1 |
gezelter |
1485 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
gezelter |
1665 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
1485 |
*/ |
42 |
|
|
|
43 |
|
|
#include <stdio.h> |
44 |
|
|
#include <string.h> |
45 |
|
|
|
46 |
|
|
#include <cmath> |
47 |
|
|
#include "nonbonded/Sticky.hpp" |
48 |
|
|
#include "nonbonded/LJ.hpp" |
49 |
gezelter |
1710 |
#include "types/StickyAdapter.hpp" |
50 |
gezelter |
1485 |
#include "utils/simError.h" |
51 |
|
|
|
52 |
|
|
using namespace std; |
53 |
|
|
namespace OpenMD { |
54 |
|
|
|
55 |
gezelter |
1502 |
Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {} |
56 |
gezelter |
1485 |
|
57 |
|
|
void Sticky::initialize() { |
58 |
|
|
|
59 |
|
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
60 |
|
|
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
61 |
|
|
ForceField::AtomTypeContainer::MapTypeIterator i; |
62 |
|
|
AtomType* at; |
63 |
|
|
|
64 |
|
|
// Sticky handles all of the Sticky-Sticky interactions |
65 |
|
|
|
66 |
|
|
for (at = atomTypes->beginType(i); at != NULL; |
67 |
|
|
at = atomTypes->nextType(i)) { |
68 |
|
|
|
69 |
gezelter |
1710 |
StickyAdapter sa = StickyAdapter(at); |
70 |
|
|
if (sa.isSticky()) addType(at); |
71 |
gezelter |
1485 |
} |
72 |
|
|
|
73 |
|
|
initialized_ = true; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
void Sticky::addType(AtomType* atomType){ |
77 |
|
|
// add it to the map: |
78 |
|
|
|
79 |
|
|
pair<map<int,AtomType*>::iterator,bool> ret; |
80 |
gezelter |
1710 |
ret = StickyMap.insert( pair<int, AtomType*>(atomType->getIdent(), |
81 |
|
|
atomType) ); |
82 |
gezelter |
1485 |
if (ret.second == false) { |
83 |
|
|
sprintf( painCave.errMsg, |
84 |
|
|
"Sticky already had a previous entry with ident %d\n", |
85 |
gezelter |
1710 |
atomType->getIdent() ); |
86 |
gezelter |
1485 |
painCave.severity = OPENMD_INFO; |
87 |
|
|
painCave.isFatal = 0; |
88 |
|
|
simError(); |
89 |
gezelter |
1767 |
} |
90 |
gezelter |
1485 |
|
91 |
gezelter |
1710 |
StickyAdapter sticky1 = StickyAdapter(atomType); |
92 |
gezelter |
1485 |
|
93 |
|
|
// Now, iterate over all known types and add to the mixing map: |
94 |
|
|
|
95 |
|
|
map<int, AtomType*>::iterator it; |
96 |
|
|
for( it = StickyMap.begin(); it != StickyMap.end(); ++it) { |
97 |
|
|
|
98 |
|
|
AtomType* atype2 = (*it).second; |
99 |
gezelter |
1710 |
|
100 |
|
|
StickyAdapter sticky2 = StickyAdapter(atype2); |
101 |
gezelter |
1485 |
|
102 |
|
|
StickyInteractionData mixer; |
103 |
|
|
|
104 |
|
|
// Mixing two different sticky types is silly, but if you want 2 |
105 |
|
|
// sticky types in your simulation, we'll let you do it with the |
106 |
|
|
// Lorentz- Berthelot mixing rules (which happen to do the right thing |
107 |
|
|
// when atomType and atype2 happen to be the same. |
108 |
|
|
|
109 |
gezelter |
1710 |
mixer.rl = 0.5 * ( sticky1.getRl() + sticky2.getRl() ); |
110 |
|
|
mixer.ru = 0.5 * ( sticky1.getRu() + sticky2.getRu() ); |
111 |
|
|
mixer.rlp = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() ); |
112 |
|
|
mixer.rup = 0.5 * ( sticky1.getRup() + sticky2.getRup() ); |
113 |
gezelter |
1485 |
mixer.rbig = max(mixer.ru, mixer.rup); |
114 |
gezelter |
1710 |
mixer.w0 = sqrt( sticky1.getW0() * sticky2.getW0() ); |
