
213 |
– |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
214 |
– |
Vector3d &t1, Vector3d &t2) { |
215 |
– |
|
216 |
– |
// This routine does only the sticky portion of the SSD potential |
217 |
– |
// [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
218 |
– |
// The Lennard-Jones and dipolar interaction must be handled separately. |
192 |
|
|
193 |
< |
// We assume that the rotation matrices have already been calculated |
194 |
< |
// and placed in the A array. |
195 |
< |
|
196 |
< |
if (!initialized_) initialize(); |
224 |
< |
|
225 |
< |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
226 |
< |
StickyInteractionData mixer = MixingMap[key]; |
227 |
< |
|
228 |
< |
RealType w0 = mixer.w0; |
229 |
< |
RealType v0 = mixer.v0; |
230 |
< |
RealType v0p = mixer.v0p; |
231 |
< |
RealType rl = mixer.rl; |
232 |
< |
RealType ru = mixer.ru; |
233 |
< |
RealType rlp = mixer.rlp; |
234 |
< |
RealType rup = mixer.rup; |
235 |
< |
RealType rbig = mixer.rbig; |
236 |
< |
bool isPower = mixer.isPower; |
237 |
< |
|
238 |
< |
if (rij <= rbig) { |
239 |
< |
|
240 |
< |
RealType r3 = r2 * rij; |
241 |
< |
RealType r5 = r3 * r2; |
242 |
< |
|
243 |
< |
RotMat3x3d A1trans = A1.transpose(); |
244 |
< |
RotMat3x3d A2trans = A2.transpose(); |
245 |
< |
|
246 |
< |
// rotate the inter-particle separation into the two different |
247 |
< |
// body-fixed coordinate systems: |
248 |
< |
|
249 |
< |
Vector3d ri = A1 * d; |
250 |
< |
|
251 |
< |
// negative sign because this is the vector from j to i: |
252 |
< |
|
253 |
< |
Vector3d rj = -A2 * d; |
254 |
< |
|
255 |
< |
RealType xi = ri.x(); |
256 |
< |
RealType yi = ri.y(); |
257 |
< |
RealType zi = ri.z(); |
258 |
< |
|
259 |
< |
RealType xj = rj.x(); |
260 |
< |
RealType yj = rj.y(); |
261 |
< |
RealType zj = rj.z(); |
262 |
< |
|
263 |
< |
RealType xi2 = xi * xi; |
264 |
< |
RealType yi2 = yi * yi; |
265 |
< |
RealType zi2 = zi * zi; |
266 |
< |
|
267 |
< |
RealType xj2 = xj * xj; |
268 |
< |
RealType yj2 = yj * yj; |
269 |
< |
RealType zj2 = zj * zj; |
270 |
< |
|
271 |
< |
// calculate the switching info. from the splines |
272 |
< |
|
273 |
< |
RealType s = 0.0; |
274 |
< |
RealType dsdr = 0.0; |
275 |
< |
RealType sp = 0.0; |
276 |
< |
RealType dspdr = 0.0; |
277 |
< |
|
278 |
< |
if (rij < ru) { |
279 |
< |
if (rij < rl) { |
280 |
< |
s = 1.0; |
281 |
< |
dsdr = 0.0; |
282 |
< |
} else { |
283 |
< |
// we are in the switching region |
284 |
< |
|
285 |
< |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij); |
286 |
< |
s = res.first; |
287 |
< |
dsdr = res.second; |
288 |
< |
} |
289 |
< |
} |
193 |
> |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
194 |
> |
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
195 |
> |
it = MixingMap.find(key); |
196 |
> |
if (it != MixingMap.end()) { |
197 |
|
|
198 |
< |
if (rij < rup) { |
292 |
< |
if (rij < rlp) { |
293 |
< |
sp = 1.0; |
294 |
< |
dspdr = 0.0; |
295 |
< |
} else { |
296 |
< |
// we are in the switching region |
297 |
< |
|
298 |
< |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij); |
299 |
< |
sp = res.first; |
300 |
< |
dspdr = res.second; |
