1 |
/*************************************************************************** |
2 |
* This program is free software; you can redistribute it and/or modify * |
3 |
* it under the terms of the GNU General Public License as published by * |
4 |
* the Free Software Foundation; either version 3 of the License, or * |
5 |
* (at your option) any later version. * |
6 |
* * |
7 |
* This program is distributed in the hope that it will be useful, * |
8 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
9 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
10 |
* GNU General Public License for more details. * |
11 |
* * |
12 |
* You should have received a copy of the GNU General Public License * |
13 |
* along with this program; if not, see <http://www.gnu.org/licenses/>. * |
14 |
***************************************************************************/ |
15 |
|
16 |
/*** |
17 |
* This file was imported from qtpie, found at http://code.google.com/p/qtpie |
18 |
* and was modified minimally for use in OpenMD. |
19 |
* |
20 |
* No author attribution was found in the code, but it presumably is |
21 |
* the work of J. Chen and Todd J. Martinez. |
22 |
* |
23 |
* QTPIE (charge transfer with polarization current equilibration) is |
24 |
* a new charge model, similar to other charge models like QEq, |
25 |
* fluc-q, EEM or ABEEM. Unlike other existing charge models, however, |
26 |
* it is capable of describing both charge transfer and polarization |
27 |
* phenomena. It is also unique for its ability to describe |
28 |
* intermolecular charge transfer at reasonable computational cost. |
29 |
* |
30 |
* Good references to cite when using this code are: |
31 |
* |
32 |
* J. Chen and T. J. Martinez, "QTPIE: Charge transfer with |
33 |
* polarization current equalization. A fluctuating charge model with |
34 |
* correct asymptotics", Chemical Physics Letters 438 (2007), |
35 |
* 315-320. DOI: 10.1016/j.cplett.2007.02.065. Erratum: ibid, 463 |
36 |
* (2008), 288. DOI: 10.1016/j.cplett.2008.08.060 |
37 |
* |
38 |
* J. Chen, D. Hundertmark and T. J. Martinez, "A unified theoretical |
39 |
* framework for fluctuating-charge models in atom-space and in |
40 |
* bond-space", Journal of Chemical Physics 129 (2008), 214113. DOI: |
41 |
* 10.1063/1.3021400. |
42 |
* |
43 |
* J. Chen and T. J. Martinez, "Charge conservation in |
44 |
* electronegativity equalization and its implications for the |
45 |
* electrostatic properties of fluctuating-charge models", Journal of |
46 |
* Chemical Physics 131 (2009), 044114. DOI: 10.1063/1.3183167 |
47 |
* |
48 |
* J. Chen and T. J. Martinez, "The dissociation catastrophe in |
49 |
* fluctuating-charge models and its implications for the concept of |
50 |
* atomic electronegativity", Progress in Theoretical Chemistry and |
51 |
* Physics, to appear. arXiv:0812.1543 |
52 |
* |
53 |
* J. Chen, "Theory and applications of fluctuating-charge models", |
