1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/Sticky.hpp" |
47 |
#include "nonbonded/LJ.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
using namespace std; |
51 |
namespace OpenMD { |
52 |
|
53 |
bool Sticky::initialized_ = false; |
54 |
ForceField* Sticky::forceField_ = NULL; |
55 |
map<int, AtomType*> Sticky::StickyMap; |
56 |
map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap; |
57 |
|
58 |
Sticky* Sticky::_instance = NULL; |
59 |
|
60 |
Sticky* Sticky::Instance() { |
61 |
if (!_instance) { |
62 |
_instance = new Sticky(); |
63 |
} |
64 |
return _instance; |
65 |
} |
66 |
|
67 |
StickyParam Sticky::getStickyParam(AtomType* atomType) { |
68 |
|
69 |
// Do sanity checking on the AtomType we were passed before |
70 |
// building any data structures: |
71 |
if (!atomType->isSticky() && !atomType->isStickyPower()) { |
72 |
sprintf( painCave.errMsg, |
73 |
"Sticky::getStickyParam was passed an atomType (%s) that does\n" |
74 |
"\tnot appear to be a Sticky atom.\n", |
75 |
atomType->getName().c_str()); |
76 |
painCave.severity = OPENMD_ERROR; |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} |
80 |
|
81 |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
82 |
GenericData* data = daType->getPropertyByName("Sticky"); |
83 |
if (data == NULL) { |
84 |
sprintf( painCave.errMsg, "Sticky::getStickyParam could not find\n" |
85 |
"\tSticky parameters for atomType %s.\n", |
86 |
daType->getName().c_str()); |
87 |
painCave.severity = OPENMD_ERROR; |
88 |
painCave.isFatal = 1; |
89 |
simError(); |
90 |
} |
91 |
|
92 |
StickyParamGenericData* stickyData = dynamic_cast<StickyParamGenericData*>(data); |
93 |
if (stickyData == NULL) { |
94 |
sprintf( painCave.errMsg, |
95 |
"Sticky::getStickyParam could not convert GenericData to\n" |
96 |
"\tStickyParamGenericData for atom type %s\n", |
97 |
daType->getName().c_str()); |
98 |
painCave.severity = OPENMD_ERROR; |
99 |
painCave.isFatal = 1; |
100 |
simError(); |
101 |
} |
102 |
|
103 |
return stickyData->getData(); |
104 |
} |
105 |
|
106 |
void Sticky::initialize() { |
107 |
|
108 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
109 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
110 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
111 |
AtomType* at; |
112 |
|
113 |
// Sticky handles all of the Sticky-Sticky interactions |
114 |
|
115 |
for (at = atomTypes->beginType(i); at != NULL; |
116 |
at = atomTypes->nextType(i)) { |
117 |
|
118 |
if (at->isSticky() || at->isStickyPower()) |
119 |
addType(at); |
120 |
} |
121 |
|
122 |
initialized_ = true; |
123 |
} |
124 |
|
125 |
void Sticky::addType(AtomType* atomType){ |
126 |
// add it to the map: |
127 |
AtomTypeProperties atp = atomType->getATP(); |
128 |
|
129 |
pair<map<int,AtomType*>::iterator,bool> ret; |
130 |
ret = StickyMap.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
131 |
if (ret.second == false) { |
132 |
sprintf( painCave.errMsg, |
133 |
"Sticky already had a previous entry with ident %d\n", |
134 |
atp.ident); |
135 |
painCave.severity = OPENMD_INFO; |
136 |
painCave.isFatal = 0; |
137 |
simError(); |
138 |
} |
139 |
|
140 |
RealType w0i, v0i, v0pi, rli, rui, rlpi, rupi; |
141 |
|
142 |
StickyParam sticky1 = getStickyParam(atomType); |
143 |
|
144 |
// Now, iterate over all known types and add to the mixing map: |
145 |
|
146 |
