| 85 |
|
* \frac{\alpha^\nu}{\nu!} |
| 86 |
|
* \f] |
| 87 |
|
* @param n - principal quantum number |
| 88 |
< |
* @param alpha - Slater exponent |
| 88 |
> |
* @param a - Slater exponent |
| 89 |
|
* @return the value of Rosen's A integral |
| 90 |
|
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 91 |
|
*/ |
| 125 |
|
{ |
| 126 |
|
RealType TheSum, Term; |
| 127 |
|
RealType RosenB_, PSinhRosenA, PCoshRosenA, PHyperRosenA; |
| 128 |
< |
bool IsPositive; |
| 128 |
> |
|
| 129 |
|
if (alpha != 0.) |
| 130 |
|
{ |
| 131 |
|
Term = 1.; |
| 132 |
< |
TheSum = 1.; |
| 133 |
< |
IsPositive = true; |
| 132 |
> |
bool IsPositive = true; |
| 133 |
|
|
| 134 |
|
// These two expressions are (up to constant factors) equivalent |
| 135 |
|
// to computing the hyperbolic sine and cosine of a respectively |
| 509 |
|
|
| 510 |
|
/** |
| 511 |
|
* @brief Calculates a Slater-type orbital exponent based on the hardness parameters |
| 512 |
< |
* @param Hardness: chemical hardness in atomic units |
| 512 |
> |
* @param hardness: chemical hardness in atomic units |
| 513 |
|
* @param n: principal quantum number |
| 514 |
|
* @note Modified for use with OpenMD by Gezelter and Michalka. |
| 515 |
|
*/ |