54 |
* PhD (chemical physics) thesis, University of Illinois at |
55 |
* Urbana-Champaign, Department of Chemistry, 2009. |
56 |
* |
57 |
* J. Chen and T. J. Martinez, "Size-extensive polarizabilities with |
58 |
* intermolecular charge transfer in a fluctuating-charge model", in |
59 |
* preparation. arXiv:0812.1544 |
60 |
*/ |
61 |
|
62 |
#include "config.h" |
63 |
#include <cmath> |
64 |
#include <cstdlib> |
65 |
#include <iostream> |
66 |
#include "math/Factorials.hpp" |
67 |
#include "utils/NumericConstant.hpp" |
68 |
|
69 |
#ifndef NONBONDED_SLATERINTEGRALS_HPP |
70 |
#define NONBONDED_SLATERINTEGRALS_HPP |
71 |
|
72 |
template <typename T> inline T sqr(T t) { return t*t; } |
73 |
template <typename T> inline T mod(T x, T m) |
74 |
{ return x<0 ? m - 1 - ((-x) - 1)%m : x%m; } |
75 |
|
76 |
// #include "parameters.h" |
77 |
|
78 |
/** |
79 |
* @brief Computes Rosen's Guillimer-Zener function A |
80 |
* Computes Rosen's A integral, an auxiliary quantity needed to |
81 |
* compute integrals involving Slater-type orbitals of s symmetry. |
82 |
* \f[ |
83 |
* A_n(\alpha) = \int_1^\infty x^n e^{-\alpha x}dx |
84 |
* = \frac{n! e^{-\alpha}}{\alpha^{n+1}}\sum_{\nu=0}^n |
85 |
* \frac{\alpha^\nu}{\nu!} |
86 |
* \f] |
87 |
* @param n - principal quantum number |
88 |
* @param a - Slater exponent |
89 |
* @return the value of Rosen's A integral |
90 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
91 |
*/ |
92 |
inline RealType RosenA(int n, RealType a) |
93 |
{ |
94 |
RealType RosenA_ = 0.; |
95 |
if (a != 0.) |
96 |
{ |
97 |
RealType Term = 1.; |
98 |
RosenA_ = Term; |
99 |
for (int nu=1; nu<=n; nu++) |
100 |
{ |
101 |
Term *= a / nu; |
102 |
RosenA_ += Term; |
103 |
} |
104 |
RosenA_ = (RosenA_/Term) * (exp(-a)/a); |
105 |
} |
106 |
return RosenA_; |
107 |
} |
108 |
|
109 |
/** |
110 |
* @brief Computes Rosen's Guillimer-Zener function B |
111 |
* Computes Rosen's B integral, an auxiliary quantity needed to |
112 |
* compute integrals involving Slater-type orbitals of s symmetry. |
113 |
* \f[ |
114 |
* B_n(\alpha) = \int_{-1}^1 x^n e^{-\alpha x} dx |
115 |
* = \frac{n!}{\alpha^{n+1}} |
116 |
* \sum_{\nu=0}^n \frac{e^\alpha(-\alpha)^\nu |
117 |
* - e^{-\alpha} \alpha^\nu}{\nu!} |
118 |
* \f] |
119 |
* @param n - principal quantum number |
120 |
* @param alpha - Slater exponent |
121 |
* @return the value of Rosen's B integral |
122 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
123 |
*/ |
124 |
inline RealType RosenB(int n, RealType alpha) |
125 |
{ |
126 |
RealType TheSum, Term; |
127 |
RealType RosenB_, PSinhRosenA, PCoshRosenA, PHyperRosenA; |
128 |
|
129 |
if (alpha != 0.) |
130 |
{ |
131 |
Term = 1.; |
132 |
bool IsPositive = true; |
133 |
|
134 |
// These two expressions are (up to constant factors) equivalent |
135 |
// to computing the hyperbolic sine and cosine of a respectively |
136 |
