1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/Sticky.hpp" |
47 |
#include "nonbonded/LJ.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
using namespace std; |
51 |
namespace OpenMD { |
52 |
|
53 |
Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {} |
54 |
|
55 |
StickyParam Sticky::getStickyParam(AtomType* atomType) { |
56 |
|
57 |
// Do sanity checking on the AtomType we were passed before |
58 |
// building any data structures: |
59 |
if (!atomType->isSticky() && !atomType->isStickyPower()) { |
60 |
sprintf( painCave.errMsg, |
61 |
"Sticky::getStickyParam was passed an atomType (%s) that does\n" |
62 |
"\tnot appear to be a Sticky atom.\n", |
63 |
atomType->getName().c_str()); |
64 |
painCave.severity = OPENMD_ERROR; |
65 |
painCave.isFatal = 1; |
66 |
simError(); |
67 |
} |
68 |
|
69 |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
70 |
GenericData* data = daType->getPropertyByName("Sticky"); |
71 |
if (data == NULL) { |
72 |
sprintf( painCave.errMsg, "Sticky::getStickyParam could not find\n" |
73 |
"\tSticky parameters for atomType %s.\n", |
74 |
daType->getName().c_str()); |
75 |
painCave.severity = OPENMD_ERROR; |
76 |
painCave.isFatal = 1; |
77 |
simError(); |
78 |
} |
79 |
|
80 |
StickyParamGenericData* stickyData = dynamic_cast<StickyParamGenericData*>(data); |
81 |
if (stickyData == NULL) { |
82 |
sprintf( painCave.errMsg, |
83 |
"Sticky::getStickyParam could not convert GenericData to\n" |
84 |
"\tStickyParamGenericData for atom type %s\n", |
85 |
daType->getName().c_str()); |
86 |
painCave.severity = OPENMD_ERROR; |
87 |
painCave.isFatal = 1; |
88 |
simError(); |
89 |
} |
90 |
|
91 |
return stickyData->getData(); |
92 |
} |
93 |
|
94 |
void Sticky::initialize() { |
95 |
|
96 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
97 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
98 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
99 |
AtomType* at; |
100 |
|
101 |
// Sticky handles all of the Sticky-Sticky interactions |
102 |
|
103 |
for (at = atomTypes->beginType(i); at != NULL; |
104 |
at = atomTypes->nextType(i)) { |
105 |
|
106 |
if (at->isSticky() || at->isStickyPower()) |
107 |
addType(at); |
108 |
} |
109 |
|
110 |
initialized_ = true; |
111 |
} |
112 |
|
113 |
void Sticky::addType(AtomType* atomType){ |
114 |
// add it to the map: |
115 |
AtomTypeProperties atp = atomType->getATP(); |
116 |
|
117 |
pair<map<int,AtomType*>::iterator,bool> ret; |
118 |
ret = StickyMap.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
119 |
if (ret.second == false) { |
120 |
sprintf( painCave.errMsg, |
121 |
"Sticky already had a previous entry with ident %d\n", |
122 |
atp.ident); |
123 |
painCave.severity = OPENMD_INFO; |
124 |
painCave.isFatal = 0; |
125 |
simError(); |
126 |
} |
127 |
|
128 |
RealType w0i, v0i, v0pi, rli, rui, rlpi, rupi; |
129 |
|
130 |
StickyParam sticky1 = getStickyParam(atomType); |
131 |
|
132 |
// Now, iterate over all known types and add to the mixing map: |
133 |
|
134 |
map<int, AtomType*>::iterator it; |
135 |
for( it = StickyMap.begin(); it != StickyMap.end(); ++it) { |
136 |
|
137 |
AtomType* atype2 = (*it).second; |
138 |
|
139 |
StickyParam sticky2 = getStickyParam(atype2); |
140 |
|
141 |
StickyInteractionData mixer; |
142 |
|
143 |
// Mixing two different sticky types is silly, but if you want 2 |
144 |
// sticky types in your simulation, we'll let you do it with the |
145 |
// Lorentz- Berthelot mixing rules (which happen to do the right thing |
146 |
// when atomType and atype2 happen to be the same. |
147 |
|
148 |
mixer.rl = 0.5 * ( sticky1.rl + sticky2.rl ); |
149 |