map<int, AtomType*>::iterator it; |
147 |
for( it = StickyMap.begin(); it != StickyMap.end(); ++it) { |
148 |
|
149 |
AtomType* atype2 = (*it).second; |
150 |
|
151 |
StickyParam sticky2 = getStickyParam(atype2); |
152 |
|
153 |
StickyInteractionData mixer; |
154 |
|
155 |
// Mixing two different sticky types is silly, but if you want 2 |
156 |
// sticky types in your simulation, we'll let you do it with the |
157 |
// Lorentz- Berthelot mixing rules (which happen to do the right thing |
158 |
// when atomType and atype2 happen to be the same. |
159 |
|
160 |
mixer.rl = 0.5 * ( sticky1.rl + sticky2.rl ); |
161 |
mixer.ru = 0.5 * ( sticky1.ru + sticky2.ru ); |
162 |
mixer.rlp = 0.5 * ( sticky1.rlp + sticky2.rlp ); |
163 |
mixer.rup = 0.5 * ( sticky1.rup + sticky2.rup ); |
164 |
mixer.rbig = max(mixer.ru, mixer.rup); |
165 |
mixer.w0 = sqrt( sticky1.w0 * sticky2.w0 ); |
166 |
mixer.v0 = sqrt( sticky1.v0 * sticky2.v0 ); |
167 |
mixer.v0p = sqrt( sticky1.v0p * sticky2.v0p ); |
168 |
mixer.isPower = atomType->isStickyPower() && atype2->isStickyPower(); |
169 |
|
170 |
CubicSpline* s = new CubicSpline(); |
171 |
s->addPoint(mixer.rl, 1.0); |
172 |
s->addPoint(mixer.ru, 0.0); |
173 |
mixer.s = s; |
174 |
|
175 |
CubicSpline* sp = new CubicSpline(); |
176 |
sp->addPoint(mixer.rlp, 1.0); |
177 |
sp->addPoint(mixer.rup, 0.0); |
178 |
mixer.sp = sp; |
179 |
|
180 |
|
181 |
pair<AtomType*, AtomType*> key1, key2; |
182 |
key1 = make_pair(atomType, atype2); |
183 |
key2 = make_pair(atype2, atomType); |
184 |
|
185 |
MixingMap[key1] = mixer; |
186 |
if (key2 != key1) { |
187 |
MixingMap[key2] = mixer; |
188 |
} |
189 |
} |
190 |
} |
191 |
|
192 |
RealType Sticky::getStickyCut(int atid) { |
193 |
if (!initialized_) initialize(); |
194 |
std::map<int, AtomType*> :: const_iterator it; |
195 |
it = StickyMap.find(atid); |
196 |
if (it == StickyMap.end()) { |
197 |
sprintf( painCave.errMsg, |
198 |
"Sticky::getStickyCut could not find atid %d in StickyMap\n", |
199 |
(atid)); |
200 |
painCave.severity = OPENMD_ERROR; |
201 |
painCave.isFatal = 1; |
202 |
simError(); |
203 |
} |
204 |
|
205 |
AtomType* atype = it->second; |
206 |
return MixingMap[make_pair(atype, atype)].rbig; |
207 |
} |
208 |
|
209 |
|
210 |
void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
211 |
RealType rij, RealType r2, RealType sw, |
212 |
RealType &vpair, RealType &pot, |
213 |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
214 |
Vector3d &t1, Vector3d &t2) { |
215 |
|
216 |
// This routine does only the sticky portion of the SSD potential |
217 |
// [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
218 |
// The Lennard-Jones and dipolar interaction must be handled separately. |
219 |
|
220 |
// We assume that the rotation matrices have already been calculated |
221 |
// and placed in the A array. |
222 |
|
223 |
if (!initialized_) initialize(); |
224 |
|
225 |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
226 |
StickyInteractionData mixer = MixingMap[key]; |
227 |
|
228 |
RealType w0 = mixer.w0; |
229 |
RealType v0 = mixer.v0; |
230 |
RealType v0p = mixer.v0p; |
231 |
RealType rl = mixer.rl; |
232 |
RealType ru = mixer.ru; |
233 |
RealType rlp = mixer.rlp; |
234 |
RealType rup = mixer.rup; |
235 |
RealType rbig = mixer.rbig; |
236 |
bool isPower = mixer.isPower; |
237 |
|
238 |
if (rij <= rbig) { |
239 |
|