// The series consists of adding up these terms in an alternating fashion |
137 |
PSinhRosenA = exp(alpha) - exp(-alpha); |
138 |
PCoshRosenA = -exp(alpha) - exp(-alpha); |
139 |
TheSum = PSinhRosenA; |
140 |
for (unsigned nu=1; nu<=n; nu++) |
141 |
{ |
142 |
if (IsPositive) |
143 |
{ |
144 |
PHyperRosenA = PCoshRosenA; |
145 |
IsPositive = false; |
146 |
} |
147 |
else // term to add should be negative |
148 |
{ |
149 |
PHyperRosenA = PSinhRosenA; |
150 |
IsPositive = true; |
151 |
} |
152 |
Term *= alpha / nu; |
153 |
TheSum += Term * PHyperRosenA; |
154 |
} |
155 |
RosenB_ = TheSum / (alpha*Term); |
156 |
} |
157 |
else // pathological case of a=0 |
158 |
{ |
159 |
printf("WARNING, a = 0 in RosenB\n"); |
160 |
RosenB_ = (1. - pow(-1., n)) / (n + 1.); |
161 |
} |
162 |
return RosenB_; |
163 |
} |
164 |
|
165 |
/** @brief Computes Rosen's D combinatorial factor |
166 |
* Computes Rosen's D factor, an auxiliary quantity needed to |
167 |
* compute integrals involving Slater-type orbitals of s symmetry. |
168 |
* \f[ |
169 |
* RosenD^{mn}_p = \sum_k (-1)^k \frac{m! n!} |
170 |
* {(p-k)!(m-p+k)!(n-k)!k!} |
171 |
* \f] |
172 |
* @return the value of Rosen's D factor |
173 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
174 |
*/ |
175 |
inline RealType RosenD(int m, int n, int p) |
176 |
{ |
177 |
if (m+n+p > maxFact) |
178 |
{ |
179 |
printf("Error, arguments exceed maximum factorial computed %d > %d\n", m+n+p, maxFact); |
180 |
::exit(0); |
181 |
} |
182 |
|
183 |
RealType RosenD_ = 0; |
184 |
for (int k=max(p-m,0); k<=min(n,p); k++) |
185 |
{ |
186 |
if (mod(k,2) == 0) |
187 |
RosenD_ += (fact[m] / (fact[p-k] * fact[m-p+k])) * (fact[n] / (fact[n-k] * fact[k])); |
188 |
else |
189 |
RosenD_ -= (fact[m] / ( fact[p-k] * fact[m-p+k])) * (fact[n] / (fact[n-k] * fact[k])); |
190 |
} |
191 |
return RosenD_; |
192 |
} |
193 |
|
194 |
/** @brief Computes Coulomb integral analytically over s-type STOs |
195 |
* Computes the two-center Coulomb integral over Slater-type orbitals of s symmetry. |
196 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
197 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
198 |
* @param m : principal quantum number of first atom |
199 |
* @param n : principal quantum number of second atom |
200 |
* @param R : internuclear distance in atomic units (bohr) |
201 |
* @return value of the Coulomb potential energy integral |
202 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
203 |
* @note In Rosen's paper, this integral is known as K2. |
204 |
*/ |
205 |
inline RealType sSTOCoulInt(RealType a, RealType b, int m, int n, RealType R) |
206 |
{ |
207 |
RealType x, K2; |
208 |
RealType Factor1, Factor2, Term, OneElectronTerm; |
209 |
RealType eps, epsi; |
210 |
|
211 |
// To speed up calculation, we terminate loop once contributions |
212 |
// to integral fall below the bound, epsilon |
213 |
RealType epsilon = 0.; |
214 |