301 |
< |
} |
302 |
< |
} |
303 |
< |
|
304 |
< |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
305 |
< |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
306 |
< |
RealType w = wi+wj; |
307 |
< |
|
308 |
< |
|
309 |
< |
RealType zif = zi/rij - 0.6; |
310 |
< |
RealType zis = zi/rij + 0.8; |
311 |
< |
|
312 |
< |
RealType zjf = zj/rij - 0.6; |
313 |
< |
RealType zjs = zj/rij + 0.8; |
314 |
< |
|
315 |
< |
RealType wip = zif*zif*zis*zis - w0; |
316 |
< |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
317 |
< |
RealType wp = wip + wjp; |
318 |
< |
|
319 |
< |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
320 |
< |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
321 |
< |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
198 |
> |
StickyInteractionData mixer = (*it).second; |
199 |
|
|
200 |
< |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
201 |
< |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
202 |
< |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
203 |
< |
|
204 |
< |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
205 |
< |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
206 |
< |
|
207 |
< |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
208 |
< |
-2.0*yi*zi*uglyi/r3, |
332 |
< |
2.0*(1.0/rij - zi2/r3)*uglyi); |
333 |
< |
|
334 |
< |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
335 |
< |
-2.0*yj*zj*uglyj/r3, |
336 |
< |
2.0*(1.0/rij - zj2/r3)*uglyj); |
337 |
< |
|
338 |
< |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
339 |
< |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
340 |
< |
- 8.0*xi*yi*zi/r3); |
341 |
< |
|
342 |
< |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
343 |
< |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
344 |
< |
- 8.0*xj*yj*zj/r3); |
345 |
< |
|
346 |
< |
Vector3d dwipdu(2.0*yi*uglyi/rij, |
347 |
< |
-2.0*xi*uglyi/rij, |
348 |
< |
0.0); |
349 |
< |
|
350 |
< |
Vector3d dwjpdu(2.0*yj*uglyj/rij, |
351 |
< |
-2.0*xj*uglyj/rij, |
352 |
< |
0.0); |
353 |
< |
|
354 |
< |
if (isPower) { |
355 |
< |
RealType frac1 = 0.25; |
356 |
< |
RealType frac2 = 0.75; |
357 |
< |
RealType wi2 = wi*wi; |
358 |
< |
RealType wj2 = wj*wj; |
359 |
< |
// sticky power has no w' function: |
360 |
< |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
361 |
< |
wp = 0.0; |
362 |
< |
dwi = frac1*3.0*wi2*dwi + frac2*dwi; |
363 |
< |
dwj = frac1*3.0*wj2*dwi + frac2*dwi; |
364 |
< |
dwip = V3Zero; |
365 |
< |
dwjp = V3Zero; |
366 |
< |
dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu; |
367 |
< |
dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu; |
368 |
< |
dwipdu = V3Zero; |
369 |
< |
dwjpdu = V3Zero; |
370 |
< |
sp = 0.0; |
371 |
< |
dspdr = 0.0; |
372 |
< |
} |
373 |
< |
|
374 |
< |
vpair += 0.5*(v0*s*w + v0p*sp*wp); |
375 |
< |
pot += 0.5*(v0*s*w + v0p*sp*wp)*sw; |
376 |
< |
|
377 |
< |
// do the torques first since they are easy: |
378 |
< |
// remember that these are still in the body-fixed axes |
379 |
< |
|
380 |
< |
Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu); |
381 |
< |
Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
382 |
< |
|