240 |
RealType r3 = r2 * rij; |
241 |
RealType r5 = r3 * r2; |
242 |
|
243 |
RotMat3x3d A1trans = A1.transpose(); |
244 |
RotMat3x3d A2trans = A2.transpose(); |
245 |
|
246 |
// rotate the inter-particle separation into the two different |
247 |
// body-fixed coordinate systems: |
248 |
|
249 |
Vector3d ri = A1 * d; |
250 |
|
251 |
// negative sign because this is the vector from j to i: |
252 |
|
253 |
Vector3d rj = -A2 * d; |
254 |
|
255 |
RealType xi = ri.x(); |
256 |
RealType yi = ri.y(); |
257 |
RealType zi = ri.z(); |
258 |
|
259 |
RealType xj = rj.x(); |
260 |
RealType yj = rj.y(); |
261 |
RealType zj = rj.z(); |
262 |
|
263 |
RealType xi2 = xi * xi; |
264 |
RealType yi2 = yi * yi; |
265 |
RealType zi2 = zi * zi; |
266 |
|
267 |
RealType xj2 = xj * xj; |
268 |
RealType yj2 = yj * yj; |
269 |
RealType zj2 = zj * zj; |
270 |
|
271 |
// calculate the switching info. from the splines |
272 |
|
273 |
RealType s = 0.0; |
274 |
RealType dsdr = 0.0; |
275 |
RealType sp = 0.0; |
276 |
RealType dspdr = 0.0; |
277 |
|
278 |
if (rij < ru) { |
279 |
if (rij < rl) { |
280 |
s = 1.0; |
281 |
dsdr = 0.0; |
282 |
} else { |
283 |
// we are in the switching region |
284 |
|
285 |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij); |
286 |
s = res.first; |
287 |
dsdr = res.second; |
288 |
} |
289 |
} |
290 |
|
291 |
if (rij < rup) { |
292 |
if (rij < rlp) { |
293 |
sp = 1.0; |
294 |
dspdr = 0.0; |
295 |
} else { |
296 |
// we are in the switching region |
297 |
|
298 |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij); |
299 |
sp = res.first; |
300 |
dspdr = res.second; |
301 |
} |
302 |
} |
303 |
|
304 |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
305 |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
306 |
RealType w = wi+wj; |
307 |
|
308 |
|
309 |
RealType zif = zi/rij - 0.6; |
310 |
RealType zis = zi/rij + 0.8; |
311 |
|
312 |
RealType zjf = zj/rij - 0.6; |
313 |
RealType zjs = zj/rij + 0.8; |
314 |
|
315 |
RealType wip = zif*zif*zis*zis - w0; |
316 |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
317 |
RealType wp = wip + wjp; |
318 |
|
319 |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
320 |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
321 |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
322 |
|
323 |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
324 |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
325 |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
326 |
|
327 |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
328 |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
329 |
|
330 |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
331 |
-2.0*yi*zi*uglyi/r3, |
332 |
2.0*(1.0/rij - zi2/r3)*uglyi); |
333 |
|
334 |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
335 |
-2.0*yj*zj*uglyj/r3, |
336 |
2.0*(1.0/rij - zj2/r3)*uglyj); |
337 |
|
338 |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
339 |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
340 |
- 8.0*xi*yi*zi/r3); |
341 |
|
342 |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
343 |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
344 |
- 8.0*xj*yj*zj/r3); |
345 |
|
346 |
Vector3d dwipdu(2.0*yi*uglyi/rij, |
347 |
-2.0*xi*uglyi/rij, |
348 |
0.0); |
349 |
|
350 |
Vector3d dwjpdu(2.0*yj*uglyj/rij, |
351 |
-2.0*xj*uglyj/rij, |
352 |
0.0); |