mixer.ru = 0.5 * ( sticky1.ru + sticky2.ru ); |
150 |
mixer.rlp = 0.5 * ( sticky1.rlp + sticky2.rlp ); |
151 |
mixer.rup = 0.5 * ( sticky1.rup + sticky2.rup ); |
152 |
mixer.rbig = max(mixer.ru, mixer.rup); |
153 |
mixer.w0 = sqrt( sticky1.w0 * sticky2.w0 ); |
154 |
mixer.v0 = sqrt( sticky1.v0 * sticky2.v0 ); |
155 |
mixer.v0p = sqrt( sticky1.v0p * sticky2.v0p ); |
156 |
mixer.isPower = atomType->isStickyPower() && atype2->isStickyPower(); |
157 |
|
158 |
CubicSpline* s = new CubicSpline(); |
159 |
s->addPoint(mixer.rl, 1.0); |
160 |
s->addPoint(mixer.ru, 0.0); |
161 |
mixer.s = s; |
162 |
|
163 |
CubicSpline* sp = new CubicSpline(); |
164 |
sp->addPoint(mixer.rlp, 1.0); |
165 |
sp->addPoint(mixer.rup, 0.0); |
166 |
mixer.sp = sp; |
167 |
|
168 |
|
169 |
pair<AtomType*, AtomType*> key1, key2; |
170 |
key1 = make_pair(atomType, atype2); |
171 |
key2 = make_pair(atype2, atomType); |
172 |
|
173 |
MixingMap[key1] = mixer; |
174 |
if (key2 != key1) { |
175 |
MixingMap[key2] = mixer; |
176 |
} |
177 |
} |
178 |
} |
179 |
|
180 |
/** |
181 |
* This function does the sticky portion of the SSD potential |
182 |
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
183 |
* (1999)]. The Lennard-Jones and dipolar interaction must be |
184 |
* handled separately. We assume that the rotation matrices have |
185 |
* already been calculated and placed in the A1 & A2 entries in the |
186 |
* idat structure. |
187 |
*/ |
188 |
|
189 |
void Sticky::calcForce(InteractionData idat) { |
190 |
|
191 |
if (!initialized_) initialize(); |
192 |
|
193 |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
194 |
StickyInteractionData mixer = MixingMap[key]; |
195 |
|
196 |
RealType w0 = mixer.w0; |
197 |
RealType v0 = mixer.v0; |
198 |
RealType v0p = mixer.v0p; |
199 |
RealType rl = mixer.rl; |
200 |
RealType ru = mixer.ru; |
201 |
RealType rlp = mixer.rlp; |
202 |
RealType rup = mixer.rup; |
203 |
RealType rbig = mixer.rbig; |
204 |
bool isPower = mixer.isPower; |
205 |
|
206 |
if (idat.rij <= rbig) { |
207 |
|
208 |
RealType r3 = idat.r2 * idat.rij; |
209 |
RealType r5 = r3 * idat.r2; |
210 |
|
211 |
RotMat3x3d A1trans = idat.A1.transpose(); |
212 |
RotMat3x3d A2trans = idat.A2.transpose(); |
213 |
|
214 |
// rotate the inter-particle separation into the two different |
215 |
// body-fixed coordinate systems: |
216 |
|
217 |
Vector3d ri = idat.A1 * idat.d; |
218 |
|
219 |
// negative sign because this is the vector from j to i: |
220 |
|
221 |
Vector3d rj = - idat.A2 * idat.d; |
222 |
|
223 |
RealType xi = ri.x(); |
224 |
RealType yi = ri.y(); |
225 |
RealType zi = ri.z(); |
226 |
|
227 |
RealType xj = rj.x(); |
228 |
RealType yj = rj.y(); |
229 |
RealType zj = rj.z(); |
230 |
|
231 |
RealType xi2 = xi * xi; |
232 |
RealType yi2 = yi * yi; |
233 |
RealType zi2 = zi * zi; |
234 |
|
235 |
RealType xj2 = xj * xj; |
236 |
RealType yj2 = yj * yj; |
237 |
RealType zj2 = zj * zj; |
238 |
|
239 |
// calculate the switching info. from the splines |
240 |
|
241 |
RealType s = 0.0; |
242 |
RealType dsdr = 0.0; |
243 |
RealType sp = 0.0; |
244 |
RealType dspdr = 0.0; |
245 |
|
246 |
if (idat.rij < ru) { |
247 |
if (idat.rij < rl) { |
248 |
s = 1.0; |
249 |
dsdr = 0.0; |
250 |
} else { |
251 |
// we are in the switching region |
252 |
|
253 |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(idat.rij); |
254 |
s = res.first; |
255 |
dsdr = res.second; |
256 |
} |
257 |
} |
258 |
|
259 |
if (idat.rij < rup) { |
260 |
if (idat.rij < rlp) { |
261 |
sp = 1.0; |
262 |
dspdr = 0.0; |
263 |
} else { |
264 |
// we are in the switching region |
265 |
|
266 |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(idat.rij); |