115 |
gezelter |
1833 |
mixer.v0 = sqrt( sticky1.getV0() * sticky2.getV0() ); |
116 |
gezelter |
1710 |
mixer.v0p = sqrt( sticky1.getV0p() * sticky2.getV0p() ); |
117 |
|
|
mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower(); |
118 |
gezelter |
1485 |
|
119 |
|
|
CubicSpline* s = new CubicSpline(); |
120 |
|
|
s->addPoint(mixer.rl, 1.0); |
121 |
|
|
s->addPoint(mixer.ru, 0.0); |
122 |
|
|
mixer.s = s; |
123 |
|
|
|
124 |
|
|
CubicSpline* sp = new CubicSpline(); |
125 |
|
|
sp->addPoint(mixer.rlp, 1.0); |
126 |
|
|
sp->addPoint(mixer.rup, 0.0); |
127 |
|
|
mixer.sp = sp; |
128 |
|
|
|
129 |
|
|
|
130 |
|
|
pair<AtomType*, AtomType*> key1, key2; |
131 |
|
|
key1 = make_pair(atomType, atype2); |
132 |
|
|
key2 = make_pair(atype2, atomType); |
133 |
|
|
|
134 |
|
|
MixingMap[key1] = mixer; |
135 |
|
|
if (key2 != key1) { |
136 |
|
|
MixingMap[key2] = mixer; |
137 |
|
|
} |
138 |
|
|
} |
139 |
|
|
} |
140 |
|
|
|
141 |
gezelter |
1502 |
/** |
142 |
|
|
* This function does the sticky portion of the SSD potential |
143 |
|
|
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
144 |
|
|
* (1999)]. The Lennard-Jones and dipolar interaction must be |
145 |
|
|
* handled separately. We assume that the rotation matrices have |
146 |
|
|
* already been calculated and placed in the A1 & A2 entries in the |
147 |
|
|
* idat structure. |
148 |
|
|
*/ |
149 |
|
|
|
150 |
gezelter |
1536 |
void Sticky::calcForce(InteractionData &idat) { |
151 |
gezelter |
1502 |
|
152 |
gezelter |
1485 |
if (!initialized_) initialize(); |
153 |
|
|
|
154 |
gezelter |
1505 |
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
155 |
gezelter |
1571 |
it = MixingMap.find(idat.atypes); |
156 |
gezelter |
1505 |
if (it != MixingMap.end()) { |
157 |
gezelter |
1485 |
|
158 |
gezelter |
1505 |
StickyInteractionData mixer = (*it).second; |
159 |
|
|
|
160 |
|
|
RealType w0 = mixer.w0; |
161 |
|
|
RealType v0 = mixer.v0; |
162 |
|
|
RealType v0p = mixer.v0p; |
163 |
|
|
RealType rl = mixer.rl; |
164 |
|
|
RealType ru = mixer.ru; |
165 |
|
|
RealType rlp = mixer.rlp; |
166 |
|
|
RealType rup = mixer.rup; |
167 |
|
|
RealType rbig = mixer.rbig; |
168 |
|
|
bool isPower = mixer.isPower; |
169 |
|
|
|
170 |
gezelter |
1554 |
if ( *(idat.rij) <= rbig) { |
171 |
gezelter |
1505 |
|
172 |
gezelter |
1554 |
RealType r3 = *(idat.r2) * *(idat.rij); |
173 |
|
|
RealType r5 = r3 * *(idat.r2); |
174 |
gezelter |
1505 |
|
175 |
gezelter |
1554 |
RotMat3x3d A1trans = idat.A1->transpose(); |
176 |
|
|
RotMat3x3d A2trans = idat.A2->transpose(); |
177 |
gezelter |
1505 |
|
178 |
|
|
// rotate the inter-particle separation into the two different |
179 |
|
|
// body-fixed coordinate systems: |
180 |
|
|
|
181 |
gezelter |
1554 |
Vector3d ri = *(idat.A1) * *(idat.d); |
182 |
gezelter |
1505 |
|
183 |
|
|
// negative sign because this is the vector from j to i: |
184 |
|
|
|
185 |
gezelter |
1554 |
Vector3d rj = - *(idat.A2) * *(idat.d); |
186 |
gezelter |
1505 |
|
187 |
|
|
RealType xi = ri.x(); |
188 |
|
|
RealType yi = ri.y(); |
189 |
|
|
RealType zi = ri.z(); |
190 |
|
|
|
191 |
|
|
RealType xj = rj.x(); |
192 |
|
|
RealType yj = rj.y(); |
193 |
|
|
RealType zj = rj.z(); |
194 |
|
|
|
195 |
|
|