|
215 |
// x is the argument of the auxiliary RosenA and RosenB functions |
216 |
x = 2. * a * R; |
217 |
|
218 |
// First compute the two-electron component |
219 |
RealType sSTOCoulInt_ = 0.; |
220 |
if (std::fabs(x) < OpenMD::NumericConstant::epsilon) // Pathological case |
221 |
{ |
222 |
|
223 |
// This solution for the one-center coulomb integrals comes from |
224 |
// Yoshiyuki Hase, Computers & Chemistry 9(4), pp. 285-287 (1985). |
225 |
|
226 |
RealType Term1 = fact[2*m - 1] / pow(2*a, 2*m); |
227 |
RealType Term2 = 0.; |
228 |
for (int nu = 1; nu <= 2*n; nu++) { |
229 |
Term2 += nu * pow(2*b, 2*n - nu) * fact[2*(m+n)-nu-1] / (fact[2*n-nu]*2*n * pow(2*(a+b), 2*(m+n)-nu)); |
230 |
} |
231 |
sSTOCoulInt_ = pow(2*a, 2*m+1) * (Term1 - Term2) / fact[2*m]; |
232 |
|
233 |
// Original QTPIE code for the one-center case is below. Doesn't |
234 |
// appear to generate the correct one-center results. |
235 |
// |
236 |
// if ((a==b) && (m==n)) |
237 |
// { |
238 |
// for (int nu=0; nu<=2*n-1; nu++) |
239 |
// { |
240 |
// K2 = 0.; |
241 |
// for (unsigned p=0; p<=2*n+m; p++) K2 += 1. / fact[p]; |
242 |
// sSTOCoulInt_ += K2 * fact[2*n+m] / fact[m]; |
243 |
// } |
244 |
// sSTOCoulInt_ = 2 * a / (n * fact[2*n]) * sSTOCoulInt_; |
245 |
// } |
246 |
// else |
247 |
// { |
248 |
// // Not implemented |
249 |
// printf("ERROR, sSTOCoulInt cannot compute from arguments\n"); |
250 |
// printf("a = %lf b = %lf m = %d n = %d R = %lf\n",a, b, m, n, R); |
251 |
// exit(0); |
252 |
// } |
253 |
|
254 |
} |
255 |
else |
256 |
{ |
257 |
OneElectronTerm = 1./R + pow(x, 2*m)/(fact[2*m]*R)* |
258 |
((x-2*m)*RosenA(2*m-1,x)-exp(-x)) + sSTOCoulInt_; |
259 |
eps = epsilon / OneElectronTerm; |
260 |
if (a == b) |
261 |
{ |
262 |
// Apply Rosen (48) |
263 |
Factor1 = -a*pow(a*R, 2*m)/(n*fact[2*m]); |
264 |
for (int nu=0; nu<=2*n-1; nu++) |
265 |
{ |
266 |
Factor2 = (2.*n-nu)/fact[nu]*pow(a*R,nu); |
267 |
epsi = eps / fabs(Factor1 * Factor2); |
268 |
K2 = 0.; |
269 |
for (int p=0; p<=m+(nu-1)/2; p++) |
270 |
{ |
271 |
Term = RosenD(2*m-1, nu, 2*p)/(2.*p+1.) *RosenA(2*m+nu-1-2*p,x); |
272 |
K2 += Term; |
273 |
if ((Term > 0) && (Term < epsi)) goto label1; |
274 |
} |
275 |
sSTOCoulInt_ += K2 * Factor2; |
276 |
} |
277 |
label1: |
278 |
sSTOCoulInt_ *= Factor1; |
279 |
} |
280 |
else |
281 |
{ |
282 |
Factor1 = -a*pow(a*R,2*m)/(2.*n*fact[2*m]); |
283 |
epsi = eps/fabs(Factor1); |
284 |
if (b == 0.) |
285 |
printf("WARNING: b = 0 in sSTOCoulInt\n"); |
286 |
else |
287 |
{ |
288 |
// Apply Rosen (54) |
289 |
for (int nu=0; nu<=2*n-1; nu++) |
290 |
{ |
291 |
K2 = 0; |
292 |
for (int p=0; p<=2*m+nu-1; p++) |
293 |
K2=K2+RosenD(2*m-1,nu,p)*RosenB(p,R*(a-b)) |
294 |
*RosenA(2*m+nu-1-p,R*(a+b)); |
295 |
Term = K2*(2*n-nu)/fact[nu]*pow(b*R, nu); |
296 |
sSTOCoulInt_ += Term; |
297 |
if (fabs(Term) < epsi) goto label2; |
298 |
} |
299 |
label2: |
300 |
sSTOCoulInt_ *= Factor1; |