267 |
sp = res.first; |
268 |
dspdr = res.second; |
269 |
} |
270 |
} |
271 |
|
272 |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
273 |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
274 |
RealType w = wi+wj; |
275 |
|
276 |
|
277 |
RealType zif = zi/idat.rij - 0.6; |
278 |
RealType zis = zi/idat.rij + 0.8; |
279 |
|
280 |
RealType zjf = zj/idat.rij - 0.6; |
281 |
RealType zjs = zj/idat.rij + 0.8; |
282 |
|
283 |
RealType wip = zif*zif*zis*zis - w0; |
284 |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
285 |
RealType wp = wip + wjp; |
286 |
|
287 |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
288 |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
289 |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
290 |
|
291 |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
292 |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
293 |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
294 |
|
295 |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
296 |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
297 |
|
298 |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
299 |
-2.0*yi*zi*uglyi/r3, |
300 |
2.0*(1.0/idat.rij - zi2/r3)*uglyi); |
301 |
|
302 |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
303 |
-2.0*yj*zj*uglyj/r3, |
304 |
2.0*(1.0/idat.rij - zj2/r3)*uglyj); |
305 |
|
306 |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
307 |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
308 |
- 8.0*xi*yi*zi/r3); |
309 |
|
310 |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
311 |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
312 |
- 8.0*xj*yj*zj/r3); |
313 |
|
314 |
Vector3d dwipdu(2.0*yi*uglyi/idat.rij, |
315 |
-2.0*xi*uglyi/idat.rij, |
316 |
0.0); |
317 |
|
318 |
Vector3d dwjpdu(2.0*yj*uglyj/idat.rij, |
319 |
-2.0*xj*uglyj/idat.rij, |
320 |
0.0); |
321 |
|
322 |
if (isPower) { |
323 |
RealType frac1 = 0.25; |
324 |
RealType frac2 = 0.75; |
325 |
RealType wi2 = wi*wi; |
326 |
RealType wj2 = wj*wj; |
327 |
// sticky power has no w' function: |
328 |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
329 |
wp = 0.0; |
330 |
dwi = frac1*3.0*wi2*dwi + frac2*dwi; |
331 |
dwj = frac1*3.0*wj2*dwi + frac2*dwi; |
332 |
dwip = V3Zero; |
333 |
dwjp = V3Zero; |
334 |
dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu; |
335 |
dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu; |
336 |
dwipdu = V3Zero; |
337 |
dwjpdu = V3Zero; |
338 |
sp = 0.0; |
339 |
dspdr = 0.0; |
340 |
} |
341 |
|
342 |
idat.vpair += 0.5*(v0*s*w + v0p*sp*wp); |
343 |
idat.pot += 0.5*(v0*s*w + v0p*sp*wp)*idat.sw; |
344 |
|
345 |
// do the torques first since they are easy: |
346 |
// remember that these are still in the body-fixed axes |
347 |
|
348 |
Vector3d ti = 0.5*idat.sw*(v0*s*dwidu + v0p*sp*dwipdu); |
349 |
Vector3d tj = 0.5*idat.sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
350 |
|
351 |
// go back to lab frame using transpose of rotation matrix: |
352 |
|
353 |
idat.t1 += A1trans * ti; |
354 |
idat.t2 += A2trans * tj; |
355 |
|
356 |
// Now, on to the forces: |
357 |
|
358 |
// first rotate the i terms back into the lab frame: |
359 |
|
360 |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * idat.sw; |
361 |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * idat.sw; |
362 |
|
363 |
Vector3d fii = A1trans * radcomi; |
364 |
Vector3d fjj = A2trans * radcomj; |
365 |
|
366 |
// now assemble these with the radial-only terms: |
367 |
|
368 |
idat.f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * idat.d / |
369 |
idat.rij + fii - fjj); |
370 |
|
371 |
} |
372 |
|
373 |
return; |
374 |
|
375 |
} |
376 |
} |