353 |
|
354 |
if (isPower) { |
355 |
RealType frac1 = 0.25; |
356 |
RealType frac2 = 0.75; |
357 |
RealType wi2 = wi*wi; |
358 |
RealType wj2 = wj*wj; |
359 |
// sticky power has no w' function: |
360 |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
361 |
wp = 0.0; |
362 |
dwi = frac1*3.0*wi2*dwi + frac2*dwi; |
363 |
dwj = frac1*3.0*wj2*dwi + frac2*dwi; |
364 |
dwip = V3Zero; |
365 |
dwjp = V3Zero; |
366 |
dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu; |
367 |
dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu; |
368 |
dwipdu = V3Zero; |
369 |
dwjpdu = V3Zero; |
370 |
sp = 0.0; |
371 |
dspdr = 0.0; |
372 |
} |
373 |
|
374 |
vpair += 0.5*(v0*s*w + v0p*sp*wp); |
375 |
pot += 0.5*(v0*s*w + v0p*sp*wp)*sw; |
376 |
|
377 |
// do the torques first since they are easy: |
378 |
// remember that these are still in the body-fixed axes |
379 |
|
380 |
Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu); |
381 |
Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu); |
382 |
|
383 |
// go back to lab frame using transpose of rotation matrix: |
384 |
|
385 |
t1 += A1trans * ti; |
386 |
t2 += A2trans * tj; |
387 |
|
388 |
// Now, on to the forces: |
389 |
|
390 |
// first rotate the i terms back into the lab frame: |
391 |
|
392 |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw; |
393 |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw; |
394 |
|
395 |
Vector3d fii = A1trans * radcomi; |
396 |
Vector3d fjj = A2trans * radcomj; |
397 |
|
398 |
// now assemble these with the radial-only terms: |
399 |
|
400 |
f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj); |
401 |
|
402 |
} |
403 |
|
404 |
return; |
405 |
|
406 |
} |
407 |
|
408 |
void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d, |
409 |
RealType *r, RealType *r2, RealType *sw, |
410 |
RealType *vpair, RealType *pot, RealType *A1, |
411 |
RealType *A2, RealType *f1, |
412 |
RealType *t1, RealType *t2) { |
413 |
|
414 |
if (!initialized_) initialize(); |
415 |
|
416 |
AtomType* atype1 = StickyMap[*atid1]; |
417 |
AtomType* atype2 = StickyMap[*atid2]; |
418 |
|
419 |
Vector3d disp(d); |
420 |
Vector3d frc(f1); |
421 |
Vector3d trq1(t1); |
422 |
Vector3d trq2(t2); |
423 |
RotMat3x3d Ai(A1); |
424 |
RotMat3x3d Aj(A2); |
425 |
|
426 |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot, |
427 |
Ai, Aj, frc, trq1, trq2); |
428 |
|
429 |
f1[0] = frc.x(); |
430 |
f1[1] = frc.y(); |
431 |
f1[2] = frc.z(); |
432 |
|
433 |
t1[0] = trq1.x(); |
434 |
t1[1] = trq1.y(); |
435 |
t1[2] = trq1.z(); |
436 |
|
437 |
t2[0] = trq2.x(); |
438 |
t2[1] = trq2.y(); |
439 |
t2[2] = trq2.z(); |
440 |
|
441 |
return; |
442 |
} |
443 |
} |
444 |
|
445 |
extern "C" { |
446 |
|
447 |
#define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT) |
448 |
#define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR) |
449 |
|
450 |
RealType fortranGetStickyCut(int* atid) { |
451 |
return OpenMD::Sticky::Instance()->getStickyCut(*atid); |
452 |
} |
453 |
|
454 |
void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r, |
455 |
RealType *r2, RealType *sw, RealType *vpair, RealType *pot, |
456 |
RealType *A1, RealType *A2, RealType *f1, |
457 |
RealType *t1, RealType *t2){ |
458 |
|
459 |
return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2, |
460 |
sw, vpair, pot, A1, A2, |
461 |
f1, t1, t2); |
462 |
} |
463 |
} |