301 |
} |
302 |
} |
303 |
// Now add the one-electron term from Rosen (47) = Rosen (53) |
304 |
sSTOCoulInt_ += OneElectronTerm; |
305 |
} |
306 |
return sSTOCoulInt_; |
307 |
} |
308 |
|
309 |
/** |
310 |
* @brief Computes overlap integral analytically over s-type STOs |
311 |
* Computes the overlap integral over two |
312 |
* Slater-type orbitals of s symmetry. |
313 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
314 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
315 |
* @param m : principal quantum number of first atom |
316 |
* @param n : principal quantum number of second atom |
317 |
* @param R : internuclear distance in atomic units (bohr) |
318 |
* @return the value of the sSTOOvInt integral |
319 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
320 |
* @note In the Rosen paper, this integral is known as I. |
321 |
*/ |
322 |
inline RealType sSTOOvInt(RealType a, RealType b, int m, int n, RealType R) |
323 |
{ |
324 |
RealType Factor, Term, eps; |
325 |
|
326 |
// To speed up calculation, we terminate loop once contributions |
327 |
// to integral fall below the bound, epsilon |
328 |
RealType epsilon = 0.; |
329 |
RealType sSTOOvInt_ = 0.; |
330 |
|
331 |
if (a == b) |
332 |
{ |
333 |
Factor = pow(a*R, m+n+1)/sqrt(fact[2*m]*fact[2*n]); |
334 |
eps = epsilon / fabs(Factor); |
335 |
for (int q=0; q<=(m+n)/2; q++) |
336 |
{ |
337 |
Term = RosenD(m,n,2*q)/(2.*q+1.)*RosenA(m+n-2*q,a*R); |
338 |
sSTOOvInt_ += Term; |
339 |
if (fabs(Term) < eps) exit(0); |
340 |
} |
341 |
sSTOOvInt_ *= Factor; |
342 |
} |
343 |
else |
344 |
{ |
345 |
Factor = 0.5*pow(a*R, m+0.5)*pow(b*R,n+0.5) |
346 |
/sqrt(fact[2*m]*fact[2*n]); |
347 |
eps = epsilon / fabs(Factor); |
348 |
for (int q=0; q<=m+n; q++) |
349 |
{ |
350 |
Term = RosenD(m,n,q)*RosenB(q, R/2.*(a-b)) |
351 |
* RosenA(m+n-q,R/2.*(a+b)); |
352 |
sSTOOvInt_ += Term; |
353 |
if (fabs(Term) < eps) exit(0); |
354 |
} |
355 |
sSTOOvInt_ *= Factor; |
356 |
} |
357 |
return sSTOOvInt_; |
358 |
} |
359 |
|
360 |
/** |
361 |
* @brief Computes kinetic energy integral analytically over s-type STOs |
362 |
* Computes the overlap integral over two Slater-type orbitals of s symmetry. |
363 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
364 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
365 |
* @param m : principal quantum number of first atom |
366 |
* @param n : principal quantum number of second atom |
367 |
* @param R : internuclear distance in atomic units (bohr) |
368 |
* @return the value of the kinetic energy integral |
369 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
370 |
* @note untested |
371 |
*/ |
372 |
inline RealType KinInt(RealType a, RealType b, int m, int n,RealType R) |
373 |
{ |
374 |
RealType KinInt_ = -0.5*b*b*sSTOOvInt(a, b, m, n, R); |
375 |
if (n > 0) |
376 |
{ |
377 |
KinInt_ += b*b*pow(2*b/(2*b-1),0.5) * sSTOOvInt(a, b, m, n-1, R); |
378 |