383 |
< |
// go back to lab frame using transpose of rotation matrix: |
384 |
< |
|
385 |
< |
t1 += A1trans * ti; |
386 |
< |
t2 += A2trans * tj; |
387 |
< |
|
388 |
< |
// Now, on to the forces: |
389 |
< |
|
390 |
< |
// first rotate the i terms back into the lab frame: |
391 |
< |
|
392 |
< |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw; |
393 |
< |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw; |
394 |
< |
|
395 |
< |
Vector3d fii = A1trans * radcomi; |
396 |
< |
Vector3d fjj = A2trans * radcomj; |
397 |
< |
|
398 |
< |
// now assemble these with the radial-only terms: |
200 |
> |
RealType w0 = mixer.w0; |
201 |
> |
RealType v0 = mixer.v0; |
202 |
> |
RealType v0p = mixer.v0p; |
203 |
> |
RealType rl = mixer.rl; |
204 |
> |
RealType ru = mixer.ru; |
205 |
> |
RealType rlp = mixer.rlp; |
206 |
> |
RealType rup = mixer.rup; |
207 |
> |
RealType rbig = mixer.rbig; |
208 |
> |
bool isPower = mixer.isPower; |
209 |
|
|
210 |
< |
f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj); |
210 |
> |
if (idat.rij <= rbig) { |
211 |
> |
|
212 |
> |
RealType r3 = idat.r2 * idat.rij; |
213 |
> |
RealType r5 = r3 * idat.r2; |
214 |
> |
|
215 |
> |
RotMat3x3d A1trans = idat.A1.transpose(); |
216 |
> |
RotMat3x3d A2trans = idat.A2.transpose(); |
217 |
> |
|
218 |
> |
// rotate the inter-particle separation into the two different |
219 |
> |
// body-fixed coordinate systems: |
220 |
> |
|
221 |
> |
Vector3d ri = idat.A1 * idat.d; |
222 |
> |
|
223 |
> |
// negative sign because this is the vector from j to i: |
224 |
> |
|
225 |
> |
Vector3d rj = - idat.A2 * idat.d; |
226 |
> |
|
227 |
> |
RealType xi = ri.x(); |
228 |
> |
RealType yi = ri.y(); |
229 |
> |
RealType zi = ri.z(); |
230 |
> |
|
231 |
> |
RealType xj = rj.x(); |
232 |
> |
RealType yj = rj.y(); |
233 |
> |
RealType zj = rj.z(); |
234 |
> |
|
235 |
> |
RealType xi2 = xi * xi; |
236 |
> |
RealType yi2 = yi * yi; |
237 |
> |
RealType zi2 = zi * zi; |
238 |
> |
|
239 |
> |
RealType xj2 = xj * xj; |
240 |
> |
RealType yj2 = yj * yj; |
241 |
> |
RealType zj2 = zj * zj; |
242 |
> |
|
243 |
> |
// calculate the switching info. from the splines |
244 |
> |
|
245 |
> |
RealType s = 0.0; |
246 |
> |
RealType dsdr = 0.0; |
247 |
> |
RealType sp = 0.0; |
248 |
> |
RealType dspdr = 0.0; |
249 |
> |
|
250 |
> |
if (idat.rij < ru) { |
251 |
> |
if (idat.rij < rl) { |
252 |
> |
s = 1.0; |
253 |
> |
dsdr = 0.0; |
254 |
> |
} else { |
255 |
> |
// we are in the switching region |
256 |
> |
|
257 |
> |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(idat.rij); |
258 |
> |
s = res.first; |
259 |
> |
dsdr = res.second; |
260 |
> |
} |
261 |
> |
} |
262 |
> |
|
263 |
> |
if (idat.rij < rup) { |
264 |
> |
if (idat.rij < rlp) { |
265 |
> |
sp = 1.0; |
266 |
> |
dspdr = 0.0; |
267 |
> |
} else { |
268 |
> |
// we are in the switching region |
269 |
> |
|
270 |
> |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(idat.rij); |
271 |
> |
sp = res.first; |
272 |
> |
dspdr = res.second; |
273 |
> |
} |
274 |
> |
} |
275 |
> |
|
276 |
> |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
277 |