RealType xi2 = xi * xi; |
196 |
|
|
RealType yi2 = yi * yi; |
197 |
|
|
RealType zi2 = zi * zi; |
198 |
|
|
|
199 |
|
|
RealType xj2 = xj * xj; |
200 |
|
|
RealType yj2 = yj * yj; |
201 |
|
|
RealType zj2 = zj * zj; |
202 |
|
|
|
203 |
|
|
// calculate the switching info. from the splines |
204 |
|
|
|
205 |
|
|
RealType s = 0.0; |
206 |
|
|
RealType dsdr = 0.0; |
207 |
|
|
RealType sp = 0.0; |
208 |
|
|
RealType dspdr = 0.0; |
209 |
|
|
|
210 |
gezelter |
1554 |
if ( *(idat.rij) < ru) { |
211 |
|
|
if ( *(idat.rij) < rl) { |
212 |
gezelter |
1505 |
s = 1.0; |
213 |
|
|
dsdr = 0.0; |
214 |
|
|
} else { |
215 |
|
|
// we are in the switching region |
216 |
|
|
|
217 |
gezelter |
1554 |
pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(*(idat.rij)); |
218 |
gezelter |
1505 |
s = res.first; |
219 |
|
|
dsdr = res.second; |
220 |
|
|
} |
221 |
gezelter |
1485 |
} |
222 |
gezelter |
1505 |
|
223 |
gezelter |
1554 |
if (*(idat.rij) < rup) { |
224 |
|
|
if ( *(idat.rij) < rlp) { |
225 |
gezelter |
1505 |
sp = 1.0; |
226 |
|
|
dspdr = 0.0; |
227 |
|
|
} else { |
228 |
|
|
// we are in the switching region |
229 |
|
|
|
230 |
gezelter |
1554 |
pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt( *(idat.rij)); |
231 |
gezelter |
1505 |
sp = res.first; |
232 |
|
|
dspdr = res.second; |
233 |
|
|
} |
234 |
|
|
} |
235 |
|
|
|
236 |
|
|
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
237 |
|
|
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
238 |
|
|
RealType w = wi+wj; |
239 |
|
|
|
240 |
|
|
|
241 |
gezelter |
1554 |
RealType zif = zi/ *(idat.rij) - 0.6; |
242 |
|
|
RealType zis = zi/ *(idat.rij) + 0.8; |
243 |
gezelter |
1505 |
|
244 |
gezelter |
1554 |
RealType zjf = zj/ *(idat.rij) - 0.6; |
245 |
|
|
RealType zjs = zj/ *(idat.rij) + 0.8; |
246 |
gezelter |
1505 |
|
247 |
|
|
RealType wip = zif*zif*zis*zis - w0; |
248 |
|
|
RealType wjp = zjf*zjf*zjs*zjs - w0; |
249 |
|
|
RealType wp = wip + wjp; |
250 |
|
|
|
251 |
|
|
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
252 |
|
|
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
253 |
|
|
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
254 |
|
|
|
255 |
|
|
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
256 |
|
|
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
257 |
|
|
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
258 |
|
|
|
259 |
|
|
RealType uglyi = zif*zif*zis + zif*zis*zis; |
260 |
|
|
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
261 |
gezelter |
1485 |
|
262 |
gezelter |
1505 |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
263 |
|
|
-2.0*yi*zi*uglyi/r3, |
264 |
gezelter |
1554 |
2.0*(1.0/ *(idat.rij) - zi2/r3)*uglyi); |
265 |
gezelter |
1505 |
|
266 |
|
|
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
267 |
|
|
-2.0*yj*zj*uglyj/r3, |
268 |
gezelter |
1554 |
2.0*(1.0/ *(idat.rij) - zj2/r3)*uglyj); |
269 |
gezelter |
1505 |
|
270 |
|
|
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
271 |
|
|
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
272 |
|
|
- 8.0*xi*yi*zi/r3); |
273 |
|
|
|
274 |
|
|
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
275 |
|
|
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
276 |
|
|
- 8.0*xj*yj*zj/r3); |
277 |