if (n > 1) KinInt_ += pow(n*(n-1)/((n-0.5)*(n-1.5)), 0.5) |
379 |
* sSTOOvInt(a, b, m, n-2, R); |
380 |
} |
381 |
return KinInt_; |
382 |
} |
383 |
|
384 |
/** |
385 |
* @brief Computes derivative of Coulomb integral with respect to the interatomic distance |
386 |
* Computes the two-center Coulomb integral over Slater-type orbitals of s symmetry. |
387 |
* @param a: Slater zeta exponent of first atom in inverse Bohr (au) |
388 |
* @param b: Slater zeta exponent of second atom in inverse Bohr (au) |
389 |
* @param m: principal quantum number of first atom |
390 |
* @param n: principal quantum number of second atom |
391 |
* @param R: internuclear distance in atomic units (bohr) |
392 |
* @return the derivative of the Coulomb potential energy integral |
393 |
* @note Derived in QTPIE research notes, May 15 2007 |
394 |
*/ |
395 |
inline RealType sSTOCoulIntGrad(RealType a, RealType b, int m, int n, RealType R) |
396 |
{ |
397 |
RealType x, y, z, K2, TheSum; |
398 |
// x is the argument of the auxiliary RosenA and RosenB functions |
399 |
x = 2. * a * R; |
400 |
|
401 |
// First compute the two-electron component |
402 |
RealType sSTOCoulIntGrad_ = 0.; |
403 |
if (x==0) // Pathological case |
404 |
{ |
405 |
printf("WARNING: argument given to sSTOCoulIntGrad is 0\n"); |
406 |
printf("a = %lf R= %lf\n", a, R); |
407 |
} |
408 |
else |
409 |
{ |
410 |
if (a == b) |
411 |
{ |
412 |
TheSum = 0.; |
413 |
for (int nu=0; nu<=2*(n-1); nu++) |
414 |
{ |
415 |
K2 = 0.; |
416 |
for (int p=0; p<=(m+nu)/2; p++) |
417 |
K2 += RosenD(2*m-1, nu+1, 2*p)/(2*p + 1.) * RosenA(2*m+nu-1-2*p, x); |
418 |
TheSum += (2*n-nu-1)/fact[nu]*pow(a*R, nu) * K2; |
419 |
} |
420 |
sSTOCoulIntGrad_ = -pow(a, 2*m+2)*pow(R, 2*m) /(n*fact[2*m])*TheSum; |
421 |
TheSum = 0.; |
422 |
for (int nu=0; nu<=2*n-1; nu++) |
423 |
{ |
424 |
K2 = 0.; |
425 |
for (int p=0; p<=(m+nu-1)/2; p++) |
426 |
K2 += RosenD(2*m-1, nu, 2*p)/(2*p + 1.) * RosenA(2*m+nu-2*p, x); |
427 |
TheSum += (2*n-nu)/fact[nu]*pow(a*R,nu) * K2; |
428 |
} |
429 |
sSTOCoulIntGrad_ += 2*pow(a, 2*m+2)*pow(R, 2*m) /(n*fact[2*m])*TheSum; |
430 |
} |
431 |
else |
432 |
{ |
433 |
// Slater exponents are different |
434 |
// First calculate some useful arguments |
435 |
y = R*(a+b); |
436 |
z = R*(a-b); |
437 |
TheSum = 0.; |
438 |
for (int nu=0; nu<=2*n-1; nu++) |
439 |
{ |
440 |
K2 = 0.; |
441 |
for (int p=0; p<=2*m+nu; p++) |
442 |
K2 += RosenD(2*m-1, nu+1, p) |
443 |
* RosenB(p,z)*RosenA(2*m+nu-p, y); |
444 |
TheSum += (2*n-nu-1)/fact[nu]*pow(b*R,nu) * K2; |
445 |
} |
446 |
sSTOCoulIntGrad_ = -b*pow(a,2*m+1)*pow(R,2*m)/ |
447 |
(2*n*fact[2*m])*TheSum; |
448 |
TheSum = 0.; |
449 |
for (int nu=0; nu<=2*n; nu++) |
450 |
{ |
451 |
K2 = 0.; |
452 |
for (int p=0; p<=2*m-1+nu; p++) |
453 |
K2 += RosenD(2*m-1, nu, p) |
454 |
* ((a-b)*RosenB(p+1,z)*RosenA(2*m+nu-p-1, y) |
455 |
+(a+b)*RosenB(p ,z)*RosenA(2*m+nu-p , y)); |
456 |