> |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
278 |
> |
RealType w = wi+wj; |
279 |
> |
|
280 |
> |
|
281 |
> |
RealType zif = zi/idat.rij - 0.6; |
282 |
> |
RealType zis = zi/idat.rij + 0.8; |
283 |
> |
|
284 |
> |
RealType zjf = zj/idat.rij - 0.6; |
285 |
> |
RealType zjs = zj/idat.rij + 0.8; |
286 |
> |
|
287 |
> |
RealType wip = zif*zif*zis*zis - w0; |
288 |
> |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
289 |
> |
RealType wp = wip + wjp; |
290 |
> |
|
291 |
> |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
292 |
> |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
293 |
> |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
294 |
> |
|
295 |
> |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
296 |
> |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
297 |
> |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
298 |
> |
|
299 |
> |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
300 |
> |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
301 |
|
|
302 |
+ |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
303 |
+ |
-2.0*yi*zi*uglyi/r3, |
304 |
+ |
2.0*(1.0/idat.rij - zi2/r3)*uglyi); |
305 |
+ |
|
306 |
+ |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
307 |
+ |
-2.0*yj*zj*uglyj/r3, |
308 |
+ |
2.0*(1.0/idat.rij - zj2/r3)*uglyj); |
309 |
+ |
|
310 |
+ |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
311 |
+ |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
312 |
+ |
- 8.0*xi*yi*zi/r3); |
313 |
+ |
|
314 |
+ |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
315 |
+ |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
316 |
+ |
- 8.0*xj*yj*zj/r3); |
317 |
+ |
|
318 |
+ |
Vector3d dwipdu(2.0*yi*uglyi/idat.rij, |
319 |
+ |
-2.0*xi*uglyi/idat.rij, |
320 |
+ |
0.0); |
321 |
+ |
|
322 |
+ |
Vector3d dwjpdu(2.0*yj*uglyj/idat.rij, |
323 |
+ |
-2.0*xj*uglyj/idat.rij, |
324 |
+ |
0.0); |
325 |
+ |
|
326 |
+ |
if (isPower) { |
327 |
+ |
RealType frac1 = 0.25; |
328 |
+ |
RealType frac2 = 0.75; |
329 |
+ |
RealType wi2 = wi*wi; |
330 |
+ |
RealType wj2 = wj*wj; |
331 |
+ |
// sticky power has no w' function: |
332 |
+ |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
333 |
+ |
wp = 0.0; |
334 |
+ |
dwi = frac1*3.0*wi2*dwi + frac2*dwi; |
335 |
+ |
dwj = frac1*3.0*wj2*dwi + frac2*dwi; |
336 |
+ |
dwip = V3Zero; |
337 |
+ |
dwjp = V3Zero; |
338 |
+ |
dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu; |
339 |
+ |
dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu; |
340 |
+ |
dwipdu = V3Zero; |
341 |
+ |
dwjpdu = V3Zero; |
342 |
+ |
sp = 0.0; |
343 |
+ |
dspdr = 0.0; |
344 |
+ |
} |
345 |
+ |
|
346 |
+ |
idat.vpair += 0.5*(v0*s*w + v0p*sp*wp); |
347 |
+ |
idat.pot += 0.5*(v0*s*w + v0p*sp*wp)*idat.sw; |
348 |
+ |
|
349 |
+ |
// do the torques first since they are easy: |
350 |
+ |
// remember that these are still in the body-fixed axes |
351 |
+ |
|
352 |
+ |
Vector3d ti = 0.5*idat.sw*(v0*s*dwidu + v0p*sp*dwipdu); |
353 |
+ |
Vector3d tj = 0.5*idat.sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
354 |
+ |
|
355 |
+ |
// go back to lab frame using transpose of rotation matrix: |
356 |
+ |
|
357 |
+ |