|
|
|
278 |
gezelter |
1554 |
Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) , |
279 |
|
|
-2.0*xi*uglyi/ *(idat.rij) , |
280 |
gezelter |
1505 |
0.0); |
281 |
|
|
|
282 |
gezelter |
1554 |
Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) , |
283 |
|
|
-2.0*xj*uglyj/ *(idat.rij) , |
284 |
gezelter |
1505 |
0.0); |
285 |
|
|
|
286 |
|
|
if (isPower) { |
287 |
|
|
RealType frac1 = 0.25; |
288 |
|
|
RealType frac2 = 0.75; |
289 |
|
|
RealType wi2 = wi*wi; |
290 |
|
|
RealType wj2 = wj*wj; |
291 |
|
|
// sticky power has no w' function: |
292 |
|
|
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
293 |
|
|
wp = 0.0; |
294 |
gezelter |
1668 |
dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi; |
295 |
|
|
dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi; |
296 |
gezelter |
1505 |
dwip = V3Zero; |
297 |
|
|
dwjp = V3Zero; |
298 |
gezelter |
1668 |
dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu; |
299 |
|
|
dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu; |
300 |
gezelter |
1505 |
dwipdu = V3Zero; |
301 |
|
|
dwjpdu = V3Zero; |
302 |
|
|
sp = 0.0; |
303 |
gezelter |
1485 |
dspdr = 0.0; |
304 |
|
|
} |
305 |
gezelter |
1505 |
|
306 |
gezelter |
1833 |
|
307 |
|
|
|
308 |
gezelter |
1668 |
*(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp); |
309 |
|
|
(*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ; |
310 |
gezelter |
1505 |
|
311 |
|
|
// do the torques first since they are easy: |
312 |
|
|
// remember that these are still in the body-fixed axes |
313 |
|
|
|
314 |
gezelter |
1668 |
Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu); |
315 |
|
|
Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu); |
316 |
gezelter |
1505 |
|
317 |
|
|
// go back to lab frame using transpose of rotation matrix: |
318 |
|
|
|
319 |
gezelter |
1554 |
*(idat.t1) += A1trans * ti; |
320 |
|
|
*(idat.t2) += A2trans * tj; |
321 |
gezelter |
1505 |
|
322 |
|
|
// Now, on to the forces: |
323 |
|
|
|
324 |
|
|
// first rotate the i terms back into the lab frame: |
325 |
|
|
|
326 |
gezelter |
1554 |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * *(idat.sw); |
327 |
|
|
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * *(idat.sw); |
328 |
gezelter |
1505 |
|
329 |
|
|
Vector3d fii = A1trans * radcomi; |
330 |
|
|
Vector3d fjj = A2trans * radcomj; |
331 |
|
|
|
332 |
|
|
// now assemble these with the radial-only terms: |
333 |
|
|
|
334 |
gezelter |
1668 |
*(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) / |
335 |
|
|
*(idat.rij) + fii - fjj); |
336 |
gezelter |
1505 |
|
337 |
gezelter |
1485 |
} |
338 |
|
|
} |
339 |
|
|
|
340 |
gezelter |
1505 |
return; |
341 |
gezelter |
1485 |
} |
342 |
gezelter |
1505 |
|
343 |
gezelter |
1545 |
RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
344 |
gezelter |
1505 |
if (!initialized_) initialize(); |
345 |
|
|
map<pair<AtomType*, AtomType*>, StickyInteractionData>::iterator it; |
346 |
gezelter |
1545 |
it = MixingMap.find(atypes); |
347 |
gezelter |
1505 |
if (it == MixingMap.end()) |
348 |
|
|
return 0.0; |
349 |
|
|
else { |
350 |
|
|
StickyInteractionData mixer = (*it).second; |
351 |
|
|
return mixer.rbig; |
352 |
|
|
} |
353 |
|
|
} |
354 |
gezelter |
1485 |
} |