TheSum += (2*n-nu)/fact[nu]*pow(b*R,nu) * K2; |
457 |
} |
458 |
sSTOCoulIntGrad_ += pow(a,2*m+1)*pow(R,2*m)/(2*n*fact[2*m])*TheSum; |
459 |
} |
460 |
// Now add one-electron terms and common term |
461 |
sSTOCoulIntGrad_ = sSTOCoulIntGrad_ - (2.*m+1.)/sqr(R) |
462 |
+ 2.*m/R * sSTOCoulInt(a,b,m,n,R) |
463 |
+ pow(x,2*m)/(fact[2*m]*sqr(R)) * ((2.*m+1.)*exp(-x) |
464 |
+ 2.*m*(1.+2.*m-x)*RosenA(2*m-1,x)); |
465 |
} |
466 |
return sSTOCoulIntGrad_; |
467 |
} |
468 |
|
469 |
/** |
470 |
* @brief Computes gradient of overlap integral with respect to the interatomic diatance |
471 |
* Computes the derivative of the overlap integral over two Slater-type orbitals of s symmetry. |
472 |
* @param a: Slater zeta exponent of first atom in inverse Bohr (au) |
473 |
* @param b: Slater zeta exponent of second atom in inverse Bohr (au) |
474 |
* @param m: principal quantum number of first atom |
475 |
* @param n: principal quantum number of second atom |
476 |
* @param R: internuclear distance in atomic units (bohr) |
477 |
* @return the derivative of the sSTOOvInt integral |
478 |
* @note Derived in QTPIE research notes, May 15 2007 |
479 |
*/ |
480 |
inline RealType sSTOOvIntGrad(RealType a, RealType b, int m, int n, RealType R) |
481 |
{ |
482 |
RealType w, x, y, z, TheSum; |
483 |
|
484 |
// Calculate first term |
485 |
RealType sSTOOvIntGrad_ = (m+n+1.)/R * sSTOOvInt(a, b, m, n, R); |
486 |
|
487 |
// Calculate remaining terms; answers depend on exponents |
488 |
TheSum = 0.; |
489 |
x = a * R; |
490 |
if (a == b) |
491 |
{ |
492 |
for (int q=0; q<=(m+n)/2; q++) |
493 |
TheSum += RosenD(m,n,2*q) / (2*q + 1.) * RosenA(m+n-2*q+1, x); |
494 |
sSTOOvIntGrad_ -= a*pow(x,m+n+1)/ sqrt(fact[2*m]*fact[2*n])*TheSum; |
495 |
} |
496 |
else |
497 |
{ |
498 |
w = b*R; |
499 |
y = 0.5*R*(a+b); |
500 |
z = 0.5*R*(a-b); |
501 |
for (int q=0; q<m+n; q++) |
502 |
TheSum = TheSum + RosenD(m,n,q) * |
503 |
((a-b)*RosenB(q+1,z)*RosenA(m+n-q ,y) |
504 |
+(a+b)*RosenB(q ,z)*RosenA(m+n-q+1,y)); |
505 |
sSTOOvIntGrad_ -= 0.25*sqrt((pow(x, 2*m+1)*pow(w, 2*n+1))/(fact[2*m]*fact[2*n]))*TheSum; |
506 |
} |
507 |
return sSTOOvIntGrad_; |
508 |
} |
509 |
|
510 |
/** |
511 |
* @brief Calculates a Slater-type orbital exponent based on the hardness parameters |
512 |
* @param hardness: chemical hardness in atomic units |
513 |
* @param n: principal quantum number |
514 |
* @note Modified for use with OpenMD by Gezelter and Michalka. |
515 |
*/ |
516 |
inline RealType getSTOZeta(int n, RealType hardness) |
517 |
{ |
518 |
// Approximate the exact value of the constant of proportionality |
519 |
// by its value at a very small distance epsilon |
520 |
// since the exact R = 0 case has not be programmed |
521 |
RealType epsilon = 1.0e-8; |
522 |
|
523 |
// Assign orbital exponent |
524 |
return pow(sSTOCoulInt(1., 1., n, n, epsilon) / hardness, -1./(3. + 2.*n)); |
525 |
} |
526 |
|
527 |
#endif |