idat.t1 += A1trans * ti; |
358 |
+ |
idat.t2 += A2trans * tj; |
359 |
+ |
|
360 |
+ |
// Now, on to the forces: |
361 |
+ |
|
362 |
+ |
// first rotate the i terms back into the lab frame: |
363 |
+ |
|
364 |
+ |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * idat.sw; |
365 |
+ |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * idat.sw; |
366 |
+ |
|
367 |
+ |
Vector3d fii = A1trans * radcomi; |
368 |
+ |
Vector3d fjj = A2trans * radcomj; |
369 |
+ |
|
370 |
+ |
// now assemble these with the radial-only terms: |
371 |
+ |
|
372 |
+ |
idat.f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * idat.d / |
373 |
+ |
idat.rij + fii - fjj); |
374 |
+ |
|
375 |
+ |
} |
376 |
|
} |
403 |
– |
|
404 |
– |
return; |
377 |
|
|
378 |
+ |
return; |
379 |
|
} |
380 |
|
|
381 |
< |
void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d, |
382 |
< |
RealType *r, RealType *r2, RealType *sw, |
383 |
< |
RealType *vpair, RealType *pot, RealType *A1, |
384 |
< |
RealType *A2, RealType *f1, |
385 |
< |
RealType *t1, RealType *t2) { |
386 |
< |
|
387 |
< |
if (!initialized_) initialize(); |
388 |
< |
|
389 |
< |
AtomType* atype1 = StickyMap[*atid1]; |
390 |
< |
AtomType* atype2 = StickyMap[*atid2]; |
391 |
< |
|
419 |
< |
Vector3d disp(d); |
420 |
< |
Vector3d frc(f1); |
421 |
< |
Vector3d trq1(t1); |
422 |
< |
Vector3d trq2(t2); |
423 |
< |
RotMat3x3d Ai(A1); |
424 |
< |
RotMat3x3d Aj(A2); |
425 |
< |
|
426 |
< |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot, |
427 |
< |
Ai, Aj, frc, trq1, trq2); |
428 |
< |
|
429 |
< |
f1[0] = frc.x(); |
430 |
< |
f1[1] = frc.y(); |
431 |
< |
f1[2] = frc.z(); |
432 |
< |
|
433 |
< |
t1[0] = trq1.x(); |
434 |
< |
t1[1] = trq1.y(); |
435 |
< |
t1[2] = trq1.z(); |
436 |
< |
|
437 |
< |
t2[0] = trq2.x(); |
438 |
< |
t2[1] = trq2.y(); |
439 |
< |
t2[2] = trq2.z(); |
440 |
< |
|
441 |
< |
return; |
381 |
> |
RealType Sticky::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
382 |
> |
if (!initialized_) initialize(); |
383 |
> |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
384 |
> |
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
385 |
> |
it = MixingMap.find(key); |
386 |
> |
if (it == MixingMap.end()) |
387 |
> |
return 0.0; |
388 |
> |
else { |
389 |
> |
StickyInteractionData mixer = (*it).second; |
390 |
> |
return mixer.rbig; |
391 |
> |
} |
392 |
|
} |
393 |
|
} |
444 |
– |
|
445 |
– |
extern "C" { |
446 |
– |
|
447 |
– |
#define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT) |
448 |
– |
#define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR) |
449 |
– |
|
450 |
– |
RealType fortranGetStickyCut(int* atid) { |
451 |
– |
return OpenMD::Sticky::Instance()->getStickyCut(*atid); |
452 |
– |
} |
453 |
– |
|
454 |
– |
void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r, |
455 |
– |
RealType *r2, RealType *sw, RealType *vpair, RealType *pot, |
456 |
– |
RealType *A1, RealType *A2, RealType *f1, |
457 |
– |
RealType *t1, RealType *t2){ |
458 |
– |
|
459 |
– |
return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2, |
460 |
– |
sw, vpair, pot, A1, A2, |
461 |
– |
f1, t1, t2); |
462 |
– |
} |
463 |
– |
} |